

Exercise 1.4 Page: 17

1. Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:

(i)
$$\frac{13}{3125}$$
 (ii) $\frac{17}{8}$ (iii) $\frac{64}{455}$ (iv) $\frac{15}{1600}$ (v) $\frac{29}{343}$ (vi) $\frac{23}{2^35^2}$ (vii) $\frac{129}{2^25^77^5}$ (viii) $\frac{6}{15}$ (ix) $\frac{35}{50}$ (x) $\frac{77}{210}$

Solutions:

Note: If the denominator has only factors of 2 and 5 or in the form of $2^m \times 5^n$ then it has terminating decimal expansion.

If the denominator has factors other than 2 and 5 then it has a non-terminating decimal expansion.

$$(i)\frac{13}{3125}$$

Factorizing the denominator, we get,

$$3125 = 5 \times 5 \times 5 = 5^5$$

Since, the denominator has only 5 as its factor, $\frac{13}{3125}$ has a terminating decimal expansion.

(ii)
$$\frac{17}{8}$$

Factorizing the denominator, we get,

$$8 = 2 \times 2 \times 2 = 2^3$$

Since, the denominator has only 2 as its factor, $\frac{17}{8}$ has a terminating decimal expansion.

(iii)
$$\frac{64}{455}$$

Factorizing the denominator, we get,

$$455 = 5 \times 7 \times 13$$

Since, the denominator is not in the form of $2^m \times 5^n$, thus $\frac{64}{455}$ has a non-terminating decimal expansion.

(iv)
$$\frac{15}{1600}$$

Factorizing the denominator, we get,

$$1600 = 2^65^2$$

Since, the denominator is in the form of $2^m \times 5^n$, thus $\frac{15}{1600}$ has a terminating decimal expansion.

$$(v)\frac{29}{343}$$

Factorizing the denominator, we get,

$$343 = 7 \times 7 \times 7 = 7^3$$

Since, the denominator is not in the form of $2^m \times 5^n$, thus $\frac{29}{343}$ has a non-terminating decimal expansion.

(vi)
$$\frac{23}{2^35^2}$$

Clearly, the denominator is in the form of $2^m \times 5^n$.

Hence, $\frac{23}{2^35^2}$ has a terminating decimal expansion.

(vii)
$$\frac{129}{2^25^77^5}$$

As you can see, the denominator is not in the form of $2^m \times 5^n$.

Hence, $\frac{129}{2^25^77^5}$ has a non-terminating decimal expansion.

(viii)
$$\frac{6}{15}$$

$$\frac{6}{15} = \frac{2}{5}$$

Since, the denominator has only 5 as its factor, thus, $\frac{6}{15}$ has a terminating decimal expansion.

$$(ix) \frac{35}{50} = \frac{7}{10}$$

Factorising the denominator, we get,

$$10 = 2 \times 5$$

Since, the denominator is in the form of $2^m \times 5^n$, thus, $\frac{35}{50}$ has a terminating decimal expansion.

$$(x)\frac{77}{210}$$

$$\frac{77}{210} = \frac{7 \times 11}{7 \times 30} = \frac{11}{30}$$

Factorising the denominator, we get,

$$30 = 2 \times 3 \times 5$$

As you can see, the denominator is not in the form of $2^m \times 5^n$.

Hence, $\frac{77}{210}$ has a non-terminating decimal expansion.

2. Write down the decimal expansions of those rational numbers in Question 1 above which have terminating decimal expansions.

Solutions:

(i)
$$\frac{13}{3125}$$

3125)13.00000(0.00416

0 130 0

13000

= 0.00416

8) 17 (2.125

-16 10 -8

20

-16

40

-40

00

 $\frac{17}{8} = 2.125$

(iii) $\frac{64}{455}$ has a Non terminating decimal expansion

(iv) $\frac{15}{1600}$

1600) 15.000000 (0.009375

0

150

0

1500

0

15000

-14400

6000

-4800

12000

-11200

8000

-8000

0000

 $\frac{15}{1600} = 0.009375$

 $(v)\frac{29}{343}$ has a Non terminating decimal expansion

$$(vi)\frac{23}{2^35^2} = \frac{23}{8 \times 25} = \frac{23}{200}$$

200) 23.000(0.115

23 -0 -----230 -200

300

-200 -----1000

-1000 ------0000

 $\frac{23}{2^35^2} = 0.115$

(vii) $\frac{129}{2^25^77^5}$ has a Non terminating decimal expansion

$$(viii) \frac{6}{15} = \frac{2}{5}$$

5) 2.0 (0.4 0

> 20 -20

00

$$(ix)\frac{35}{50} = \frac{7}{10}$$

10) 7 (0.7

0

70

-70

00

$$\frac{35}{50} = 0.7$$

- $(x) \frac{77}{210}$ has a non-terminating decimal expansion.
- 3. The following real numbers have decimal expansions as given below. In each case, decide whether they are rational or not. If they are rational, and of the form, p q what can you say about the prime factors of q?
- (i) 43.123456789
- (ii) 0.120120012000120000...
- (iii) 43.~123456789

Solutions:

(i) 43.123456789

Since it has a terminating decimal expansion, it is a rational number in the form of p/q and q has factors of 2 and 5 only.

(ii) 0.120120012000120000. . .

Since, it has non-terminating and non-repeating decimal expansion, it is an irrational number.

(iii) 43. 123456789

Since it has non-terminating but repeating decimal expansion, it is a rational number in the form of p/q and q has factors other than 2 and 5.

