Exercise 1.1

1. Using appropriate properties find.
(i) $-\frac{2}{3} \times \frac{3}{5}+\frac{5}{2}-\frac{3}{5} \times \frac{1}{6}$

Solution:

$$
\begin{aligned}
-\frac{2}{3} \times & \times \frac{3}{5} \\
& +\frac{5}{2}-\frac{3}{5} \times \frac{1}{6} \\
& \left.=\frac{2}{3} \times \frac{3}{5}-\frac{3}{5} \times \frac{-2}{6}-\frac{1}{6}\right)+\frac{5}{2} \\
& =\frac{3}{5}\left(\frac{-4-1}{6}\right)+\frac{5}{2} \\
& =\frac{3}{5}\left(\frac{-5}{6}\right)+\frac{5}{2} \\
& =\frac{-15}{30}+\frac{5}{2} \\
& =\frac{-1}{2}+\frac{5}{2} \\
& =\frac{4}{2} \\
& =2
\end{aligned}
$$

(ii) $\frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5}$

Solution:

$$
\frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5}
$$

$$
\begin{aligned}
& =\frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5} \\
& =\frac{2}{5} \times\left(-\frac{3}{7}\right)+\frac{1}{14} \times \frac{2}{5}-\left(\frac{1}{6} \times \frac{3}{2}\right) \quad \text { (by commutativity) }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{5} \times\left(-\frac{3}{7}+\frac{1}{14}\right)-\frac{3}{12} \\
& =\frac{2}{5} \times\left(\frac{-6+1}{14}\right)-\frac{1}{4} \\
& =\frac{2}{5} \times\left(\frac{-6+1}{14}\right)-\frac{1}{4} \\
& =\frac{2}{5} \times\left(\frac{-5}{14}\right)-\frac{1}{4} \\
& =\frac{2}{5} \times\left(\frac{-5}{14}\right)-\frac{1}{4} \\
& =\left(\frac{-10}{70}\right)-\frac{1}{4} \\
& =\frac{-1}{7}-\frac{1}{4} \\
& =\frac{-4-7}{28} \\
& =\frac{-11}{28}
\end{aligned}
$$

Write the additive inverse of each of the following.
(i) $\frac{2}{8}$
(ii) $\frac{-5}{9}$
(iii) $\frac{-6}{-5}$
(iv) $\frac{2}{-9}$
(v) $\frac{19}{-6}$

Solution:
(i) $\frac{2}{8}$

Additive inverse of $\frac{2}{8}$ is $\frac{-2}{8}$
(ii) $\frac{-5}{9}$

Additive inverse of $\frac{-5}{9}$ is $\frac{5}{9}$
(iii) $\frac{-6}{-5}=\frac{6}{5}$

Additive inverse of $\frac{6}{5}$ is $\frac{-6}{5}$
(iv) $\frac{2}{-9}=\frac{-2}{9}$

Additive inverse of $\frac{-2}{9}$ is $\frac{2}{9}$
2. (v) $\frac{19}{-6}=\frac{-19}{6}$

NCERT Solution For Class 8 Maths Chapter 1- Rational Numbers

Additive inverse of $\frac{-19}{6}$ is $\frac{19}{6}$
Verify that : $-(-x)=x$ for.
(i) $x=\frac{11}{15}$ (ii) $x=-\frac{13}{17}$

Solution:
(i) $\mathrm{x}=\frac{11}{15}$

We have, $\mathrm{x}=\frac{11}{15}$
The additive inverse of x is $-\mathrm{x} \quad($ as $\mathrm{x}+(-\mathrm{x})=0)$
Then, the additive inverse of $\frac{11}{15}$ is $\frac{-11}{15} \quad$ (as $\frac{11}{15}+\left(\frac{-11}{15}\right)=0$
The same equality $\frac{11}{15}+\left(\frac{-11}{15}\right)=0$, shows that the additive inverse of $\frac{-11}{15}$ is $\frac{11}{15}$.
Or, $-\left(\frac{-11}{15}\right)=\frac{11}{15}$,
i.e., $-(-x)=x$.
(ii) $\mathrm{x}=-\frac{13}{17}$

We have, $x=\frac{-13}{17}$
The additive inverse of x is -x

$$
(\text { as } x+(-x)=0)
$$

Then, the additive inverse of $\frac{-13}{17}$ is $\frac{13}{17} \quad$ as $\left(\frac{-13}{17}+\frac{13}{17}\right)=0$
The same equality $\left(\frac{-13}{17}+\frac{13}{17}\right)=0$, shows that the additive inverse of $\frac{13}{17}$ is $\frac{-13}{17}$.
Or, $-\left(\frac{13}{17}\right)=\frac{-13}{17}$,
i.e., $-(-x)=x$

4. Find the multiplicative inverse of the following.

(i) -13
(ii) $\frac{-13}{19}$
(iii) $\frac{1}{5}$
(iv) $\frac{-5}{8} \times \frac{-3}{7}$
(v) $-1 \times \frac{-2}{5}$
(vi) -1

Solution:
(i) -13

Multiplicative inverse of -13 is $\frac{-1}{13}$
(ii) $\frac{-13}{19}$

Multiplicative inverse of $\frac{-13}{19}$ is $\frac{-19}{13}$
(iii) $\frac{1}{5}$

Multiplicative inverse of $\frac{1}{5}$ is 5
3.
(iv) $\frac{-5}{8} \times \frac{-3}{7}=\frac{15}{56}$

Multiplicative inverse of $\frac{15}{56}$ is $\frac{56}{15}$
(v) $-1 \times \frac{-2}{5}=\frac{2}{5}$

Multiplicative inverse of $\frac{2}{5}$ is $\frac{5}{2}$
(vi) -1

Multiplicative inverse of -1 is -1
Name the property under multiplication used in each of the following.
(i) $\frac{-4}{5} \times 1=1 \times \frac{-4}{5}=\frac{-4}{5}$
(ii) $\frac{-13}{17} \times \frac{-2}{7}=\frac{-2}{7} \times \frac{-13}{17}$
(iii) $\frac{-19}{29} \times \frac{29}{-19}=1$

Solution:
(i) $\frac{-4}{5} \times 1=1 \times \frac{-4}{5}=\frac{-4}{5}$

Here 1 is the multiplicative identity.
(ii) $\frac{-13}{17} \times \frac{-2}{7}=\frac{-2}{7} \times \frac{-13}{17}$

The property of commutativity is used in the equation.
(iii) $\frac{-19}{29} \times \frac{29}{-19}=1$

Multiplicative inverse is the property used in this equation.
6. Multiply $\frac{6}{13}$ by the reciprocal of $\frac{-7}{16}$.

Solution:
Reciprocal of $\frac{-7}{16}=\frac{16}{-7}=\frac{-16}{7}$
According to the question,

$$
\begin{aligned}
& \frac{6}{13} \times\left(\text { Reciprocal of } \frac{-7}{16}\right) \\
& \Rightarrow \frac{6}{13} \times \frac{-16}{7}=\frac{-96}{91}
\end{aligned}
$$

NCERT Solution For Class 8 Maths Chapter 1- Rational Numbers

Tell what property allows you to compute $\frac{1}{3} \times\left(6 \times \frac{4}{3}\right)$ as $\left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$.
Solution:
$\frac{1}{3} \times\left(6 \times \frac{4}{3}\right)=\left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$ 7.

Here, the way in which factors are grouped in a multiplication problem, supposedly, does not change the product. Hence, the Associativity Property is used here.

Is $\frac{8}{9}$ the multiplicative inverse of $-1 \frac{1}{8}$? Why or why not?
Solution:
$-1 \frac{1}{8}=\frac{-7}{8}$
[Multiplicative inverse \Rightarrow product should be 1]
According to the question,
$\Rightarrow \quad \frac{8}{9} \times \frac{-7}{8}=\frac{-7}{9} \neq 1$
8.
$\therefore, \frac{8}{9}$ is not the multiplicative inverse of $-1 \frac{1}{8}$
Is 0.3 the multiplicative inverse of $3 \frac{1}{3}$? Why or why not?

Solution:

$0.3=\frac{3}{10}$
$3 \frac{1}{3}=\frac{10}{3}$
[Multiplicative inverse \Rightarrow product should be 1]
According to the question,
$\Rightarrow \quad \frac{3}{10} \times \frac{10}{3}=1$
$\therefore 0.3$ is the multiplicative inverse of $3 \frac{1}{3}$
10. Write.
(i) The rational number that does not have a reciprocal.
(ii) The rational numbers that are equal to their reciprocals.
(iii)The rational number that is equal to its negative.

Solution:
(i) The rational number that does not have a reciprocal is 0 .

Reason:
$0=\frac{0}{1}$
Reciprocal of $0=\frac{1}{0}$, which is not defined.
(ii) The rational numbers that are equal to their reciprocals are 1 and $\mathbf{- 1}$.

Reason:
$1=\frac{1}{1}$
Reciprocal of $1=\frac{1}{1}=1$ Similarly, Reciprocal of $-1=-1$

NCERT Solution For Class 8 Maths Chapter 1- Rational Numbers

The rational number that is equal to its Reason:
(iii) Negative of $0=$

$$
\text { negative is } 0 \text {. }
$$

$-0=0$
11. Fill in the blanks.
(i) Zero has \qquad reciprocal.
(ii) The numbers \qquad and \qquad are their own reciprocals
(iii) The reciprocal of -5 is \qquad
(iv) Reciprocal of $\frac{1}{x}$, where $\mathrm{x} \neq 0$ is \qquad .
(v) The product of two rational numbers is always a \qquad .
(vi) The reciprocal of a positive rational number is \qquad .

Solution:

(i) Zero has no reciprocal.
(ii) The numbers $\underline{1}$ and $\underline{1}$ are their own reciprocals
(iii) The reciprocal of -5 is $\frac{\mathbf{- 1}}{\mathbf{5}}$.
(iv) Reciprocal of $\frac{1}{x}$, where $x \neq 0$ is $\underline{\mathbf{x}}$.
(v) The product of two rational numbers is always a rational numbers.
(vi) The reciprocal of a positive rational number is positive.

NCERT Solution For Class 8 Maths Chapter 1- Rational Numbers

1. Exercise 1.2

Page: 20

Represent these numbers on the number line.
(i) $\frac{7}{4}$
(ii) $\frac{-5}{6}$

Solution:
(i) $\frac{7}{4}$

Divide the line between the whole numbers into 4 parts. i.e, divide the line between 0 and 1 to 4 parts, 1 and 2 to 4 parts and so on.
Thus, the rational number $\frac{7}{4}$ lies at a distance of 7 points away from 0 towards positive number line.

(ii) $\frac{-5}{6}$

Divide the line between the integers into 4 parts. i.e, divide the line between 0 and -1 to 6 parts, -1 and -2 to 6 parts and so on. Here since the numerator is less than denominator, dividing 0 to -1 into 6 parts is sufficient.
Thus, the rational number $\frac{-5}{6}$ lies at a distance of 5 points, away from 0 , towards negative number line.

Represent $\frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11}$ on the number line.
Solution:
Divide the line between the integers into 11 parts.
Thus, the rational number $\frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11}$ lie at a distance of $2,5,9$ points, away from 0 , towards negative number line respectively.

Write five rational numbers which aresmaller than 2.
Solution:
The number 2 can be written as $\frac{20}{10}$.
Hence, we can say that, the five rational numbers which are smaller than 2 are:
$\frac{2}{10}, \frac{5}{10}, \frac{10}{10}, \frac{15}{10}, \frac{19}{10}$

NCERT Solution For Class 8 Maths Chapter 1- Rational Numbers

Find ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$.

Solution:

Let us make the denominators same, say 50 .

$$
\begin{aligned}
\frac{-2}{5} & \Rightarrow \frac{-2 \times 10}{5 \times 10}=\frac{-20}{50} \\
\frac{1}{2} & \Rightarrow \frac{1 \times 25}{2 \times 25}=\frac{25}{50}
\end{aligned}
$$

Ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}=$ ten rational numbers between $\frac{-20}{50}$ and $\frac{25}{50}$
\therefore ten rational numbers between $\frac{-20}{50}$ and $\frac{25}{50}=\frac{-18}{50}, \frac{-15}{50}, \frac{-5}{50}, \frac{-2}{50}, \frac{4}{50}, \frac{5}{50}, \frac{8}{50}, \frac{12}{50}, \frac{15}{50}, \frac{20}{50}$
5. Find five rational numbers between.
(i) $\frac{2}{3}$ and $\frac{4}{5}$
(ii) $\frac{-3}{2}$ and $\frac{5}{3}$
(iii) $\frac{1}{4}$ and $\frac{1}{2}$
4.

Solution:
(i) $\frac{2}{3}$ and $\frac{4}{5}$

Let us make the denominators same, say 60.
i.e., $\frac{2}{3}$ and $\frac{4}{5}$ can be written as:

$$
\begin{aligned}
& \frac{2}{3} \Rightarrow \frac{2 \times 20}{3 \times 20}=\frac{40}{60} \\
& \frac{4}{5} \Rightarrow \frac{4 \times 12}{5 \times 12}=\frac{48}{60}
\end{aligned}
$$

Five rational numbers between $\frac{2}{3}$ and $\frac{4}{5}=$ five rational numbers between $\frac{40}{60}$ and $\frac{48}{60}$
\therefore, Five rational numbers between $\frac{40}{60}$ and $\frac{48}{60}=\frac{41}{60}, \frac{42}{60}, \frac{43}{60}, \frac{44}{60}, \frac{45}{60}$

NCERT Solution For Class 8 Maths Chapter 1- Rational Numbers

(ii) $\frac{-3}{2}$ and $\frac{5}{3}$

Let us make the denominators same, say 6 .
i.e., $\frac{-3}{2}$ and $\frac{5}{3}$ can be written as:

$$
\begin{aligned}
& \frac{-3}{2} \Rightarrow \frac{-3 \times 3}{2 \times 3}=\frac{-9}{6} \\
& \frac{5}{3} \Rightarrow \frac{5 \times 2}{3 \times 2}=\frac{10}{6}
\end{aligned}
$$

Five rational numbers between $\frac{-3}{2}$ and $\frac{5}{3}=$ five rational numbers between $\frac{-9}{6}$ and $\frac{10}{6}$
\therefore, Five rational numbers between $\frac{-9}{6}$ and $\frac{10}{6}=\frac{-1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}$
(iii) $\frac{1}{4}$ and $\frac{1}{2}$

Let us make the denominators same, say 24.
i.e., $\frac{1}{4}$ and $\frac{1}{2}$ can be written as:

$$
\begin{aligned}
& \frac{1}{4} \Rightarrow \frac{1 \times 6}{4 \times 6}=\frac{6}{24} \\
& \frac{1}{2} \Rightarrow \frac{1 \times 12}{2 \times 12}=\frac{12}{24}
\end{aligned}
$$

Five rational numbers between $\frac{1}{4}$ and $\frac{1}{2}=$ five rational numbers between $\frac{6}{24}$ and $\frac{12}{24}$
\therefore, Five rational numbers between $\frac{6}{24}$ and $\frac{12}{24}=\frac{7}{24}, \frac{8}{24}, \frac{9}{24}, \frac{10}{24}, \frac{11}{24}$

6. Write five rational numbers greater than $\mathbf{- 2}$.

Solution:
-2 can be written as $\frac{-20}{10}$
Hence, we can say that, the five rational numbers greater than -2 are
$\frac{-10}{10}, \frac{-5}{10}, \frac{-1}{10}, \frac{5}{10}, \frac{7}{10}$
Find ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$.

Solution:

Let us make the denominators same, say 80.

$$
\begin{aligned}
& \frac{3}{5} \Rightarrow \frac{3 \times 16}{5 \times 16}=\frac{48}{80} \\
& \frac{3}{4} \Rightarrow \frac{3 \times 20}{4 \times 20}=\frac{60}{80}
\end{aligned}
$$

Ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}=$ ten rational numbers between $\frac{48}{80}$ and $\frac{60}{80}$
\therefore, ten rational numbers between $\frac{48}{80}$ and $\frac{60}{80}=\frac{49}{80}, \frac{50}{80}, \frac{51}{80}, \frac{52}{80}, \frac{54}{80}, \frac{55}{80}, \frac{56}{80}, \frac{57}{80}, \frac{58}{80}, \frac{59}{80}$
7.

