NCERT Solutions For Class 10 Maths Chapter 10-Circles

(Page No: 209) Exercise: 10.1

1. How many tangents can a circle have?

Answer:
There can be infinite tangents to a circle. A circle is made up of infinite points which are in a equal distance from a point. Since there are infinite points on the circumference of a circle, infinite tangents can be drawn from them.
2. Fill in the blanks:
(i) A tangent to a circle intersects it in \qquad point(s).
(ii) A line intersecting a circle in two points is called a \qquad
(iii) A circle can have \qquad parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called \qquad

Answer:
(i) A tangent to a circle intersects it in one point(s).
(ii) A line intersecting a circle in two points is called a secant.
(iii) A circle can have two parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called the point of contact.
3. A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $O Q=12 \mathrm{~cm}$. Length $P Q$ is :
(A) 12 cm
(B) 13 cm
(C) 8.5 cm
(D) V119 cmAnswer:

In the above figure, the line that is drawn from the centre of the given circle to the tangent $P Q$ is perpendicular to PQ. And so, $O P \perp P Q$ Using Pythagorean theorem in triangle $\triangle O P Q$ we get, $O Q^{2}=O P^{2}+P Q^{2}$

NCERT Solutions For Class 10 Maths Chapter 10-Circles

$\Rightarrow(12)^{2}=5^{2}+P Q^{2}$
$\Rightarrow \mathrm{PQ}^{2}=144-25$
$\Rightarrow P Q^{2}=119$
=> $\mathrm{PQ}=\mathrm{V} 119 \mathrm{~cm}$
So, option Di.e. $V 119 \mathrm{~cm}$ is the length of PQ .
4. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Answer:

In the above figure, $X Y$ and $A B$ are two the parallel lines. The line segment $A B$ is the tangent at point C while the line segment $X Y$ is the secant.
(Page NO: 213)

Exercise: 10.2

In Q. 1 to 3, choose the correct option and give justification.

1. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
(A) 7 cm
(B) 12 cm (C) 15 cm

NCERT Solutions For Class 10 Maths Chapter 10-Circles

(D) 24.5 cm

Answer:
First, draw a perpendicular from the center O of the triangle to a point P on the circle which is touching the tangent. This line will be perpendicular to the tangent of the circle.

So, $O P$ is perpendicular to $P Q$ i.e. $O P \perp P Q$
From the above figure, it is also seen that $\triangle O P Q$ is a right angled triangle.
It is given that
$O Q=25 \mathrm{~cm}$ and $P Q=24 \mathrm{~cm}$
By using Pythagorean theorem in $\triangle O P Q$,
$O Q^{2}=O P^{2}+P Q^{2}$
$=>(25)^{2}=O P^{2}+(24)^{2}$
$=>\mathrm{OP}^{2}=625-576$
$=>O P^{2}=49$
$=>O P=7 \mathrm{~cm}$
So, option A i.e. 7 cm is the radius of the given circle.
2. In Fig. 10.11, if $T P$ and $T Q$ are the two tangents to a circle with centre O so that $\angle P O Q=$ 110°, then $\angle \mathrm{PTQ}$ is equal to
(A) 60°
$\begin{array}{lll}\text { (B) } 70^{\circ} & \text { (C) } 80^{\circ}\end{array}$
(D) 90°

Answer:

From the question, it is clear that OP is the radius of the circle to the tangent PT and OQ is the radius to the tangents TQ.

NCERT Solutions For Class 10 Maths Chapter 10-Circles

So, $\mathrm{OP} \perp \mathrm{PT}$ and $\mathrm{TQ} \perp \mathrm{OQ}$
$\therefore \angle O P T=\angle O Q T=90^{\circ}$
Now, in the quadrilateral POQT, we know that the sum of the interior angles is 360°
So, $\angle \mathrm{PTQ}+\angle \mathrm{POQ}+\angle \mathrm{OPT}+\angle \mathrm{OQT}=360^{\circ}$
Now, by putting the respective values we get,
$=>\angle \mathrm{PTQ}+90^{\circ}+110^{\circ}+90^{\circ}=360^{\circ}$
$=>\angle \mathrm{PTQ}=70^{\circ}$
So, $\angle \mathrm{PTQ}$ is 70° which is option B .
3. If tangents $P A$ and $P B$ from a point P to a circle with centre O are inclined to each other at angle of 80°, then $\angle P O A$ is equal to
(A) 50°
(B) 60°
(C) 70°
(D) 80°

Answer:
First, draw the diagram according to the given statement.

NCERT Solutions For Class 10 Maths Chapter 10-Circles

Now, in the above diagram, $O A$ is the radius to tangent $P A$ and $O B$ is the radius to tangents $P B$.
So, $O A$ is perpendicular to $P A$ and $O B$ is perpendicular to $P B$ i.e. $O A \perp P A$ and $O B \perp P B$
So, $\angle O B P=\angle O A P=90^{\circ}$
Now, in the quadrilateral AOBP,
The sum of all the interior angles will be 360° So,
$\angle A O B+\angle O A P+\angle O B P+\angle A P B=360^{\circ}$
Putting their values we get,
$=>\angle A O B+260^{\circ}=360^{\circ}$
$=>\angle A O B=100^{\circ}$
Now, consider the triangles $\triangle \mathrm{OPB}$ and $\triangle \mathrm{OPA}$. Here,
$A P=B P$ (Since the tangents from a point are always equal)
$O A=O B$ (Which are the radii of the circle)
$\mathrm{OP}=\mathrm{OP}$ (It is the common side)
Now, we can say that triangles OPB and OPA are similar using SSS congruency. \therefore
$\triangle O P B \cong \triangle O P A$
So, $\angle P O B=\angle P O A$
$=>\angle A O B=\angle P O A+\angle P O B$
$=>2(\angle P O A)=\angle A O B$
By putting the respective values we get,
$=>\angle \mathrm{POA}=100^{\circ} / 2=50^{\circ}$
As angle $\angle \mathrm{POA}$ is 50° option A is the correct option.

NCERT Solutions For Class 10 Maths Chapter 10-Circles

Page No: 214
4. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Answer:
First, draw a circle and connect two points A and B such that $A B$ becomes the diameter of the circle. Now, draw two tangents $P Q$ and $R S$ at points A and B respectively.

Now, both radii i.e. AO and OP are perpendicular to the tangents.
So, $O B$ is perpendicular to RS and OA perpendicular to $P Q$
So, $\angle O A P=\angle O A Q=\angle O B R=\angle O B S=90^{\circ}$
From the above figure, angles $O B R$ and $O A Q$ are alternate interior angles.
Also, $\angle \mathrm{OBR}=\angle \mathrm{OAQ}$ and $\angle \mathrm{OBS}=\angle \mathrm{OAP}$ (Since they are also alternate interior angles) So, it can be said that line PQ and the line RS will be parallel to each other. (Hence Proved).
5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the center.

Solution:

First, draw a circle with center O and draw a tangent $A B$ which touches the radius of the circle at point P.
To Proof: PQ passes through point O .
Now, let us consider that PQ doesn't pass through point O. Also, draw a CD parallel to $A B$ through O. Here, $C D$ is a straight line and $A B$ is the tangent. Refer the diagram now.

NCERT Solutions For Class 10 Maths Chapter 10-Circles

From the above diagram, $P Q$ intersects $C D$ and $A B$ at R and P respectively.
$A S, C D \| A B$,
Here, the line segment $P Q$ is the line of intersection.
Now angles ORP and RPA are equal as they are alternate interior angles So,
$\angle O R P=\angle R P A$
And,
$\angle R P A=90^{\circ}$ (Since, PQ is perpendicular to $A B$)
$=>\angle O R P=90^{\circ}$
Now, $\angle R O P+\angle O P A=180^{\circ}$ (Since they are co-interior angles)
$=>\angle R O P+90^{\circ}=180^{\circ}$
$=>\angle R O P=90^{\circ}$
Now, it is seen that the \triangle ORP has two right angles which are $\angle O R P$ and $\angle R O P$. Since this condition is impossible, it can be said the supposition we took is wrong.
6. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm . Find the radius of the circle.

Answer:

Draw the diagram as shown below.

Here, $A B$ is the tangent that is drawn on the circle from a point A.
So, the radius $O B$ will be perpendicular to $A B$ i.e. $O B \perp A B$
We know, $O A=5 \mathrm{~cm}$ and $A B=4 \mathrm{~cm}$
Now, In $\triangle A B O$,

NCERT Solutions For Class 10 Maths Chapter 10-Circles

$O A^{2}=A B^{2}+B O^{2}$ (Using Pythagoras theorem)
$=>5_{2}=42+\mathrm{BO}_{2}$
$=>\mathrm{BO}^{2}=25-16$
$=>\mathrm{BO}^{2}=9$
$=>B O=3$
So, the radius of the given circle i.e. BO is 3 cm .
7. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches the smaller circle.

Answer:
Draw two concentric circles with the center O . Now, draw a chord AB in the larger circle which touches the smaller circle at a point P as shown in the figure below.

From the above diagram, $A B$ is tangent to the smaller circle to point $P . \therefore$
$O P \perp A B$
Using Pythagoras theorem in triangle OPA,
$O A^{2}=A P^{2}+O P^{2}$
$=>5^{2}=A P^{2}+3^{2}$
$=>A P^{2}=25-9$
$=>A P=4$
Now, as $O P \perp A B$,
Since the the perpendicular from the center of the circle bisects the chord, $A P$ will be equal to PB

So, $A B=2 A P=2 \times 4=8 \mathrm{~cm}$

NCERT Solutions For Class 10 Maths Chapter 10-Circles

So, the length of the chord of the larger circle is 8 cm .
8. A quadrilateral $A B C D$ is drawn to circumscribe a circle (see Fig. 10.12). Prove that $A B+C D=$ $A D+B C$

Answer:
The figure given is:

From this figure we can conclude a few points which are:
(i) $\mathrm{DR}=\mathrm{DS}$
(ii) $\mathrm{BP}=\mathrm{BQ}$
(iii) $A P=A S$
(iv) $C R=C Q$

Since they are tangents on the circle from points $\mathrm{D}, \mathrm{B}, \mathrm{A}$, and C respectively.
Now, adding the LHS and RHS of the above equations we get,
$D R+B P+A P+C R=D S+B Q+A S+C Q$
By rearranging them we get,
$(D R+C R)+(B P+A P)=(C Q+B Q)+(D S+A S)$
By simplifying,
$A D+B C=C D+A B$
9. In Fig. 10.13, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$.

Answer:

From the figure given in the textbook, join OC. Now, the diagram will be as-

NCERT Solutions For Class 10 Maths Chapter 10-Circles

Now the triangles \triangle OPA and \triangle OCA are similar using SSS congruency as:
(i) $\mathrm{OP}=\mathrm{OC}->$ They are the radii of the same circle
(ii) $\mathrm{AO}=\mathrm{AO}->$ It is the common side
(iii) $A P=A C->$ These are the tangents from point A

So, $\triangle \mathrm{OPA} \cong \triangle O C A$
Similarly,
$\triangle \mathrm{OQB} \cong \triangle \mathrm{OCB}$
So,
$\angle \mathrm{POA}=\angle \mathrm{COA} . .$. (Equation i)
And, $\angle \mathrm{QOB}=\angle \mathrm{COB}$... (Equation ii)
Since the line POQ is a straight line, it can be considered as a diameter of the circle.
So, $\angle \mathrm{POA}+\angle \mathrm{COA}+\angle \mathrm{COB}+\angle \mathrm{QOB}=180^{\circ}$
Now, from equations (i) and equation (ii) we get, $2 \angle$
$\mathrm{COA}+2 \angle \mathrm{COB}=180^{\circ}$
$=>\angle C O A+\angle C O B=90^{\circ}$
$\therefore \angle \mathrm{AOB}=90^{\circ}$
10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the center.

Answer:
First, draw a circle with centre O. Choose an external point P and draw two tangents PA and PB at point A and point B respectively. Now, join A and B to make $A B$ in a way that it subtends $\angle A O B$ at the center of the circle. The diagram is as follows:

NCERT Solutions For Class 10 Maths Chapter 10-Circles

From the above diagram, it is seen that the line segments OA and PA are perpendicular.
So, $\angle O A P=90^{\circ}$
In a similar way, the line segments $\mathrm{OB} \perp \mathrm{PB}$ and so, $\angle \mathrm{OBP}=90^{\circ}$
Now, in the quadrilateral OAPB,
$\therefore \angle \mathrm{APB}+\angle \mathrm{OAP}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ}$ (since the sum of all interior angles will be 360°)
By putting the values we get,
$=>\angle A P B+180^{\circ}+\angle B O A=360^{\circ}$
So, $\angle A P B+\angle B O A=180^{\circ}$ (Hence proved).
11. Prove that the parallelogram circumscribing a circle is a rhombus.

Answer:
Consider a parallelogram $A B C D$ which is circumscribing a circle with a center O. Now, since $A B C D$ is a parallelogram, $A B=C D$ and $B C=A D$.

NCERT Solutions For Class 10 Maths Chapter 10-Circles

From the above figure, it is seen that,
(i) $\mathrm{DR}=\mathrm{DS}$
(ii) $\mathrm{BP}=\mathrm{BQ}$ (iii) $\mathrm{CR}=\mathrm{CQ}$
(iv) $A P=A S$

These are the tangents to the circle at $\mathrm{D}, \mathrm{B}, \mathrm{C}$, and A respectively.
Adding all these we get,
$D R+B P+C R+A P=D S+B Q+C Q+A S$
By rearranging them we get,
$=>(B P+A P)+(D R+C R)=(C Q+B Q)+(D S+A S)$
Again by rearranging them we get, $=>$
$A B+C D=B C+A D$
Now, since $A B=C D$ and $B C=A D$, the above equation becomes
$2 A B=2 B C$
$\therefore A B=B C$
Since $A B=B C=C D=D A$, it can be said that $A B C D$ is a rhombus.
12. A triangle $A B C$ is drawn to circumscribe a circle of radius 4 cm such that the segments $B D$ and $D C$ into which $B C$ is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see Fig. 10.14). Find the sides $A B$ and $A C$.

Answer:
The figure given is as follows:

NCERT Solutions For Class 10 Maths Chapter 10-Circles

Consider the triangle $A B C$,
We know that the length of any two tangents which are drawn from the same point to the circle is equal.
So,
(i) $\mathrm{CF}=\mathrm{CD}=6 \mathrm{~cm}$
(ii) $\mathrm{BE}=\mathrm{BD}=8 \mathrm{~cm}$
(iii) $\mathrm{AE}=\mathrm{AF}=x$

Now, it can be observed that,
(i) $\mathrm{AB}=\mathrm{EB}+\mathrm{AE}=8+\mathrm{x}$
(ii) $\mathrm{CA}=\mathrm{CF}+\mathrm{FA}=6+x$
(iii) $\mathrm{BC}=\mathrm{DC}+\mathrm{BD}=6+8=14$

Now the semi perimeter " s " will be calculated as follows
$=>2 s=A B+C A+B C$
By putting the respective values we get, s
$=28+2 x$
$=>s=14+x$
Area of $\triangle A B C=V s(s-a)(s-b)(s-c)$
By solving this we get,
$=\mathrm{V}(14+x) 48 x \ldots$ (i)
Again, the area of $\triangle \mathrm{ABC}=2 \times$ area of $(\triangle \mathrm{AOF}+\Delta \mathrm{COD}+\triangle \mathrm{DOB})$
$=2 \times[(1 / 2 \times \mathrm{OF} \times \mathrm{AF})+(1 / 2 \times \mathrm{CD} \times \mathrm{OD})+(1 / 2 \times \mathrm{DB} \times \mathrm{OD})]$
$=2 \times 1 / 2(4 x+24+32)=56+4 x$
Now from (i) and (ii) we get,
$V(14+x) 48 x=56+4 x$
Now, square both the sides,
$48 x(14+x)=(56+4 x)^{2}$
$=>48 x=[4(14+x)]^{2} /(14+x)$

NCERT Solutions For Class 10 Maths Chapter 10-Circles

$=>48 x=16(14+x)$
$=>48 x=224+16 x$
$=>32 x=224$
$=>x=7 \mathrm{~cm}$ So,
$A B=8+x$
i.e. $A B=15 \mathrm{~cm}$

And, $C A=x+6=13 \mathrm{~cm}$.
13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Answer:

First draw a quadrilateral $A B C D$ which will circumscribe a circle with its centre O in a way that it touches the circle at point P, Q, R, and S. Now, after joining the vertices of $A B C D$ we get the following figure:

Now, consider the triangles OAP and OAS,
$A P=A S$ (They are the tangents from the same point A)
$O A=O A$ (It is the common side)
$\mathrm{OP}=\mathrm{OS}$ (They are the radii of the circle)
So, by SSS congruency $\triangle O A P \cong \triangle$ OAS
So, $\angle P O A=\angle A O S$
Which implies that $\angle 1=\angle 8$

NCERT Solutions For Class 10 Maths Chapter 10-Circles

Similarly other angles will be,
$\angle 4=\angle 5$
$\angle 2=\angle 3$
$\angle 6=\angle 7$
Now by adding these angles we get,
$\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ}$
Now by rearranging,
$=>(\angle 1+\angle 8)+(\angle 2+\angle 3)+(\angle 4+\angle 5)+(\angle 6+\angle 7)=360^{\circ}$
$=>2 \angle 1+2 \angle 2+2 \angle 5+2 \angle 6=360^{\circ}$
Taking 2 as common and solving we get,
$(\angle 1+\angle 2)+(\angle 5+\angle 6)=180^{\circ}$
Thus, $\angle A O B+\angle C O D=180^{\circ}$
Similarly, it can be proved that $\angle B O C+\angle D O A=180^{\circ}$

Therefore, the opposite sides of any quadrilateral which is circumscribing a given circle will subtend supplementary angles at the center of the circle.

