NCERT Solution for Class 10 Maths Chapter 1 Real Numbers

Exercise 1.3

1. Prove that $\sqrt{5}$ is irrational.

Solutions: Let us assume, that $\sqrt{5}$ is rational number. i.e.
$\sqrt{5}=\frac{x}{y}$ (where, x and y are co-primes)
$\mathrm{y} \sqrt{5}=\mathrm{x}$
Squaring both the sides, we get,
$(y \sqrt{5})^{2}=x^{2}$
$\Rightarrow 5 y^{2}=x^{2}$.
Thus, x^{2} is divisible by 5 , so x is also divisible by 5 .
Let us say, $\mathrm{x}=5 \mathrm{k}$, for some value of k and substituting the value of x in equation (1), we get, $5 y^{2}=(5 k)^{2}$
$\Rightarrow y^{2}=5 k^{2}$
\boldsymbol{y}^{2} is divisible by 5 it means y is divisible by 5 .
Therefore, x and y are co-primes. Since, our assumption about $\sqrt{5}$ is rational is incorrect.
Hence, $\sqrt{5}$ is irrational number.
2. Prove that $3+2 \sqrt{5}+$ is irrational.

Solutions: Let us assume $3+2 \sqrt{5}$ is rational.
Then we can find co-prime x and $\mathrm{y}(\mathrm{y} \neq 0)$ such that $3+2 \sqrt{5}=\frac{x}{y}$.
Rearranging, we get,
$2 \sqrt{5}=\frac{x}{y}-3$
$\sqrt{5}=\frac{1}{2}\left(\frac{x}{y}-3\right)$
Since, x and y are integers, thus, $\frac{1}{2}\left(\frac{x}{y}-3\right)$ is a rational number.
Therefore, $\sqrt{5}$ is also a rational number. But this contradicts the fact that $\sqrt{5}$ is irrational.
So, we conclude that $3+2 \sqrt{5}$ is irrational.
3. Prove that the following are irrationals:
(i) $1 / \overline{2} \sqrt{ }$
(ii) $7 \sqrt{5}$
(iii) $6+\sqrt{2}$

NCERT Solution for Class 10 Maths Chapter 1 Real Numbers

Solutions: (i) $1 / \sqrt{2}$
Let us assume $1 / \sqrt{2}$ is rational.
Then we can find co-

$$
\text { prime } \mathrm{x} \text { and } \mathrm{y}(\mathrm{y} \neq 0) \text { such that } 1 / \sqrt{2}=\frac{x}{y} \text {. }
$$

Rearranging, we get,
$\sqrt{2}=\frac{y}{x}$
Since, x and y are integers, thus, $\sqrt{2}$ is a rational number, which contradicts the fact that $\sqrt{2}$ is irrational. Hence, we can conclude that $1 / \sqrt{2}$ is irrational.
(ii) $7 \sqrt{5}$

Let us assume $7 \sqrt{5}$ is a rational number.
Then we can find co-prime a and $\mathrm{b}(\mathrm{b} \neq 0)$ such that $7 \sqrt{5}=\frac{x}{y}$.
Rearranging, we get,
$\sqrt{5}=\frac{x}{7 y}$
Since, x and y are integers, thus, $\sqrt{5}$ is a rational number, which contradicts the fact that $\sqrt{5}$ is irrational. Hence, we can conclude that $7 \sqrt{5}$ is irrational.
(iii) $6+\sqrt{2}$

Let us assume $6+\sqrt{2}$ is a rational number.
Then we can find co-primes x and $y(y \neq 0)$ such that $6+\sqrt{2}=\frac{x}{y}$.
Rearranging, we get,
$\sqrt{2}=\frac{x}{y}-6$

Since, x and y are integers, thus, $\frac{x}{y}-$ 6 is a rational number and therefore, $\sqrt{2}$ is rational.
This contradicts
the fact that $\sqrt{2}$ is a irrational number.

