1. Draw a line, say $A B$, take a point C outside it. Through C, draw a line parallel to $A B$ using ruler and compasses only.

Solution:-

Steps for construction,

1. Draw a line $A B$.
2. Take any point Q on $A B$ and a point P outside $A B$ and join $P Q$.
3. With Q as center and any radius draw an arc to cut $A B$ at E and $P Q$ at F.
4. With P as center and same radius draw an arc IJ to cut $Q P$ at G.
5. Place the pointed tip of the compass at E and adjust the opening so that the pencil tip is at F.
6. With the same opening as in step 5 and with G as center, draw an arc cutting the arc IJ at H.
7. Now, join PH to draw a line CD.
8. Draw a line L. Draw a perpendicular to L at any point on L. On this perpendicular choose a point $X, 4 \mathrm{~cm}$ away from I. Through X, draw a line m parallel to L. Solution:-

Steps for construction,

1. Draw a line L.
2. Take any point P on line L.
3. At point P, draw a perpendicular line N.
4. Place the pointed tip of the compass at P and adjust the compass up to length of 4 cm , draw an arc to cut this perpendicular at point X.
5. At point X, again draw a perpendicular line M.
6. Let L be a line and P be a point not on L. Through P, draw a line m parallel to L. Now join P to any point Q on L. Choose any other point R on m. Through R, draw a line parallel to $P Q$. Let this meet L at S. What shape do the two sets of parallel lines enclose? Solution:-

Steps for construction,

1. Draw a line L.
2. Take any point Q on L and a point P outside L and join $P Q$.
3. Make sure that angles at point P and point Q are equal i.e. $\angle \quad \angle Q=P$
4. At point P extend line to get line M which is parallel L.
5. Then take any point R on line M.
6. At point R draw angle such that $\angle \quad \angle P=R$
7. At point R extend line which intersects line L at S and draw a line RS.
8. Construct $\triangle X Y Z$ in which $X Y=4.5 \mathrm{~cm}, Y Z=5 \mathrm{~cm}$ and $Z X=6 \mathrm{~cm}$ Solution:-

Steps of construction:

1. Draw a line segment $Y Z=5 \mathrm{~cm}$.
2. With Z as a center and radius 6 cm , draw an arc.
3. With Y as a center and radius 4.5 cm , draw another arc, cutting the previous arc at X.
4. Join $X Y$ and $X Z$.

Then, $\triangle X Y Z$ is the required triangle.
2. Construct an equilateral triangle of side 5.5 cm . Solution:-

Steps of construction:

1. Draw a line segment $A B=5.5 \mathrm{~cm}$.
2. With A as a center and radius 5.5 cm , draw an arc.
3. With B as a center and radius 5.5 cm , draw another arc, cutting the previous arc at C .
4. Join CA and CB.

Then, $\triangle A B C$ is the required equilateral triangle.

3. Draw $\triangle P Q R$ with $P Q=4 \mathrm{~cm}, Q R=3.5 \mathrm{~cm}$ and $P R=4 \mathrm{~cm}$. What type of triangle is this? Solution:-

Steps of construction:

1. Draw a line segment $Q R=3.5 \mathrm{~cm}$.
2. With Q as a center and radius 4 cm , draw an arc.
3. With R as a center and radius 4 cm , draw another arc, cutting the previous arc at P. 4. Join $P Q$ and $P R$.

Then, $\triangle P Q R$ is the required isosceles triangle.

4. Construct $\triangle A B C$ such that $A B=2.5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $A C=6.5 \mathrm{~cm}$. Measure $\angle B$. Solution:-

1. Draw a line segment $B C=6 \mathrm{~cm}$.
2. With B as a center and radius 2.5 cm , draw an arc.
3. With C as a center and radius 6.5 cm , draw another arc, cutting the previous arc at A .
4. Join $A B$ and $A C$.

Then, $\triangle A B C$ is the required triangle.
5. When we will measure the angle B of triangle by protractor, then angle is equal to $\angle B$ $=80^{\circ}$

1. Construct $\triangle D E F$ such that $D E=5 \mathrm{~cm}, \mathrm{DF}=3 \mathrm{~cm}$ and $\mathrm{m} \angle E D F=90^{\circ}$. Solution:-

Steps of construction:

1. Draw a line segment $D F=3 \mathrm{~cm}$.
2. At point D, draw a ray $D X$ to making an angle of 90° i.e. $\angle X D F=90^{\circ}$.
3. Along $D X$, set off $D E=5 \mathrm{~cm}$.
4. Join EF.

Then, $\triangle E D F$ is the required right angled triangle.
2. Construct an isosceles triangle in which the lengths of each of its equal sides is 6.5 cm and the angle between them is 110°.
Solution:-

Steps of construction:

1. Draw a line segment $A B=6.5 \mathrm{~cm}$.
2. At point A, draw a ray $A X$ to making an angle of 110° i.e. $\angle X A B=110^{\circ}$.
3. Along $A X$, set off $A C=6.5 \mathrm{~cm}$.
4. Join CB.

Then, $\triangle A B C$ is the required isosceles triangle.
3. Construct $\triangle A B C$ with $B C=7.5 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and $\mathrm{m} \angle C=60^{\circ}$. Solution:-

Steps of construction:

1. Draw a line segment $B C=7.5 \mathrm{~cm}$.
2. At point C, draw a ray $C X$ to making an angle of 60° i.e. $\angle X C B=60^{\circ}$.
3. Along $C X$, set off $A C=5 \mathrm{~cm}$.
4. Join AB.

NCERT Solutions for Class 7 Maths Chapter 10 Practical Geometry

Then, $\triangle A B C$ is the required triangle.

EXERCISE 10.4

1. Construct $\triangle A B C$, given $m \angle A=60^{\circ}, m \angle B=30^{\circ}$ and $A B=5.8 \mathrm{~cm}$. Solution:-

Steps of construction:

1. Draw a line segment $A B=5.8 \mathrm{~cm}$.
2. At point A, draw a ray P to making an angle of 60° i.e. $\angle P A B=60^{\circ}$.
3. At point B, draw a ray Q to making an angle of 30° i.e. $\angle Q B A=30^{\circ}$.
4. Now the two rays $A P$ and $B Q$ intersect at the point C. Then, $\triangle A B C$ is the required triangle.
5. Construct $\triangle P Q R$ if $P Q=5 \mathrm{~cm}, \mathrm{~m} \angle P Q R=105^{\circ}$ and $\mathrm{m} \angle Q R P=40^{\circ}$. (Hint: Recall angle-sum property of a triangle).
Solution:-

We know that the sum of the angles of a triangle is 180°.

$$
\begin{aligned}
& \therefore \angle P Q R+\angle Q R P+\angle R P Q=180^{\circ} \\
& =105^{\circ}+40^{\circ}+\angle R P Q=180^{\circ} \\
& =145^{\circ}+\angle R P Q=180^{\circ} \\
& =\angle R P Q=180^{\circ}-145^{\circ} \\
& =\angle R P Q=35^{\circ}
\end{aligned}
$$

Hence, the measures of $\angle R P Q$ is 35°.
Steps of construction:

1. Draw a line segment $P Q=5 \mathrm{~cm}$.
2. At point P, draw a ray L to making an angle of 105° i.e. $\angle L P Q=105^{\circ}$. 3. At point Q, draw a ray M to making an angle of 40° i.e. $\angle M Q P=40^{\circ}$.
3. Now the two rays PL and QM intersect at the point R.

Then, $\triangle P Q R$ is the required triangle.
3. Examine whether you can construct $\triangle D E F$ such that $E F=7.2 \mathrm{~cm}, \mathrm{~m} \angle \mathrm{E}=110^{\circ}$ and $\mathrm{m} \angle \mathrm{F}=80^{\circ}$. Justify your answer.

Solution:-

From the question it is given that,
$\mathrm{EF}=7.2 \mathrm{~cm}$
$\angle E=110^{\circ}$
$\angle \mathrm{F}=80^{\circ}$
Now we have to check whether it is possible to construct $\triangle D E F$ from the given values. We know that the sum of the angles of a triangle is 180°.
Then,

$$
\begin{aligned}
& \angle D+\angle E+\angle F=180^{\circ} \\
& \angle D+110^{\circ}+80^{\circ}=180^{\circ} \\
& \angle D+190^{\circ}=180^{\circ} \\
& \angle D=180^{\circ}-190^{\circ} \\
& \angle D=-10^{\circ}
\end{aligned}
$$

We may observe that the sum of two angles is 190° is greater than 180°. So, it is not possible to construct a triangle.

1. Construct the Construct the right angled $\triangle P Q R$, where $m \angle Q=90^{\circ}, Q R=8 \mathrm{~cm}$ and $\mathrm{PR}=10 \mathrm{~cm}$.

Solution:-

Steps of construction:

1. Draw a line segment $Q R=8 \mathrm{~cm}$.
2. At point Q, draw a ray $Q Y$ to making an angle of 90° i.e. $\angle Y Q R=90^{\circ}$.
3. With R as a center and radius 10 cm , draw an arc that cuts the ray $Q Y$ at P.
4. Join PR.

Then, $\triangle P Q R$ is the required right angled triangle.
2. Construct a right-angled triangle whose hypotenuse is 6 cm long and one of the legs is 4 cm long

Solution:-

Let us consider $\triangle A B C$ is a right angled triangle at $\angle B=90^{\circ}$
Then,
$A C$ is hypotenuse $=6 \mathrm{~cm}$
... [given in the question]
$B C=4 \mathrm{~cm}$
Now, we have to construct the right angled triangle by the above values

Steps of construction:

1. Draw a line segment $B C=4 \mathrm{~cm}$.
2. At point B, draw a ray $B X$ to making an angle of 90° i.e. $\angle X B C=90^{\circ}$.
3. With C as a center and radius 6 cm , draw an arc that cuts the ray BX at A .
4. Join AC.

Then, $\triangle A B C$ is the required right angled triangle.
3. Construct an isosceles right-angled triangle $A B C$, where $m \angle A C B=90^{\circ}$ and $A C=$ 6 cm .
Solution:-

NCERT Solutions for Class 7 Maths Chapter 10
Practical Geometry

Steps of construction:

1. Draw a line segment $B C=6 \mathrm{~cm}$.
2. At point C , draw a ray CX to making an angle of 90° i.e. $\angle X C B=90^{\circ}$.
3. With C as a center and radius 6 cm , draw an arc that cuts the ray $C X$ at A.
4. Join AB.

Then, $\triangle A B C$ is the required right angled triangle.

