NCERT Solution for Class 10 Maths Chapter 1 Real Numbers

Exercise 1.4

1. Without actually performing the long division, state whe ther the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion:
(i) $\frac{13}{3125}$ (ii) $\frac{17}{8}$ (iii) $\frac{64}{455}$ (iv) $\frac{15}{1600}$ (v) $\frac{29}{343}$ (vi) $\frac{23}{2^{3} 5^{2}}$ (vii) $\frac{129}{2^{2} 5^{7} 7^{5}}$ (viii) $\frac{6}{15}$ (ix) $\frac{35}{50}$ (x) $\frac{77}{210}$

Solutions:

Note: If the denominator has only factors of 2 and 5 or in the form of $2^{m} \times 5^{n}$ then it has terminating decimal expansion.
If the denominator has factors other than 2 and 5 then it has a non-terminating decimal expansion.
(i) $\frac{13}{3125}$

Factorizing the denominator, we get,
$3125=5 \times 5 \times 5=5^{5}$
Since, the denominator has only 5 as its factor, $\frac{13}{3125}$ has a terminating decimal expansion.
(ii) $\frac{17}{8}$

Factorizing the denominator, we get,
$\mathbf{8}=\mathbf{2} \times \mathbf{2} \times \mathbf{2}=2^{3}$
Since, the denominator has only 2 as its factor, $\frac{17}{8}$ has a terminating decimal expansion.
(iii) $\frac{64}{455}$

Factorizing the denominator, we get,
$455=5 \times 7 \times 13$
Since, the denominator is not in the form of $2^{m} \times 5^{n}$, thus $\frac{64}{455}$ has a non-terminating decimal expansion.
(iv) $\frac{15}{1600}$

Factorizing the denominator, we get,
$1600=265^{2}$

NCERT Solution for Class 10 Maths Chapter 1 Real Numbers

Since, the denominator is in the form of $2^{m} \times 5^{n}$, thus $\frac{15}{1600}$ has a terminating decimal expansion.
(v) $\frac{29}{343}$

Factorizing the denominator, we get,
$343=7 \times 7 \times 7=73$
Since, the denominator is not in the form of $2^{m} \times 5^{n}$, thus $\frac{29}{343}$ has a non-terminating decimal expansion.
(vi) $\frac{23}{2^{3} 5^{2}}$

Clearly, the denominator is in the form of $2^{m} \times 5^{n}$.
Hence, $\frac{23}{2^{3} 5^{2}}$ has a terminating decimal expansion.
(vii) $\frac{129}{2^{2} 5^{7} 7^{5}}$

As you can see, the denominator is not in the form of $2^{m} \times 5^{n}$.
Hence, $\frac{129}{2^{2} 5^{7} 7^{5}}$ has a non-terminating decimal expansion.
(viii) $\frac{6}{15}$
$\frac{6}{15}=\frac{2}{5}$
Since, the denominator has only 5 as its factor, thus, $\frac{6}{15}$ has a terminating decimal expansion.
(ix) $\frac{35}{50}$
$\frac{35}{50}=\frac{7}{10}$
Factorising the denominator, we get,
$10=2 \times 5$
Since, the denominator is in the form of $2^{m} \times 5^{n}$, thus, $\frac{35}{50}$ has a terminating decimal expansion.
(x) $\frac{77}{210}$
$\frac{77}{210}=\frac{7 \times 11}{7 \times 30}=\frac{11}{30}$

NCERT Solution for Class 10 Maths Chapter 1 Real Numbers

Factorising the denominator, we get,
$\mathbf{3 0}=2 \times 3 \times 5$

As you can see, the denominator is not in the form of $2^{m} \times 5^{n}$.
Hence, $\frac{77}{210 \mathrm{has}}$ a non-terminating decimal expansion.
2. Write down the decimal expansions of those rational numbers in Question 1 above which have terminating decimal expansions.

Solutions:

(i) $\frac{13}{3125}$
3125)13.00000(0.00416

0
\qquad
130
0

13000

- 12500

5000
-3125

18750
18750

$\frac{13}{3125}=0.00416$
(ii) $\frac{17}{8}$
8) $17(2.125$
-16

10
-8
\qquad
(iii) $\frac{64}{455}$ has a Non terminating decimal expansion
(iv) $\frac{15}{1600}$
1600) $15.000000(0.009375$

0

150
0

1500
0

15000
-14400

6000
-4800

12000
-11200
\qquad
8000
-8000

0000
$\frac{15}{1600}=0.009375$
(v) $\frac{29}{343}$ has a Non terminating decimal expansion
(vi) $\frac{23}{2^{3} 5^{2}}=\frac{23}{8 \times 25}=\frac{23}{200}$
200) 23.000(0.115

0

23
-0

230
-200

300
-200

1000
-1000

0000
$\frac{23}{2^{3} 5^{2}}=0.115$
(vii) $\frac{129}{2^{2} 5^{7} 7^{5}}$ has a Non terminating decimal expansion
(viii) $\frac{6}{15}=\frac{2}{5}$
5) 2.0 (0.4

0

20
-20
\qquad

NCERT Solution for Class 10 Maths Chapter 1 Real Numbers

00
(ix) $\frac{35}{50}=\frac{7}{10}$
10) $7(0.7$

0

70
-70

00
$\frac{35}{50}=0.7$
(x) $\frac{77}{210}$ has a non-terminating decimal expansion.
3. The following real numbers have decimal expansions as given be low. In each case, decide whe ther they are rational or not. If they are rational, and of the form, $p q$ what can you say about the prime factors of q ?
(i) $\mathbf{4 3 . 1 2 3 4 5 6 7 8 9}$
(ii) $\mathbf{0 . 1 2 0 1 2 0 0 1 2 0 0 0 1 2 0 0 0 0 . . .}$
(iii) 43. ${ }^{\text {¹2 }} 123456789$

Solutions:

(i) 43.123456789

Since it has a terminating decimal expansion, it is a rational number in the form of p / q and q has factors of 2 and 5 only.
(ii) 0.120120012000120000 . .

Since, it has non-terminating and non- repeating decimal expansion, it is an irrational number.
(iii) $43 .{ }^{〔} 123456789$

Since it has non-terminating but repeating decimal expansion, it is a rational number in the form of p / q and q has factors other than 2 and 5 .

