NCERT Solutions For Class 9 Maths Chapter 10 - Circles

NCERT Class 9 Maths Solutions For Chapter 10-Circles

(Page No: 171) Exercise:

10.1

1. Fill in the blanks:

(i) The centre of a circle lies in \qquad of the circle. (exterior/ interior)
(ii) A point, whose distance from the centre of a circle is greater than its radius lies in
\qquad of the circle. (exterior/ interior)
(iii) The longest chord of a circle is a \qquad of the circle.
(iv) An arc is a \qquad when its ends are the ends of a diameter.
(v) Segment of a circle is the region between an arc and \qquad of the circle.
(vi) A circle divides the plane, on which it lies, in \qquad parts.

Solution:

(i) The centre of a circle lies in interior of the circle.
(ii) A point, whose distance from the centre of a circle is greater than its radius lies in exterior of the circle.
(iii) The longest chord of a circle is a diameter of the circle.
(iv) An arc is a semicircle when its ends are the ends of a diameter.
(v) Segment of a circle is the region between an arc and chord of the circle. (vi) A circle divides the plane, on which it lies, in $\mathbf{3}$ (three) parts.

2. Write True or False: Give reasons for your Solution:s.

(i) Line segment joining the centre to any point on the circle is a radius of the circle.
(ii) A circle has only finite number of equal chords.
(iii) If a circle is divided into three equal arcs, each is a major arc.
(iv) A chord of a circle, which is twice as long as its radius, is a diameter of the circle.
(v) Sector is the region between the chord and its corresponding arc.
(vi) A circle is a plane figure.

Solution:

(i) True. Any line segment drawn from the centre of the circle to any point on it is the radius of the circle and will be of equal length.
(ii) False. There can be infinite numbers of equal chords of a circle.
(iii) False. For unequal arcs, there can be major and minor arcs. So, equal arcs on a circle cannot be said as a major arc or a minor arc.

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

(iv) True. Any chord whose length is twice as long as the radius of the circle always passes through the centre of the circle and thus, it is known as the diameter of the circle.
(v) False. A sector is a region of a circle between the arc and the two radii of the circle.
(vi) True. A circle is a 2 d figure and it can be drawn on a plane.
(Page No: 173) Exercise:
10.2

1. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.

Solution:

To recall, a circle is a collection of points whose every point is equidistant from its centre. So, two circles can be congruent only when the distance of every point of both the circles are equal from the centre.

For the second part of the question, it is given that $A B=C D$ i.e. two equal chords. Now, it is to be proven that angle $A O B$ is equal to angle COD.

Proof:

Consider the triangles $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$O A=O C$ and $O B=O D$ (Since they are the radii of the circle)
$A B=C D$ (As given in the question)
So, by SSS congruency, $\triangle A O B \cong \triangle C O D$
\therefore By CPCT rule, $\angle A O B=\angle C O D$. (Hence proved).
2. Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.

Solution:

Consider the following diagram-

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Here, it is given that $\angle A O B=\angle C O D$ i.e. they are equal angles.
Now, we will have to prove that the line segments $A B$ and $C D$ are equal i.e. $A B=C D$. Proof: In triangles $A O B$ and COD,
$\angle A O B=\angle C O D$ (as given in the question)
$O A=O C$ and $O B=O D$ ((these are the radii of the circle) So, by SAS congruency, $\triangle A O B \cong \triangle C O D$.
\therefore By the rule of $C P C T, A B=C D$. (Hence proved).
(Page No: 176) Exercise:
10.3

1. Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?

Solution:

In these two circles, no point is common.

Here, only one point " P " is common.

(iii)

Even here, P is the common point.

Here, two points are common which are P and Q .

(v)

No point is common in the above circle.
2. Suppose you are given a circle. Give a construction to find its centre.

Solution:

EDUGRロSS

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

The construction steps to find the center of the circle are:
Step I: Draw a circle first.
Step II: Draw 2 chords AB and CD in the circle.
Step III: Draw the perpendicular bisectors of AB and CD.
Step IV: Connect the two perpendicular bisectors at a point. This intersection point of the two perpendicular bisectors is the centre of the circle.
3. If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord.

Solution:

It is given that two circles intersect each other at P and Q .

To prove:

OO' is perpendicular bisector of PQ.

Proof:

Triangle $\triangle \mathrm{POO}$ ' and $\triangle \mathrm{QOO}$ ' are similar by SSS congruency since
$O P=O Q$ and $O^{\prime} P=O Q$ (Since they are also the radii)
$O O^{\prime}=0 O^{\prime}$ (It is the common side)
So, It can be said that $\triangle P O O^{\prime} \cong \triangle Q^{\prime} O^{\prime}$
$\therefore \angle P O O^{\prime}=\angle Q O O^{\prime}-$-- (i)

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Even triangles $\triangle P O R$ and $\triangle Q O R$ are similar by SAS congruency as
OP = OQ (Radii)
$\angle P O R=\angle Q O R\left(A s \angle P O O^{\prime}=\angle Q O O^{\prime}\right)$
OR = OR (Common arm)
So, $\triangle P O R \cong \triangle Q O R$
$\therefore \angle \mathrm{PRO}=\angle \mathrm{QRO}$
Also, we know that
$\angle P R O+\angle Q R O=180^{\circ}$
Hence, $\angle P R O=\angle Q R O=180^{\circ} / 2=90^{\circ}$
So, $O O^{\prime}$ is the perpendicular bisector of PQ .
(Page No: 179) Exercise:
10.4

1. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm . Find the length of the common chord.

Solution:

Given parameters are:
$O P=5 \mathrm{~cm}$
$O S=4 \mathrm{~cm}$ and
PS $=3 \mathrm{~cm}$
Also, $\mathrm{PQ}=2 \mathrm{PR}$
Now, suppose RS ="x. The diagram for the same is shown below.

Consider the $\triangle P O R$,
$O P^{2}=O R^{2}+P R^{2}$
$\Rightarrow 5^{2}=(4-x)^{2}+P R^{2}$
$\Rightarrow 25=16+x^{2}-8 x+P R^{2}$
$\therefore \mathrm{PR}^{2}=9-\mathrm{x}^{2}+8 \mathrm{x}---(\mathrm{i})$

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Now consider \triangle PRS,
$P S^{2}=P R^{2}+R S^{2}$
$\Rightarrow 3^{2}=P R^{2}+x^{2}$
$\therefore P R^{2}=9-\mathrm{x}^{2}---(\mathrm{ii})$

By equating equation (i) and equation (ii) we get,
$9-x^{2}+8 x=9-x^{2}$
$\Rightarrow 8 x=0$
$\Rightarrow x=0$
Now, put the value of x in equation (i)
$P R^{2}=9-0^{2}$
$\Rightarrow P R=3 \mathrm{~cm}$
\therefore The length of the cord i.e. $\mathrm{PQ}=2 \mathrm{PR}$
So, $P Q=2 \times 3=6 \mathrm{~cm}$
2. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

Solution:

Let $A B$ and $C D$ be two equal cords (i.e. $A B=C D$). In the above question, it is given that $A B$ and CD intersect at a point, say, E.
It is now to be proven that the line segments $\mathrm{AE}=\mathrm{DE}$ and $\mathrm{CE}=\mathrm{BE}$ Construction

Steps:

Step 1: From the center of the circle, draw a perpendicular to $A B$ i.e. $O M \perp A B$
Step 2: Similarly, draw $O N \perp C D$.
Step 3: Join OE.
Now, the diagram is as follows-

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Proof:
From the diagram, it is seen that $O M$ bisects $A B$ and so, $O M \perp A B$
Similarly, $O N$ bisects $C D$ and so, $O N \perp C D$
It is known that $A B=C D$. So,
$A M=N D--$ (i) and $M B=C N$
--- (ii)
Now, triangles $\triangle \mathrm{OME}$ and $\triangle \mathrm{ONE}$ are similar by RHS congruency since
$\angle O M E=\angle O N E$ (They are perpendiculars)
$\mathrm{OE}=\mathrm{OE}$ (It is the common side)
$O M=O N$ (AB and CD are equal and so, they are equidistant from the centre) \therefore
$\triangle \mathrm{OME} \cong \triangle \mathrm{ONE}$.
ME = EN (by CPCT) --- (iii)
Now, from equations (i) and (ii) we get,
$A M+M E=N D+E N$
So, $A E=E D$
Now from equations (ii) and (iii) we get,
$\mathrm{MB}-\mathrm{ME}=\mathrm{CN}-\mathrm{EN}$ So, $\mathrm{EB}=$
CE (Hence proved).
3. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.

Solution:

From the question we know the following:
(i) $A B$ and $C D$ are 2 chords which are intersecting at point E.
(ii) $P Q$ is the diameter of the circle.
(iii) $\mathrm{AB}=\mathrm{CD}$.

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Now, we will have to prove that $\angle B E Q=\angle C E Q$ For
this, the following construction has to be done:

Construction:

Draw two perpendiculars are drawn as $\mathrm{OM} \perp \mathrm{AB}$ and $\mathrm{ON} \perp \mathrm{CD}$. Now, join OE . The constructed diagram will look as follows:

Now, consider the triangles $\triangle \mathrm{OEM}$ and $\triangle \mathrm{OEN}$.
Here,
(i) $\mathrm{OM}=\mathrm{ON}$ [Since the equal chords are always equidistant from the centre]
(ii) $\mathrm{OE}=\mathrm{OE}$ [It is the common side]
(iii) $\angle \mathrm{OME}=\angle \mathrm{ONE}$ [These are the perpendiculars] So, by RHS similarity criterion, $\triangle \mathrm{OEM} \cong$ $\triangle \mathrm{OEN}$. Hence, by CPCT rule, $\angle \mathrm{MEO}=\angle \mathrm{NEO} \therefore \angle \mathrm{BEQ}=\angle \mathrm{CEQ}$ (Hence proved).
4. If a line intersects two concentric circles (circles with the same centre) with centre \mathbf{O} at A, B, C and D, prove that $A B=C D$ (see Fig. 10.25).

Solution:

The given image is as follows:

EDUGRロSS

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Fig, 10.25
First, draw a line segment from O to $A D$ such that $O M \perp A D$.
So, now $O M$ is bisecting $A D$ since $O M \perp A D$.
Therefore, AM = MD --- (i)
Also, since $O M \perp B C, O M$ bisects $B C$.
Therefore, BM = MC --- (ii)
From equation (i) and equation (ii),
$A M-B M=M D-M C$
$\therefore A B=C D$
5. Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?

Solution:

Let the positions of Reshma, Salma and Mandip be represented as A, B and C respectively.
From the question, we know that $A B=B C=6 \mathrm{~cm}$.
So, the radius of the circle i.e. $O A=5 \mathrm{~cm}$

EDUGRロSS

Wisdamisine Knawledae

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Now, draw a perpendicular $\mathrm{BM} \perp \mathrm{AC}$.
Since $A B=B C, A B C$ can be considered as an isosceles triangle. M is mid-point of $A C$. $B M$ is the perpendicular bisector of $A C$ and thus it passes through the centre of the circle. Now, let AM
= y and
$\mathrm{OM}=\mathrm{x}$
So, $B M$ will be $=(5-x)$.
By applying Pythagorean theorem in \triangle OAM we get,
$\mathrm{OA}_{2}=\mathrm{OM}_{2}+\mathrm{AM}_{2}$
$\Rightarrow 5^{2}=x^{2}+y^{2}--$ (i)
Again by applying Pythagorean theorem in $\triangle A M B$,
$A B_{2}=B M_{2}+A M_{2}$
$\Rightarrow 6^{2}=(5-x)^{2}+y^{2}--$ (ii)
Subtracting equation (i) from equation (ii), we get
$36-25=(5-x)^{2}-x^{2}-y^{2}$
Now, solving this equation we get the value of x as x
= $7 / 5$
Substituting the value of x in eqution (i), we get
$y^{2}+49 / 25=25 \Rightarrow y^{2}=25-49 / 25$
Solving it we get the value of y as
$y=24 / 5$ Thus,
$\mathrm{AC}=2 \times \mathrm{AM}$
$=2 \times y$
$=2 \times(24 / 5) \mathrm{m}$
AC $=9.6 \mathrm{~m}$
So, the distance between Reshma and Mandip is 9.6 m .
6. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

Solution:

First, draw a diagram according to the given statements. The diagram will look as follows.

EDUGRロSS

Here the positions of Ankur, Syed and David are represented as A, B and C respectively. Since they are sitting at equal distances, the triangle $A B C$ will form an equilateral triangle.
$A D \perp B C$ is drawn. Now, $A D$ is median of $\triangle A B C$ and it passes through the centre O.
Also, O is the centroid of the $\triangle A B C$. $O A$ is the radius of the triangle.
$O A=2 / 3 A D$
Let the side of a triangle a metres then $B D=a / 2 m$.
Applying Pythagoras theorem in $\triangle A B D$,
$A B_{2}=B D_{2}+A D_{2}$
$\Rightarrow A D^{2}=A B^{2}-B D^{2}$
$\Rightarrow A D^{2}=a^{2}-(a / 2)^{2}$
$\Rightarrow A D^{2}=3 a^{2} / 4$
$\Rightarrow A D=\sqrt{ } 3 a / 2$
$O A=2 / 3 A D$
$\Rightarrow 20 \mathrm{~m}=2 / 3 \times \sqrt{ } 3 \mathrm{a} / 2$
$\Rightarrow \mathrm{a}=20 \mathrm{~V} 3 \mathrm{~m}$
So, the length of the string of the toy is $20 \sqrt{ } 3 \mathrm{~m}$.
(Page No: 184) Exercise:
10.5

1. In Fig. 10.36, A, B and C are three points on a circle with centre O such that $\angle B O C=30^{\circ}$ and $\angle A O B=60^{\circ}$. If D is a point on the circle other than the arc $A B C$, find $\angle A D C$.

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Fig. 10.36

Solution:

It is given that,
$\angle A O C=\angle A O B+\angle B O C$
So, $\angle A O C=60^{\circ}+30^{\circ}$
$\therefore \angle A O C=90^{\circ}$
It is known that an angle which is subtended by an arc at the centre of the circle is double the angle subtended by that arc at any point on the remaining part of the circle. So,
$\angle A D C=1 / 2 \angle A O C$
$=1 / 2 \times 90^{\circ}=45^{\circ}$
(Page No: 185)
2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

Solution:

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Here, the chord $A B$ is equal to the radius of the circle. In the above diagram, $O A$ and $O B$ are the two radii of the circle.

Now, consider the $\triangle O A B$. Here,
$A B=O A=O B=$ radius of the circle.
So, it can be said that $\triangle O A B$ has all equal sides and thus, it is an equilateral triangle. \therefore
$\angle A O C=60^{\circ}$
And, $\angle A C B=1 / 2 \angle A O B$
So, $\angle A C B=1 / 2 \times 60^{\circ}=30^{\circ}$
Now, since ACBD is a cyclic quadrilateral,
$\angle A D B+\angle A C B=180^{\circ}$ (Since they are the opposite angles of a cyclic quadrilateral)
So, $\angle A D B=180^{\circ}-30^{\circ}=150^{\circ}$
So, the angle subtended by the chord at a point on the minor arc and also at a point on the major arc are 150° and 30° respectively.
3. In Fig. 10.37, $\angle P Q R=100^{\circ}$, where P, Q and R are points on a circle with centre O. Find $\angle O P R$.

Fig. 10.37

Solution:

Since angle which is subtended by an arc at the centre of the circle is double the angle subtended by that arc at any point on the remaining part of the circle.

So, the reflex $\angle \mathrm{POR}=2 \times \angle \mathrm{PQR}$

We know the values of angle PQR as 100°
So, $\angle \mathrm{POR}=2 \times 100^{\circ}=200^{\circ}$
$\therefore \angle \mathrm{POR}=360^{\circ}-200^{\circ}=160^{\circ}$
Now, in \triangle OPR,

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

$O P$ and $O R$ are the radii of the circle
So, OP = OR
Also, $\angle O P R=\angle O R P$
Now, we know sum of the angles in a triangle is equal to 180 degrees So,
$\angle P O R+\angle O P R+\angle O R P=180^{\circ}$
$\Rightarrow \angle O P R+\angle O P R=180^{\circ}-160^{\circ}$
As $\angle \mathrm{OPR}=\angle \mathrm{ORP}$
$=>2 \angle O P R=20^{\circ}$
Thus, $\angle \mathrm{OPR}=10^{\circ}$
4. In Fig. 10.38, $\angle A B C=69^{\circ}, \angle A C B=31^{\circ}$, find $\angle B D C$.

Fig. 10.38

Solution:

We know that angles in the segment of the circle are equal so, \angle
$B A C=\angle B D C$
Now in the In $\triangle A B C$, sum of all the interior angles will be 180°
So, $\angle A B C+\angle B A C+\angle A C B=180^{\circ}$
Now, by putting the values,
$\angle B A C=180^{\circ}-69^{\circ}-31^{\circ}$
So, $\angle B A C=80^{\circ}$
5. In Fig. 10.39, A, B, C and D are four points on a circle. $A C$ and $B D$ intersect at a point E such that $\angle B E C=130^{\circ}$ and $\angle E C D=20^{\circ}$. Find $\angle B A C$.

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Fig. 10.39

Solution:

We know that the angles in the segment of the circle are equal.
So,
$\angle B A C=\angle C D E$
Now, by using the exterior angles property of the triangle In $\triangle C D E$ we get,
$\angle C E B=\angle C D E+\angle D C E$
We know that $\angle D C E$ is equal to 20°
So, $\angle C D E=110^{\circ}$
$\angle B A C$ and $\angle C D E$ are equal
$\therefore \angle B A C=110^{\circ}$
6. $A B C D$ is a cyclic quadrilateral whose diagonals intersect at a point E. If $\angle D B C=70^{\circ}, \angle B A C$ is 30°, find $\angle B C D$. Further, if $A B=B C$, find $\angle E C D$.

Solution:

Consider the following diagram.

Consider the chord CD,
We know that angles in the same segment are equal.
So, $\angle C B D=\angle C A D$

EDUGRロSS

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

$\therefore \angle \mathrm{CAD}=70^{\circ}$
Now, $\angle B A D$ will be equal to the sum of angles BAC and CAD.
So, $\angle B A D=\angle B A C+\angle C A D$
$=30^{\circ}+70^{\circ}$
$\therefore \angle \mathrm{BAD}=100^{\circ}$
We know that the opposite angles of a cyclic quadrilateral sums up to 180 degrees.
So,
$\angle B C D+\angle B A D=180^{\circ}$
It is known that $\angle \mathrm{BAD}=100^{\circ}$
So, $\angle B C D=80^{\circ}$

Now consider the $\triangle \mathrm{ABC}$.
Here, it is given that $A B=B C$
Also, $\angle B C A=\angle C A B$ (They are the angles opposite to equal sides of a triangle)
$\angle B C A=30^{\circ}$ also,
$\angle B C D=80^{\circ} \angle B C A$
$+\angle A C D=80^{\circ}$
So, $\angle A C D=50^{\circ}$ and,
$\angle E C D=50^{\circ}$
7. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

Solution:

Draw a cyclic quadrilateral $A B C D$ inside a circle with center O such that its diagonal $A C$ and $B D$ are two diameters of the circle.

We know that the angles in the semi-circle are equal.
So, $\angle A B C=\angle B C D=\angle C D A=\angle D A B=90^{\circ}$
So, as each internal angle is 90°, it can be said that the quadrilateral $A B C D$ is a rectangle.

EDUGRロSS

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

8. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.

Solution:

Construction:
Consider a trapezium $A B C D$ with $A B|\mid C D$ and $B C=A D$.
Draw AM CD and BN CD.
In $\triangle A M D$ and $\triangle B N C$,
The diagram will look as follows:

In $\triangle \mathrm{AMD}$ and $\triangle \mathrm{BNC}$,
$A D=B C$ (Given)
$\mathrm{AMD}=\mathrm{BNC}\left(\mathrm{By}\right.$ construction, each is $\left.90^{\circ}\right)$
$A M=B M$ (Perpendicular distance between two parallel lines is same)
$\triangle \mathrm{AMD} \quad \triangle \mathrm{BNC}$ (RHS congruence rule)

$$
A D C=B C D(C P C T) \ldots(1)
$$

$B A D$ and $A D C$ are on the same side of transversal $A D$.
$B A D+A D C=180^{\circ} \ldots$ (2)
$B A D+B C D=180^{\circ}$ [Using equation (1)]
This equation shows that the opposite angles are supplementary.
Fherefore, $A B C D$ is a cyclic quadrilateral.
(Page No: 186)
9. Two circles intersect at two points B and C. Through B, two line segments $A B D$ and $P B Q$ are drawn to intersect the circles at A, D and P, Q respectively (see Fig. 10.40). Prove that $\angle A C P=$ LQCD.

EDUGRロSS

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Fig. 10.40

Solution:

Construction:

Join the chords AP and DQ.
For chord AP, we know that angles in the same segment are equal.
So, $\angle P B A=\angle A C P---(i)$
Similarly for chord DQ,
$\angle D B Q=\angle Q C D---(i i)$
It is known that ABD and PBQ are two line segments which are intersecting at B. At
B, the vertically opposite angles will be equal.
$\therefore \angle P B A=\angle D B Q$--- (iii)
From equation (i), equation (ii) and equation (iii) we get,
$\angle A C P=\angle Q C D$
10. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.

Solution:

First draw a triangle $A B C$ and then two circles having diameter as $A B$ and $A C$ respectively. We will have to now prove that D lies on BC abd BDC is a straight line.

Proof:

We know that angle in the semi circle are equal
So, $\angle A D B=\angle A D C=90^{\circ}$
Hence, $\angle \mathrm{ADB}+\angle \mathrm{ADC}=180^{\circ}$

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

$\therefore \angle B D C$ is straight line.
So, it can be said that D lies on the line $B C$.
11. $A B C$ and $A D C$ are two right triangles with common hypotenuse $A C$. Prove that $\angle C A D=$ $\angle C B D$.

Solution:

We know that $A C$ is the common hypotenuse and $\angle B=\angle D=90^{\circ}$.
Now, it has to be proven that $\angle C A D=\angle C B D$

Since, $\angle A B C$ and $\angle A D C$ are 90°, it can be said that They lie in the semi circle.

So, triangles $A B C$ and $A D C$ are in the semi circle and the points A, B, C and D are concyclic. Hence, CD is the chord of the circle with center O .

We know that the angles which are in the same segment of the circle are equal. \therefore
$\angle C A D=\angle C B D$

12. Prove that a cyclic parallelogram is a rectangle.

Solution:

It is given that $A B C D$ is a cyclic parallelogram and we will have to prove that $A B C D$ is a rectangle.

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Proof:
Let $A B C D$ be a cyclic parallelogram.
$A+C=180^{\circ}$ (Opposite angles of a cyclic quadrilateral) ... (1)
We know that opposite angles of a parallelogram are equal.
$\mathrm{A}=$
C and
$\mathrm{B}=$
D

From equation (1),

$$
\begin{aligned}
& A+C=180^{\circ} \\
& A+A=180^{\circ} \\
& 2 A=180^{\circ}
\end{aligned}
$$

$$
\mathrm{A}=90^{\circ}
$$

Parallelogram ABCD has one of its interior angles as 90°.
Thus, $A B C D$ is a rectangle.
(Page No: 186) Exercise:
10.6

1. Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.

Solution:

Consider the following diagram

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

In $\triangle P O O^{\prime}$ and $\triangle Q O O^{\prime}$
$O P=O Q \quad$ (Radius of circle 1)
O'P = O'Q (Radius of circle 2)
OO' $^{\prime}=0 O^{\prime} \quad$ (Common arm) So, by
SSS congruency, $\triangle \mathrm{POO}^{\prime} \cong \triangle \mathrm{QOO}$ ' Thus,
$\angle O P O '=\angle O Q O^{\prime}$ (proved).
2. Two chords $A B$ and $C D$ of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between $A B$ and $C D$ is 6 , find the radius of the circle.

Solution:

Here, $O M \perp A B$ and $O N \perp C D$. is drawn and $O B$ and $O D$ are joined.
We know that $A B$ bisects $B M$ as the perpendicular from the centre bisects chord. Since
$A B=5$ so,
$B M=A B / 2$
Similarly, ND = CD/2 = 11/2

Now, let ON be x. So,
OM = 6-x.

Consider $\triangle \mathrm{MOB}$,
$\mathrm{OB}^{2}=\mathrm{OM}^{2}+\mathrm{MB}^{2}$

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Or,

$$
\begin{equation*}
\mathrm{OB}^{2}=36+x^{2}-12 x+\frac{25}{4} \tag{1}
\end{equation*}
$$

Consider \triangle NOD,
$\mathrm{OD}^{2}=\mathrm{ON}^{2}+\mathrm{ND}^{2}$
Or,

$$
\begin{equation*}
\mathrm{OD}^{2}=x^{2}+\frac{121}{4} \tag{2}
\end{equation*}
$$

We know, $O B=O D$ (radii)
From equation 1 and equation 2 we get

$$
\begin{aligned}
& 36+x^{2}-12 x+\frac{25}{4}=x^{2}+\frac{121}{4} \\
& 12 x=36+\frac{25}{4}-\frac{121}{4} \\
&=\frac{144+25-121}{4} \\
& 12 x=\frac{48}{4}=12 \\
& x=1
\end{aligned}
$$

Now, from equation (2) we have,
$O D^{2}=1^{1+(121 / 4)}$
Or OD $=(5 / 2) \times \sqrt{ } 5$
3. The lengths of two parallel chords of a circle are 6 cm and 8 cm . If the smaller chord is at a distance 4 cm from the centre, what is the distance of the other chord from the centre?
Solution:
Consider the following diagram

Here $A B$ and $C D$ are 2 parallel chords. Now, join OB and OD.
Distance of smaller chord $A B$ from the centre of the circle $=4 \mathrm{~cm}$
So, $O M=4 \mathrm{~cm}$
$M B=A B / 2=3 \mathrm{~cm}$
Consider $\triangle \mathrm{OMB} \mathrm{OB}{ }^{2}$
$=\mathrm{OM}^{2}+\mathrm{MB}^{2}$

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

$\mathrm{Or}, \mathrm{OB}=5 \mathrm{~cm}$

Now, consider \triangle OND,
$O B=O D=5$ (since they are the radii)
$\Rightarrow N D=C D / 2=4 \mathrm{~cm}$
Now, $\mathrm{OD}^{2}=\mathrm{ON}^{2}+\mathrm{ND}^{2} \mathrm{Or}$,
$\mathrm{ON}=3$.
4. Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords $A D$ and $C E$ with the circle. Prove that $\angle A B C$ is equal to half the difference of the angles subtended by the chords $A C$ and $D E$ at the centre.

Solution:

Consider the diagram

Here AD = CE
We know, any exterior angle of a triangle is equal to the sum of interior opposite angles.
So,
$\angle D A E=\angle A B C+\angle A E C($ in $\triangle B A E)$
DE subtends $\angle \mathrm{DOE}$ at the centre and $\angle \mathrm{DAE}$ in the remaining part of the circle.
So,
$\angle D A E=(1 / 2) \angle D O E$
Similarly, $\angle \mathrm{AEC}=(1 / 2) \angle \mathrm{AOC}$
Now, from equation (i), (ii), and (iii) we get, $\angle D O E=\angle A B C+(1 / 2) \angle A O C$
Or, $\angle A B C=(1 / 2)[\angle D O E-\angle A O C]$ (hence proved).

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

5. Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.

Solution:

To prove: A circle drawn with Q as centre, will pass through A, B and O (i.e. $Q A=Q B=Q O$) Since all sides of a rhombus are equal,
$A B=D C$
Now, multiply ($1 / 2$) on both sides
$(1 / 2) A B=(1 / 2) D C$
So, $A Q=D P$
=> BQ = DP
Since Q is the midpoint of $A B$,
$A Q=B Q$
Similarly,
RA = SB
Again, as PQ is drawn parallel to AD,
$\mathrm{RA}=\mathrm{QO}$

Now, as $A Q=B Q$ and $R A=Q O$ we get, $Q A$
$=Q B=Q O$ (hence proved).
6. $A B C D$ is a parallelogram. The circle through A, B and C intersect $C D$ (produced if necessary) at E. Prove that $A E,=A D$.

Solution:

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Here, $A B C E$ is a cyclic quadrilateral. In a cyclic quadrilateral, the sum of the opposite angles is 180°.

So, $\angle A E C+\angle C B A=180^{\circ}$
As $\angle A E C$ and $\angle A E D$ are linear pair,
$\angle A E C+\angle A E D=180^{\circ}$ Or,
$\angle A E D=\angle C B A$

We know in a parallelogram, opposite angles are equal.
So, $\angle A D E=\angle C B A$

Now, from equations (1) and (2) we get,
$\angle A E D=\angle A D E$
Now, $A D$ and $A E$ are angles opposite to equal sides of a triangle,
$\therefore A D=A E$ (proved).
7. $A C$ and $B D$ are chords of a circle which bisect each other. Prove that (i) AC and BD are diameters; (ii) $A B C D$ is a rectangle.

Solution:

Here chords $A B$ and $C D$ intersect each other at O.

Consider $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\angle A O B=\angle C O D$ (They are vertically opposite angles)
$O B=O D$ (Given in the question)
$O A=O C$ (Given in the question) So,
by $S A S$ congruency, $\triangle A O B \cong \triangle C O D$

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

Also, $\mathrm{AB}=\mathrm{CD}$ (By CPCT)
Similarly, $\triangle A O D \cong \triangle C O B$
Or, $A D=C B(B y C P C T)$

In quadrilateral ACBD, opposite sides are equal. So, $A C B D$ is a parallelogram.

We know that opposite angles of a parallelogram are equal.
So, $\angle A=\angle C$

Also, as ABCD is a cyclic quadrilateral,
$\angle A+\angle C=180^{\circ}$
$\Rightarrow \angle A+\angle A=180^{\circ} \mathrm{Or}$,
$\angle A=90^{\circ}$

As ACBD is a parallelogram and one of its interior angles is 90°, so, it is a rectangle.
$\angle A$ is the angle subtended by chord $B D$. And as $\angle A=90^{\circ}$, therefore, $B D$ should be the diameter of the circle. Similarly, $A C$ is the diameter of the circle.
8. Bisectors of angles A, B and C of a triangle $A B C$ intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are $90^{\circ}-(1 / 2) A, 90^{\circ}-(1 / 2) \mathrm{B}$ and $90^{\circ}-$ (1/2)C.

Solution:

Consider the following diagram

Here, $A B C$ is inscribed in a circle with center O and the bisectors of $\angle A, \angle B$ and $\angle C$ intersect the circumcircle at D, E and F respectively.
Now, join DE, EF and FD
As angles in the same segment are equal, so,

NCERT Solutions For Class 9 Maths Chapter 10 - Circles

$\angle F D A=\angle F C A$
$\angle F D A=\angle E B A$
By adding equations (i) and (ii) we get,
$\angle F D A+\angle E D A=\angle F C A+\angle E B A$
Or, $\angle \mathrm{FDE}=\angle \mathrm{FCA}+\angle \mathrm{EBA}=(1 / 2) \angle C+(1 / 2) \angle B$

We know, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$

So, $\angle \mathrm{FDE}=(1 / 2)[\angle \mathrm{C}+\angle \mathrm{B}]=(1 / 2)\left[180^{\circ}-\angle \mathrm{A}\right]$
$=>\angle \mathrm{FDE}=[90-(\angle \mathrm{A} / 2)]$
In a similar way,
$\angle F E D=[90-(\angle B / 2)]$ And,
$\angle E F D=[90-(\angle C / 2)]$
9. Two congruent circles intersect each other at points A and B. Through A any line segment $P A Q$ is drawn so that P, Q lie on the two circles. Prove that $B P=B Q$.

Solution:

The diagram will be

Here, $\angle \mathrm{APB}=\angle \mathrm{AQB}$ (as AB is the common chord in both the congruent circles.) Now, consider $\triangle \mathrm{BPQ}$,
$\angle A P B=\angle A Q B$
So, the angles opposite to equal sides of a triangle.
$\therefore B Q=B P$
10. In any triangle $A B C$, if the angle bisector of $\angle A$ and perpendicular bisector of $B C$ intersect, prove that they intersect on the circumcircle of the triangle $A B C$.

Solution:

Consider this diagram

Here, join BE and CE.
Now, since $A E$ is the bisector of $\angle B A C$, $\angle B A E=\angle C A E$
Also,
$\therefore \operatorname{arc} B E=\operatorname{arc} E C$
This implies, chord $B E=$ chord $E C$

Now, consider triangles $\triangle \mathrm{BDE}$ and $\triangle \mathrm{CDE}$,
$D E=D E \quad$ (It is the common side)
$B D=C D \quad$ (It is given in the question)
$B E=C E \quad$ (Already proved)

So, by SSS congruency, $\triangle B D E \cong \triangle C D E$.
Thus, $\therefore \angle B D E=\angle C D E$
We know, $\angle \mathrm{BDE}=\angle \mathrm{CDE}=180^{\circ}$
Or, $\angle \mathrm{BDE}=\angle \mathrm{CDE}=90^{\circ} \therefore \mathrm{DE}$ $\perp B C$ (hence proved).

