(by commutativity)

(by distributivity)

NCERT Solution For Class 8 Maths Chapter 1- Rational Numbers

Page: 14

Exercise 1.1

1. Using appropriate properties find.

(i)
$$-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$$

$$-\frac{2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$$

$$= -\frac{2}{3} \times \frac{3}{5} - \frac{3}{5} \times \frac{1}{6} + \frac{5}{2}$$

$$= \frac{3}{5} \left(\frac{-2}{3} - \frac{1}{6}\right) + \frac{5}{3}$$

$$=\frac{5}{5}(\frac{1}{3}-\frac{5}{6})+\frac{5}{2}$$

$$=\frac{3}{5}\left(\frac{-4-1}{6}\right)+\frac{5}{2}$$

$$=\frac{3}{5}(\frac{-5}{6})+\frac{5}{2}$$

$$=\frac{-15}{30}+\frac{5}{2}$$

$$=\frac{-1}{2}+\frac{5}{2}$$

$$=\frac{4}{2}$$

(ii)
$$\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$$

$$\frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$$

$$= \frac{2}{5} \times \left(-\frac{3}{7}\right) - \frac{1}{6} \times \frac{3}{2} + \frac{1}{14} \times \frac{2}{5}$$

$$=\frac{2}{5}\times\left(-\frac{3}{7}\right)+\frac{1}{14}\times\frac{2}{5}-\left(\frac{1}{6}\times\frac{3}{2}\right)$$
 (by commutativity)

$$= \frac{2}{5} \times \left(-\frac{3}{7} + \frac{1}{14}\right) - \frac{3}{12}$$

$$= \frac{2}{5} \times \left(\frac{-6+1}{14}\right) - \frac{1}{4}$$

$$= \frac{2}{5} \times \left(\frac{-6+1}{14}\right) - \frac{1}{4}$$

$$= \frac{2}{5} \times \left(\frac{-5}{14}\right) - \frac{1}{4}$$

$$= \frac{2}{5} \times \left(\frac{-5}{14}\right) - \frac{1}{4}$$

$$= \left(\frac{-10}{70}\right) - \frac{1}{4}$$

$$= \frac{-1}{7} - \frac{1}{4}$$

$$= \frac{-4-7}{28}$$

$$= \frac{-11}{28}$$
 (by distributivity)

Write the additive inverse of each of the following.

(i)
$$\frac{2}{8}$$
 (ii) $\frac{-5}{9}$ (iii) $\frac{-6}{-5}$ (iv) $\frac{2}{-9}$ (v) $\frac{19}{-6}$

Solution

(i)
$$\frac{2}{8}$$

Additive inverse of
$$\frac{2}{8}$$
 is $\frac{-2}{8}$

(ii)
$$\frac{-5}{9}$$

Additive inverse of
$$\frac{-5}{9}$$
 is $\frac{5}{9}$

$$(iii)\frac{-6}{-5} = \frac{6}{5}$$

Additive inverse of
$$\frac{6}{5}$$
 is $\frac{-6}{5}$

$$(iv)\frac{2}{-9} = \frac{-2}{9}$$

Additive inverse of
$$\frac{-2}{9}$$
 is $\frac{2}{9}$

2. (v)
$$\frac{19}{-6} = \frac{-19}{6}$$

Additive inverse of $\frac{-19}{6}$ is $\frac{19}{6}$

Verify that : -(-x) = x for.

(i)
$$x = \frac{11}{15}$$
 (ii) $x = -\frac{13}{17}$

Solution:

(i)
$$x = \frac{11}{15}$$

We have, $x = \frac{11}{15}$

The additive inverse of x is -x (as x+(-x)=0) Then, the additive inverse of $\frac{11}{15}$ is $\frac{-11}{15}$ $(as \frac{11}{15}+\left(\frac{-11}{15}\right)=0$

The same equality $\frac{11}{15} + \left(\frac{-11}{15}\right) = 0$, shows that the additive inverse of $\frac{-11}{15}$ is $\frac{11}{15}$. Or, $-\left(\frac{-11}{15}\right) = \frac{11}{15}$

(ii)
$$x = -\frac{13}{17}$$

We have, $x = \frac{-13}{17}$

The additive inverse of x is -x (as x+(-x)=0)Then, the additive inverse of $\frac{-13}{17}$ is $\frac{13}{17}$ $(as \left(\frac{-13}{17}+\frac{13}{17}\right)=0$

The same equality $\left(\frac{-13}{17} + \frac{13}{17}\right) = 0$, shows that the additive inverse of $\frac{13}{17}$ is $\frac{-13}{17}$.

Or,
$$-\left(\frac{13}{17}\right) = \frac{-13}{17}$$
,

i.e.,
$$-(-x) = x$$

4. Find the multiplicative inverse of the following.

(ii)
$$\frac{-13}{19}$$

(iv)
$$\frac{-5}{8} \times \frac{-3}{7}$$

(i) -13 (ii)
$$\frac{-13}{19}$$
 (iii) $\frac{1}{5}$ (iv) $\frac{-5}{8} \times \frac{-3}{7}$ (v) -1 $\times \frac{-2}{5}$ (vi) -1

Solution:

(i)
$$-13$$

Multiplicative inverse of -13 is $\frac{-1}{13}$

(ii) $\frac{-13}{19}$

Multiplicative inverse of $\frac{-13}{19}$ is $\frac{-19}{13}$

 $(iii) \frac{1}{5}$

Multiplicative inverse of $\frac{1}{5}$ is 5

3.

(iv)
$$\frac{-5}{8} \times \frac{-3}{7} = \frac{15}{56}$$

Multiplicative inverse of $\frac{15}{56}$ is $\frac{56}{15}$

(v)
$$-1 \times \frac{-2}{5} = \frac{2}{5}$$

Multiplicative inverse of $\frac{2}{5}$ is $\frac{5}{2}$

(vi)-1

Multiplicative inverse of -1 is -1

Name the property under multiplication used in each of the following.

(i)
$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = \frac{-4}{5}$$

$$_{5.}$$
 (ii) $\frac{-13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$

$$(iii)\frac{-19}{29} \times \frac{29}{-19} = 1$$

Solution:

(i)
$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = \frac{-4}{5}$$

Here 1 is the multiplicative identity.

(ii)
$$\frac{-13}{17} \times \frac{-2}{7} = \frac{-2}{7} \times \frac{-13}{17}$$

The property of commutativity is used in the equation.

$$(iii) \frac{-19}{29} \times \frac{29}{-19} = 1$$

Multiplicative inverse is the property used in this equation.

6. Multiply $\frac{6}{13}$ by the reciprocal of $\frac{-7}{16}$.

Solution:

Reciprocal of
$$\frac{-7}{16} = \frac{16}{-7} = \frac{-16}{7}$$

According to the question,
$$\frac{6}{13} \times (\text{Reciprocal of } \frac{-7}{16})$$

$$\Rightarrow \frac{6}{13} \times \frac{-16}{7} = \frac{-96}{91}$$

Tell what property allows you to compute $\frac{1}{3} \times (6 \times \frac{4}{3})$ as $(\frac{1}{3} \times 6) \times \frac{4}{3}$.

Solution:

$$\frac{1}{3} \times (6 \times \frac{4}{3}) = (\frac{1}{3} \times 6) \times \frac{4}{3}$$

Here, the way in which factors are grouped in a multiplication problem, supposedly, does not change the product. Hence, the Associativity Property is used here.

Is $\frac{8}{9}$ the multiplicative inverse of $-1\frac{1}{8}$? Why or why not?

Solution:

$$-1\frac{1}{8} = \frac{-7}{8}$$

[Multiplicative inverse \Rightarrow product should be 1]

According to the question,

$$\Rightarrow \frac{8}{9} \times \frac{-7}{8} = \frac{-7}{9} \neq 1$$

 \therefore , $\frac{8}{9}$ is **not** the multiplicative inverse of $-1\frac{1}{8}$

Is 0.3 the multiplicative inverse of $3\frac{1}{3}$? Why or why not?

Solution:

$$0.3 = \frac{3}{10}$$
$$3\frac{1}{3} = \frac{10}{3}$$

[Multiplicative inverse \Rightarrow product should be 1]

According to the question,

$$\Rightarrow \frac{3}{10} \times \frac{10}{3} = 1$$

9.

 \therefore , 0.3 is the multiplicative inverse of $3\frac{1}{2}$

10. Write.

- (i) The rational number that does not have a reciprocal.
- (ii) The rational numbers that are equal to their reciprocals.
- (iii) The rational number that is equal to its negative.

(i) The rational number that does not have a reciprocal is **0**. Reason:

$$0 = \frac{0}{1}$$

Reciprocal of $0 = \frac{1}{0}$, which is not defined.

(ii) The rational numbers that are equal to their reciprocals are 1 and -1. Reason:

$$1 = \frac{1}{1}$$

Reciprocal of
$$1 = \frac{1}{1} = 1$$
 Similarly, Reciprocal of $-1 = -1$

The rational number that is equal to its Reason:

(iii) Negative of 0=

negative is **0**.

			-0=0			
11	Fill	in	the	h	lan	kc

- (i) Zero has _____ reciprocal.
- (ii) The numbers _____ and ____ are their own reciprocals
- (iii) The reciprocal of -5 is _____.
- (iv) Reciprocal of $\frac{1}{x}$, where $x \neq 0$ is _____.
- (v) The product of two rational numbers is always a _____
- **(vi)** The reciprocal of a positive rational number is _____. Solution:
 - (i) Zero has **no** reciprocal.
 - (ii) The numbers $\underline{1}$ and $\underline{-1}$ are their own reciprocals
 - (iii) The reciprocal of -5 is $\frac{-1}{5}$.
 - (iv) Reciprocal of $\frac{1}{x}$, where $x \neq 0$ is \underline{x} .
 - (v) The product of two rational numbers is always a rational numbers.
 - (vi) The reciprocal of a positive rational number is positive.

Page: 20

1. Exercise 1.2

Represent these numbers on the number line.

- (i) $\frac{7}{4}$
- (ii) $\frac{1}{-1}$

Solution:

(i) $\frac{7}{4}$

Divide the line between the whole numbers into 4 parts. i.e, divide the line between 0 and 1 to 4 parts, 1 and 2 to 4 parts and so on.

Thus, the rational number $\frac{7}{4}$ lies at a distance of 7 points away from 0 towards positive number line.

(ii) $\frac{-5}{6}$

Divide the line between the integers into 4 parts. i.e, divide the line between 0 and -1 to 6 parts, -1 and -2 to 6 parts and so on. Here since the numerator is less than denominator, dividing 0 to -1 into 6 parts is sufficient.

Thus, the rational number $\frac{-5}{6}$ lies at a distance of 5 points, away from 0, towards negative number line.

Represent $\frac{-2}{11}$, $\frac{-5}{11}$, $\frac{-9}{11}$ on the number line.

Solution:

Divide the line between the integers into 11 parts.

Thus, the rational number $\frac{-2}{11}$, $\frac{-5}{11}$, $\frac{-9}{11}$ lie at a distance of 2, 5, 9 points, away from 0, towards negative number line respectively.

Write five rational numbers which are smaller than 2. Solution:

The number 2 can be written as $\frac{20}{10}$.

Hence, we can say that, the five rational numbers which are smaller than 2 are: $\frac{2}{10}$, $\frac{5}{10}$, $\frac{10}{10}$, $\frac{15}{10}$, $\frac{19}{10}$

Find ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$.

Solution:

Let us make the denominators same, say 50.

$$\frac{-2}{5} \Longrightarrow \frac{-2 \times 10}{5 \times 10} = \frac{-20}{50}$$
$$\frac{1}{2} \Longrightarrow \frac{1 \times 25}{2 \times 25} = \frac{25}{50}$$

Ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$ = ten rational numbers between $\frac{-20}{50}$ and $\frac{25}{50}$..., ten rational numbers between $\frac{-20}{50}$ and $\frac{25}{50}$ = $\frac{-18}{50}$, $\frac{-15}{50}$, $\frac{-5}{50}$, $\frac{-2}{50}$, $\frac{4}{50}$, $\frac{5}{50}$, $\frac{8}{50}$, $\frac{12}{50}$, $\frac{15}{50}$, $\frac{20}{50}$

5. Find five rational numbers between.

(i)
$$\frac{2}{3}$$
 and $\frac{4}{5}$

(ii)
$$\frac{-3}{2}$$
 and $\frac{5}{3}$

$$(iii)\frac{1}{4}$$
 and $\frac{1}{2}$

4. Solution:

(i)
$$\frac{2}{3}$$
 and $\frac{4}{5}$

Let us make the denominators same, say 60.

i.e., $\frac{2}{3}$ and $\frac{4}{5}$ can be written as:

$$\frac{2}{3} \Longrightarrow \frac{2 \times 20}{3 \times 20} = \frac{40}{60}$$

$$\frac{4}{5} \Longrightarrow \frac{4 \times 12}{5 \times 12} = \frac{48}{60}$$

Five rational numbers between $\frac{2}{3}$ and $\frac{4}{5}$ = five rational numbers between $\frac{40}{60}$ and $\frac{48}{60}$

∴, Five rational numbers between $\frac{40}{60}$ and $\frac{48}{60} = \frac{41}{60}, \frac{42}{60}, \frac{43}{60}, \frac{44}{60}, \frac{45}{60}$

(ii)
$$\frac{-3}{2}$$
 and $\frac{5}{3}$

et us make the denominators same, say 6.

i.e., $\frac{-3}{2}$ and $\frac{5}{3}$ can be written as:

$$\frac{-3}{2} \Longrightarrow \frac{-3 \times 3}{2 \times 3} = \frac{-9}{6}$$

$$\frac{5}{3} \Longrightarrow \frac{5 \times 2}{3 \times 2} = \frac{10}{6}$$

Five rational numbers between $\frac{-3}{2}$ and $\frac{5}{3}$ = five rational numbers between $\frac{-9}{6}$ and $\frac{10}{6}$

 \therefore , Five rational numbers between $\frac{-9}{6}$ and $\frac{10}{6} = \frac{-1}{6}$, $\frac{2}{6}$, $\frac{3}{6}$, $\frac{4}{6}$, $\frac{5}{6}$

$$(iii)\frac{1}{4}$$
 and $\frac{1}{2}$

us make the denominators same, say 24.

i.e., $\frac{1}{4}$ and $\frac{1}{2}$ can be written as:

$$\frac{1}{4} \Longrightarrow \frac{1 \times 6}{4 \times 6} = \frac{6}{24}$$

$$\frac{1}{2} \Longrightarrow \frac{1 \times 12}{2 \times 12} = \frac{12}{24}$$

Five rational numbers between $\frac{1}{4}$ and $\frac{1}{2}$ = five rational numbers between $\frac{6}{24}$ and $\frac{12}{24}$

 \therefore , Five rational numbers between $\frac{6}{24}$ and $\frac{12}{24} = \frac{7}{24}$, $\frac{8}{24}$, $\frac{9}{24}$, $\frac{10}{24}$, $\frac{11}{24}$

6. Write five rational numbers greater than -2.

Solution:

-2 can be written as
$$\frac{-20}{10}$$

Hence, we can say that, the five rational numbers greater than -2 are $\frac{-10}{10}$, $\frac{-5}{10}$, $\frac{-1}{10}$, $\frac{5}{10}$, $\frac{7}{10}$

$$\frac{-10}{10}$$
, $\frac{-5}{10}$, $\frac{-1}{10}$, $\frac{5}{10}$, $\frac{7}{10}$

Find ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$.

Solution:

Let us make the denominators same, say 80.

$$\frac{\frac{3}{5}}{5} \Longrightarrow \frac{3 \times 16}{5 \times 16} = \frac{48}{80}$$
$$\frac{3}{4} \Longrightarrow \frac{3 \times 20}{4 \times 20} = \frac{60}{80}$$

Ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$ = ten rational numbers between $\frac{48}{80}$ and $\frac{60}{80}$ \therefore , ten rational numbers between $\frac{48}{80}$ and $\frac{60}{80} = \frac{49}{80}, \frac{50}{80}, \frac{51}{80}, \frac{52}{80}, \frac{54}{80}, \frac{55}{80}, \frac{56}{80}, \frac{57}{80}, \frac{58}{80}, \frac{59}{80}$

7.

