1. Get the algebraic expressions in the following cases using variables, constants and arithmetic operations. (i) Subtraction of z from y.
Solution:-

$$
=Y-z
$$

(ii) One-half of the sum of numbers x and y.

Solution:-
$=1 / 2(x+y)$
$=(x+y) / 2$
(iii) The number \mathbf{z} multiplied by itself.

Solution:-

$$
\begin{aligned}
& =z \times z \\
& =z^{2}
\end{aligned}
$$

(iv) One-fourth of the product of numbers p and q.

Solution:-

$$
\begin{aligned}
& =1 / 4(p \times q) \\
& =p q / 4
\end{aligned}
$$

(v) Numbers x and y both squared and added.

Solution:-

$$
=x^{2}+y^{2}
$$

(vi) Number 5 added to three times the product of numbers m and n. Solution:-

$$
=3 m n+5
$$

(vii) Product of numbers y and z subtracted from 10.

Solution:-
$=10-(y \times z)$
$=10-\mathrm{yz}$
(viii) Sum of numbers a and b subtracted from their product.

Solution:-

$$
\begin{aligned}
& =(a \times b)-(a+b) \\
& =a b-(a+b)
\end{aligned}
$$

2. (i) Identify the terms and their factors in the following expressions Show the terms and factors by tree diagrams.
(a) $x-3$

Solution:-Expression:
x-3
Terms: $x,-3$
Factors: x; $^{-3}$

(b) $1+x+x^{2}$

Solution:-
Expression: $1+x+x^{2}$
Terms: $1, x, x^{2}$
Factors: $1 ; x ; x, x$

(c) $y-y^{3}$

Solution:- Expression:
$y-y^{3}$
Terms: $y,-y^{3}$
Factors: $y ;-y,-y,-y$

(d) $5 x y^{2}+7 x^{2} y$

Solution:-
Expression: $5 x y^{2}+7 x^{2} y$
Terms: $5 x y^{2}, 7 x^{2} y$
Factors: 5, $x, y, y ; 7, x, x, y$

(e) $-a b+2 b^{2}-3 a^{2}$

Solution:-
Expression: $-\mathrm{ab}+2 \mathrm{~b}^{2}-3 \mathrm{a}^{2}$
Terms:-ab, $2 b^{2},-3 a^{2}$
Factors: $-\mathrm{a}, \mathrm{b} ; 2, \mathrm{~b}, \mathrm{~b} ;-3, \mathrm{a}, \mathrm{a}$

(ii) Identify terms and factors in the expressions given below:
(a) $-4 x+5$
(b) $-4 x+5 y$
(c) $5 y+3 y^{2}$
(d) $x y+2 x^{2} y^{2}$
(e) $p q+q$
(f) $1.2 \mathrm{ab}-2.4 \mathrm{~b}+3.6 \mathrm{a}(\mathrm{g}) 3 / 4 \mathrm{x}+1 / 4$
(h) $0.1 p^{2}+0.2 q^{2}$

Solution:-
Expressions is defined as, numbers, symbols and operators (such as.,$+- \times$ and \div) grouped together that show the value of something.

In algebra a term is either a single number or variable, or numbers and variables multiplied together. Terms are separated by + or - signs or sometimes by division.

Factors is defined as, numbers we can multiply together to get another number.

SI.No.	Expression	Terms	Factors
(a)	$-4 \mathrm{x}+5$	-4 x 5	$-4, \mathrm{x} 5$
(b)	$-4 \mathrm{x}+5 \mathrm{y}$	-4 x 5 y	$-4, \mathrm{x} 5$,
		5 y	
(c)	$5 \mathrm{y}+3 \mathrm{y}^{2}$	5 y	$5, \mathrm{y}$
		$3 \mathrm{y}^{2}$	$3, \mathrm{y}, \mathrm{y}$
(d)	$\mathrm{xy}+2 \mathrm{x}^{2} \mathrm{y}^{2}$	xy	x, y
		$2 \mathrm{x}^{2} \mathrm{y}^{2}$	$2, \mathrm{x}, \mathrm{x}, \mathrm{y}, \mathrm{y}$
(e)	$\mathrm{pq}+\mathrm{q}$	pq	P, q
		q	Q
(f)	$1.2 \mathrm{ab}-2.4 \mathrm{~b}+$	1.2 ab	$1.2, \mathrm{a}, \mathrm{b}$
	3.6 a	-2.4 b	$-2.4, \mathrm{~b}$
		3.6 a	$3.6, \mathrm{a}$
(g)	$3 / 4 \mathrm{x}+1 / 4$	$3 / 4 \mathrm{x}$	$3 / 4, \mathrm{x} 1 / 4$
		$1 / 4$	
(h)	$0.1 \mathrm{p}^{2}+0.2 \mathrm{q}^{2}$	$0.1 \mathrm{p}^{2}$	$0.1, \mathrm{p}, \mathrm{p}$
		$0.2 \mathrm{q}^{2}$	$0.2, \mathrm{q}, \mathrm{q}$

3. Identify the numerical coefficients of terms (other than constants) in the following expressions:
(i) $5-3 \mathrm{t}^{2}$
(ii) $1+t+t^{2}+t^{3}$
(iii) $x+2 x y+3 y$
(iv) $100 \mathrm{~m}+1000 \mathrm{n}$
(v) $-p^{2} q^{2}+7 p q$
(vi) $1.2 \mathrm{a}+0.8 \mathrm{~b}$
(vii) 3.14 r 2
(viii) 2 (I + b)
(ix) $0.1 \mathrm{y}+0.01 \mathrm{y}^{2}$

Solution:-

Expressions is defined as, numbers, symbols and operators (such as.,$+- \times$ and \div) grouped together that show the value of something.

NCERT Solutions for Class 7 Maths Chapter 12 Algebraic Expressions

In algebra a term is either a single number or variable, or numbers and variables multiplied together. Terms are separated by + or - signs or sometimes by division.

A coefficient is a number used to multiply a variable ($2 x$ means 2 times x, so 2 is a coefficient) Variables on their own (without a number next to them) actually have a coefficient of 1 (x is really 1 x)

SI.No.	Expression	Terms	Coefficients
(i)	$5-3 \mathrm{t}^{2}$	$-3 \mathrm{t}^{2}$	-3
(ii)	$1+\mathrm{t}+\mathrm{t}^{2}+\mathrm{t}^{3}$	t	1
		t^{2}	1
		t 3	1
(iii)	$\mathrm{x}+2 \mathrm{xy}+3 \mathrm{y}$	x	1
		2 xy	2
(iv)	$100 \mathrm{~m}+1000 \mathrm{n}$	100 m	3
		1000 n	100
(v)	$-\mathrm{p}^{2} \mathrm{q}^{2}+7 \mathrm{pq}$	$-\mathrm{p}^{2} \mathrm{q}^{2} 7 \mathrm{pq}$	1000
			-17
(vi)	$1.2 \mathrm{a}+0.8 \mathrm{~b}$	1.2 a	1.2
		0.8 b	0.8
(vii)	$3.14 \mathrm{r}^{2}$	3.14^{2}	3.14
(viii)	$2(1+\mathrm{b})$	21	2
(ix)	$0.1 \mathrm{y}+0.01 \mathrm{y}^{2}$	0.1 y	2
		$0.01 \mathrm{y}^{2}$	0.1
			0.01

4. (a) Identify terms which contain x and give the coefficient of x.
(i) $y^{2} x+y$
(ii) $13 y^{2}-8 y x$
(iii) $x+y+2$
(iv) $5+z+z x$
(v) $1+x+x y$
(vi) $12 x y^{2}+25$
(vii) $7 x+x y^{2}$

NCERT Solutions for Class 7 Maths Chapter 12 Algebraic Expressions

Solution:-

SI.No.	Expression	Terms	Coefficient of \boldsymbol{x}
(i)	$\mathrm{y}^{2} \mathrm{x}+\mathrm{y}$	$\mathrm{y}^{2} \mathrm{x}$	y^{2}
(ii)	$13 \mathrm{y}^{2}-8 \mathrm{yx}$	-8 yx	-8 y
(iii)	$\mathrm{x}+\mathrm{y}+2$	x	1
(iv)	$5+\mathrm{z}+\mathrm{zx}$	x	1
		zx	z
(v)	$1+\mathrm{x}+\mathrm{xy}$	xy	y
(vi)	$12 \mathrm{xy}^{2}+25$	$12 \mathrm{xy}^{2}$	$12 \mathrm{y}^{2}$
(vii)	$7 \mathrm{x}+\mathrm{xy}^{2}$	7 x	7
		xy^{2}	y^{2}

(b) Identify terms which contain y^{2} and give the coefficient of y^{2}.
(i) $8-x y^{2}$
(ii) $5 y^{2}+7 x$
(iii) $2 x^{2} y-15 x y^{2}+7 y^{2}$

Solution:-

SI.No.	Expression	Terms	Coefficient of \mathbf{x}
(i)	$8-x y^{2}$	$-x y^{2}$	$-x$
(ii)	$5 y^{2}+7 x$	$5 y^{2}$	5
(iii)	$2 x^{2} y-15 x y^{2}+7 y^{2}$	$-15 x y^{2}$	$-15 x$
		$7 y^{2}$	7

5. Classify into monomials, binomials and trinomials.

(i) $4 y-7 z$

Solution:- Binomial.
An expression which contains two unlike terms is called a binomial.
(ii) $\mathrm{y}^{\mathbf{2}}$

Solution:- Monomial.
An expression with only one term is called a monomial.
(iii) $x+y-x y$

Solution:-Trinomial.

An expression which contains three terms is called a trinomial.
(iv) 100

Solution:- Monomial.
An expression with only one term is called a monomial.
(v) ab-a-b Solution:- Trinomial.

An expression which contains three terms is called a trinomial.
(vi) 5-3t

Solution:- Binomial.
An expression which contains two unlike terms is called a binomial.
(vii) $4 p^{2} q-4 p q^{2}$

Solution:- Binomial.
An expression which contains two unlike terms is called a binomial.
(viii) 7 mn

Solution:- Monomial.
An expression with only one term is called a monomial.
(ix) $z^{2}-3 z+8$

Solution:-
Trinomial.
An expression which contains three terms is called a trinomial.
(x) $a^{2}+b^{2}$

Solution:- Binomial.
An expression which contains two unlike terms is called a binomial.
(xi) $z^{2}+z$

Solution:- Binomial.
An expression which contains two unlike terms is called a binomial.
(xii) $1+x+x^{2}$

Solution:-Trinomial.
An expression which contains three terms is called a trinomial.
6. State whether a given pair of terms is of like or unlike terms.
(i) 1, 100

Solution:-
Like term.
When term have the same algebraic factors, they are like terms.
(ii) $-7 x,(5 / 2) x$

> Solution:-

Like term.
When term have the same algebraic factors, they are like terms.
(iii) - 29x, - 29y

Solution:- Unlike terms.
The terms have different algebraic factors, they are unlike terms.
(iv) $14 x y, 42 y x$

Solution:-

Like term.
When term have the same algebraic factors, they are like terms.
(v) $4 m^{2} p, 4 m p^{2}$

Solution:- Unlike terms.
The terms have different algebraic factors, they are unlike terms.
(vi) $12 x z, 12 x^{2} z^{2}$

Solution:-Unlike
terms.
The terms have different algebraic factors, they are unlike terms.
7. Identify like terms in the following:
(a) $-x^{2},-4 y x^{2}, 8 x^{2}, 2 x y^{2}, 7 y,-11 x^{2},-100 x,-11 y x, 20 x^{2} y,-6 x^{2}, y, 2 x y, 3 x$

Solution:-
When term have the same algebraic factors, they are like terms.
They are,

$$
\begin{aligned}
& -x y^{2}, 2 x y^{2} \\
& -4 y x^{2}, 20 x^{2} y \\
& 8 x^{2},-11 x^{2},-6 x^{2} \\
& 7 y, y \\
& -100 x, 3 x \\
& -11 y x, 2 x y
\end{aligned}
$$

(b) $10 p q, 7 p, 8 q,-p^{2} q^{2},-7 q p,-100 q,-23,12 q^{2} p^{2},-5 p^{2}, 41,2405 p, 78 q p$, $13 p^{2} q, q p^{2}, 701 p^{2}$

Solution:-

When term have the same algebraic factors, they are like terms.
They are,

$$
\begin{aligned}
& 10 p q,-7 q p, 78 q p \\
& 7 p, 2405 p \\
& 8 q,-100 q \\
& -p^{2} q^{2}, 12 q^{2} p^{2} \\
& -23,41 \\
& -5 p^{2}, 701 p^{2} \\
& 13 p^{2} q, q p^{2}
\end{aligned}
$$

EXERCISE 12.2

1. Simplify combining like terms:

(i) $21 \mathrm{~b}-32+7 \mathrm{~b}-20 \mathrm{~b}$

Solution:-

When term have the same algebraic factors, they are like terms.
Then,

$$
\begin{aligned}
& =(21 b+7 b-20 b)-32 \\
& =b(21+7-20)-32 \\
& =b(28-20)-32 \\
& =b(8)-32 \\
& =8 b-32
\end{aligned}
$$

(ii) $-z^{2}+13 z^{2}-5 z+7 z^{3}-15 z$

Solution:-
When term have the same algebraic factors, they are like terms.
Then,

$$
\begin{aligned}
& =7 z^{3}+\left(-z^{2}+13 z^{2}\right)+(-5 z-15 z) \\
& =7 z^{3}+z^{2}(-1+13)+z(-5-15) \\
& =7 z^{3}+z^{2}(12)+z(-20)+7 z^{3} \\
& =7 z^{3}+12 z^{2}-20 z+7 z^{3}
\end{aligned}
$$

(iii) $p-(p-q)-q-(q-p)$

Solution:-

When term have the same algebraic factors, they are like terms. Then,

$$
\begin{aligned}
& =p-p+q-q-q+p \\
& =p-q
\end{aligned}
$$

(iv) $3 a-2 b-a b-(a-b+a b)+3 a b+b-a$

Solution:-

When term have the same algebraic factors, they are like terms.
Then,

$$
\begin{aligned}
& =3 a-2 b-a b-a+b-a b+3 a b+b-a \\
& =3 a-a-a-2 b+b+b-a b-a b+3 a b \\
& =a(1-1-1)+b(-2+1+1)+a b(-1-1+3) \\
& =a(1-2)+b(-2+2)+a b(-2+3) \\
& =a(1)+b(0)+a b(1) \\
& =a+a b
\end{aligned}
$$

(v) $5 x^{2} y-5 x^{2}+3 y x^{2}-3 y^{2}+x^{2}-y^{2}+8 x y^{2}-3 y^{2}$

Solution:-

When term have the same algebraic factors, they are like terms.
Then,

$$
\begin{aligned}
& =5 x^{2} y+3 y x^{2}-5 x^{2}+x^{2}-3 y^{2}-y^{2}-3 y^{2} \\
& =x^{2} y(5+3)+x^{2}(-5+1)+y^{2}(-3-1-3)+8 x y^{2} \\
& =x^{2} y(8)+x^{2}(-4)+y^{2}(-7)+8 x y^{2} \\
& =8 x^{2} y-4 x^{2}-7 y^{2}+8 x y^{2}
\end{aligned}
$$

(vi) $\left(3 y^{2}+5 y-4\right)-\left(8 y-y^{2}-4\right)$

Solution:-

When term have the same algebraic factors, they are like terms.
Then,

$$
\begin{aligned}
& =3 y^{2}+5 y-4-8 y+y^{2}+4 \\
& =3 y^{2}+y^{2}+5 y-8 y-4+4 \\
& =y^{2}(3+1)+y(5-8)+(-4+4) \\
& =y^{2}(4)+y(-3)+(0) \\
& =4 y^{2}-3 y
\end{aligned}
$$

2. Add:

(i) $3 m n,-5 m n, 8 m n,-4 m n$

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to add the like terms

$$
\begin{aligned}
& =3 m n+(-5 m n)+8 m n+(-4 m n) \\
& =3 m n-5 m n+8 m n-4 m n \\
& =m n(3-5+8-4) \\
& =m n(11-9) \\
& =m n(2) \\
& =2 m n
\end{aligned}
$$

(ii) $\mathrm{t}-8 \mathrm{tz}, 3 \mathrm{tz}-\mathrm{z}, \mathrm{z}-\mathrm{t}$

Solution:-

When term have the same algebraic factors, they are like terms.

EDUGRロS5

Then, we have to add the like terms

$$
\begin{aligned}
& =\mathrm{t}-8 \mathrm{tz}+(3 \mathrm{tz}-\mathrm{z})+(\mathrm{z}-\mathrm{t}) \\
& =\mathrm{t}-8 \mathrm{tz}+3 \mathrm{tz}-\mathrm{z}+\mathrm{z}-\mathrm{t} \\
& =\mathrm{t}-\mathrm{t}-8 \mathrm{tz}+3 \mathrm{tz}-\mathrm{z}+\mathrm{z} \\
& =\mathrm{t}(1-1)+\mathrm{tz}(-8+3)+\mathrm{z}(-1+1) \\
& =\mathrm{t}(0)+\mathrm{tz}(-5)+\mathrm{z}(0) \\
& =-5 \mathrm{tz}
\end{aligned}
$$

(iii) $-7 m n+5,12 m n+2,9 m n-8,-2 m n-3$

Solution:-
When term have the same algebraic factors, they are like terms.
Then, we have to add the like terms

$$
\begin{aligned}
& =-7 m n+5+12 m n+2+(9 m n-8)+(-2 m n-3) \\
& =-7 m n+5+12 m n+2+9 m n-8-2 m n-3 \\
& =-7 m n+12 m n+9 m n-2 m n+5+2-8-3 \\
& =m n(-7+12+9-2)+(5+2-8-3) \\
& =m n(-9+21)+(7-11) \\
& =m n(12)-4 \\
& =12 m n-4
\end{aligned}
$$

(iv) $a+b-3, b-a+3, a-b+3$

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to add the like terms

$$
\begin{aligned}
& =a+b-3+(b-a+3)+(a-b+3) \\
& =a+b-3+b-a+3+a-b+3 \\
=a- & a+b+b+b-3+3+3 \\
& =a(1-1+1)+b(1+1-1)+(-3+3+3) \\
& =a(2-1)+b(2-1)+(-3+6) \\
& =a(1)+b(1)+(3) \\
& =a+b+3
\end{aligned}
$$

(v) $14 x+10 y-12 x y-13,18-7 x-10 y+8 x y, 4 x y$

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to add the like terms

$$
\begin{aligned}
& =14 x+10 y-12 x y-13+(18-7 x-10 y+8 x y)+4 x y \\
& =14 x+10 y-12 x y-13+18-7 x-10 y+8 x y+4 x y \\
& =14 x-7 x+10 y-10 y-12 x y+8 x y+4 x y-13+18 \\
& =x(14-7)+y(10-10)+x y(-12+8+4)+(-13+18) \\
& =x(7)+y(0)+x y(0)+(5) \\
& =7 x+5
\end{aligned}
$$

(vi) $5 m-7 n, 3 n-4 m+2,2 m-3 m n-5$

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to add the like terms

$$
\begin{aligned}
& =5 m-7 n+(3 n-4 m+2)+(2 m-3 m n-5) \\
& =5 m-7 n+3 n-4 m+2+2 m-3 m n-5 \\
& =5 m-4 m+2 m-7 n+3 n-3 m n+2-5 \\
& =m(5-4+2)+n(-7+3)-3 m n+(2-5) \\
& =m(3)+n(-4)-3 m n+(-3) \\
& =3 m-4 n-3 m n-3
\end{aligned}
$$

(vii) $4 x^{2} y,-3 x y^{2},-5 x y^{2}, 5 x^{2} y$

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to add the like terms

$$
\begin{aligned}
& =4 x^{2} y+\left(-3 x y^{2}\right)+\left(-5 x y^{2}\right)+5 x^{2} y \\
& =4 x^{2} y+5 x^{2} y-3 x y^{2}-5 x y^{2} \\
& =x^{2} y(4+5)+x y^{2}(-3-5) \\
& =x^{2} y(9)+x y^{2}(-8) \\
& =9 x^{2} y-8 x y^{2}
\end{aligned}
$$

(viii) $3 p^{2} q^{2}-4 p q+5,-10 p^{2} q^{2}, 15+9 p q+7 p^{2} q^{2}$

Solution:-

When term have the same algebraic factors, they are like terms.

Then, we have to add the like terms

$$
\begin{aligned}
& =3 p^{2} q^{2}-4 p q+5+\left(-10 p^{2} q^{2}\right)+15+9 p q+7 p^{2} q^{2} \\
& =3 p^{2} q^{2}-10 p^{2} q^{2}+7 p^{2} q^{2}-4 p q+9 p q+5+15 \\
& =p^{2} q^{2}(3-10+7)+p q(-4+9)+(5+15) \\
& =p^{2} q^{2}(0)+p q(5)+20 \\
& =5 p q+20
\end{aligned}
$$

(ix) $a b-4 a, 4 b-a b, 4 a-4 b$

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to add the like terms

$$
\begin{aligned}
& =a b-4 a+(4 b-a b)+(4 a-4 b) \\
& =a b-4 a+4 b-a b+4 a-4 b \\
=a b & -a b-4 a+4 a+4 b-4 b \\
& =a b(1-1)+a(4-4)+b(4-4) \\
& =a b(0)+a(0)+b(0) \\
& =0
\end{aligned}
$$

(x) $x^{2}-y^{2}-1, y^{2}-1-x^{2}, 1-x^{2}-y^{2}$

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to add the like terms

$$
\begin{aligned}
& =x^{2}-y^{2}-1+\left(y^{2}-1-x^{2}\right)+\left(1-x^{2}-y^{2}\right) \\
& =x^{2}-y^{2}-1+y^{2}-1-x^{2}+1-x^{2}-y^{2} \\
& =x^{2}-x^{2}-x^{2}-y^{2}+y^{2}-y^{2}-1-1+1 \\
& =x^{2}(1-1-1)+y^{2}(-1+1-1)+(-1-1+1) \\
& =x^{2}(1-2)+y^{2}(-2+1)+(-2+1) \\
& =x^{2}(-1)+y^{2}(-1)+(-1) \\
& =-x^{2}-y^{2}-1
\end{aligned}
$$

3. Subtract:

(i) $-5 y^{2}$ from y^{2}

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms

$$
\begin{aligned}
& =y^{2}-\left(-5 y^{2}\right) \\
& =y^{2}+5 y^{2} \\
& =6 y^{2}
\end{aligned}
$$

(ii) $6 x y$ from $-12 x y$

Solution:-
When term have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms

$$
\begin{aligned}
& =-12 x y-6 x y \\
& =-18 x y
\end{aligned}
$$

(iii) $(a-b)$ from ($a+b)$

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms

$$
\begin{aligned}
& =(a+b)-(a-b) \\
& =a+b-a+b \\
& =a-a+b+b \\
& =a(1-1)+b(1+1) \\
& =a(0)+b(2) \\
& =2 b
\end{aligned}
$$

(iv) $a(b-5)$ from $b(5-a)$

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms

$$
\begin{aligned}
& =b(5-a)-a(b-5) \\
& =5 b-a b-a b+5 a \\
& =5 b+a b(-1-1)+5 a \\
& =5 a+5 b-2 a b
\end{aligned}
$$

(v) $-m^{2}+5 m n$ from $4 m^{2}-3 m n+8$

Solution:-
When term have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms

$$
\begin{aligned}
& =4 m^{2}-3 m n+8-\left(-m^{2}+5 m n\right) \\
& =4 m^{2}-3 m n+8+m^{2}-5 m n \\
=4 m^{2} & +m^{2}-3 m n-5 m n+8 \\
& =3 m^{2}-8 m n+8
\end{aligned}
$$

(vi) $-x^{2}+10 x-5$ from $5 x-10$

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms

$$
\begin{aligned}
& =5 x-10-\left(-x^{2}+10 x-5\right) \\
& =5 x-10+x^{2}-10 x+5 \\
& =x^{2}+5 x-10 x-10+5 \\
& =x^{2}-5 x-5
\end{aligned}
$$

(vii) $5 a^{2}-7 a b+5 b^{2}$ from $3 a b-2 a^{2}-2 b^{2}$

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms

$$
\begin{aligned}
& =3 a b-2 a^{2}-2 b^{2}-\left(5 a^{2}-7 a b+5 b^{2}\right) \\
& =3 a b-2 a^{2}-2 b^{2}-5 a^{2}+7 a b-5 b^{2} \\
& =3 a b+7 a b-2 a^{2}-5 a^{2}-2 b^{2}-5 b^{2} \\
& =10 a b-7 a^{2}-7 b^{2}
\end{aligned}
$$

(viii) $4 p q-5 q^{2}-3 p^{2}$ from $5 p^{2}+3 q^{2}-p q$

Solution:-

When term have the same algebraic factors, they are like terms.
Then, we have to subtract the like terms

$$
\begin{aligned}
& =5 p^{2}+3 q^{2}-p q-\left(4 p q-5 q^{2}-3 p^{2}\right) \\
& =5 p^{2}+3 q^{2}-p q-4 p q+5 q^{2}+3 p^{2} \\
& =5 p^{2}+3 p^{2}+3 q^{2}+5 q^{2}-p q-4 p q
\end{aligned}
$$

$$
=8 p^{2}+8 q^{2}-5 p q
$$

4. (a) What should be added to $x^{2}+x y+y^{2}$ to obtain $2 x^{2}+3 x y$? Solution:-
Let us assume p be the required term
Then, $p+\left(x^{2}+x y+y^{2}\right)=2 x^{2}+3 x y$

$$
\begin{aligned}
& p=\left(2 x^{2}+3 x y\right)-\left(x^{2}+x y+y^{2}\right) \\
& p=2 x^{2}+3 x y-x^{2}-x y-y^{2} p \\
& =2 x^{2}-x^{2}+3 x y-x y-y^{2} p= \\
& x^{2}-2 x y-y^{2}
\end{aligned}
$$

(b) What should be subtracted from $2 a+8 b+10$ to get $-3 a+7 b+16$?

Solution:-

Let us assume x be the required term
Then,

$$
\begin{aligned}
& 2 a+8 b+10-x=-3 a+7 b+16 x \\
& =(2 a+8 b+10)-(-3 a+7 b+16) \\
& x=2 a+8 b+10+3 a-7 b-16 x= \\
& 2 a+3 a+8 b-7 b+10-16 \\
& x=5 a+b-6
\end{aligned}
$$

5. What should be taken away from $3 x^{2}-4 y^{2}+5 x y+20$ to obtain $-x^{2}-y^{2}+6 x y+$ 20 ?

Solution:-

Let us assume a be the required term
Then,

$$
\begin{aligned}
& 3 x^{2}-4 y^{2}+5 x y+20-a=-x^{2}-y^{2}+6 x y+20 \\
& a=3 x^{2}-4 y^{2}+5 x y+20-\left(-x^{2}-y^{2}+6 x y+\right. \\
& 20) a=3 x^{2}-4 y^{2}+5 x y+20+x^{2}+y^{2}-6 x y- \\
& 20 a=3 x^{2}+x^{2}-4 y^{2}+y^{2}+5 x y-6 x y+20- \\
& 20 a=4 x^{2}-3 y^{2}-x y
\end{aligned}
$$

6. (a) From the sum of $3 x-y+11$ and $-y-11$, subtract $3 x-y-11$. Solution:-

First we have to find out the sum of $3 x-y+11$ and $-y-11$

$$
\begin{aligned}
& =3 x-y+11+(-y-11) \\
& =3 x-y+11-y-11 \\
& =3 x-y-y+11-11 \\
& =3 x-2 y
\end{aligned}
$$

Now, subtract $3 x-y-11$ from $3 x-2 y$

$$
\begin{aligned}
& =3 x-2 y-(3 x-y-11) \\
& =3 x-2 y-3 x+y+11 \\
& =3 x-3 x-2 y+y+11 \\
& =-y+11
\end{aligned}
$$

(b) From the sum of $4+3 x$ and $5-4 x+2 x^{2}$, subtract the sum of $3 x^{2}-5 x$ and $-x^{2}$ $+2 x+5$.

Solution:-

First we have to find out the sum of $4+3 x$ and $5-4 x+2 x^{2}$

$$
\begin{aligned}
& =4+3 x+\left(5-4 x+2 x^{2}\right) \\
& =4+3 x+5-4 x+2 x^{2} \\
& =4+5+3 x-4 x+2 x^{2} \\
& =9-x+2 x^{2}
\end{aligned}
$$

$$
=2 x^{2}-x+9 \quad \ldots[\text { equation } 1]
$$

Then, we have to find out the sum of $3 x^{2}-5 x$ and $-x^{2}+2 x+5$

$$
\begin{aligned}
& =3 x^{2}-5 x+\left(-x^{2}+2 x+5\right) \\
& =3 x^{2}-5 x-x^{2}+2 x+5 \\
& =3 x^{2}-x^{2}-5 x+2 x+5 \\
& =2 x^{2}-3 x+5
\end{aligned}
$$

... [equation 2]

Now, we have to subtract equation (2) from equation (1)

$$
\begin{aligned}
& =2 x^{2}-x+9-\left(2 x^{2}-3 x+5\right) \\
& =2 x^{2}-x+9-2 x^{2}+3 x-5= \\
& 2 x^{2}-2 x^{2}-x+3 x+9-5 \\
& =2 x+4
\end{aligned}
$$

1. If $m=2$, find the value of:
(i) $m-2$

Solution:-
From the question it is given that $\mathrm{m}=2$
Then, substitute the value of m in the question

$$
\begin{aligned}
& =2-2 \\
& =0
\end{aligned}
$$

(ii) $3 m-5$

Solution:-

From the question it is given that $\mathrm{m}=2$
Then, substitute the value of m in the question

$$
\begin{aligned}
& =(3 \times 2)-5 \\
& =6-5 \\
& =1
\end{aligned}
$$

(iii) $9-5 m$

Solution:-
From the question it is given that $\mathrm{m}=2$
Then, substitute the value of m in the question

$$
\begin{aligned}
& =9-(5 \times 2) \\
& =9-10 \\
& =-1
\end{aligned}
$$

(iv) $3 m^{2}-2 m-7$

Solution:-
From the question it is given that $\mathrm{m}=2$
Then, substitute the value of m in the question

$$
\begin{aligned}
& =\left(3 \times 2^{2}\right)-(2 \times 2)-7 \\
& =(3 \times 4)-(4)-7 \\
& =12-4-7 \\
& =12-11 \\
& =1
\end{aligned}
$$

(v) $(5 \mathrm{~m} / 2)-4$

Solution:-

From the question it is given that $\mathrm{m}=2$
Then, substitute the value of m in the question

$$
\begin{aligned}
& =((5 \times 2) / 2)-4 \\
& =(10 / 2)-4 \\
& =5-4
\end{aligned}
$$

$$
=1
$$

2. If $p=-2$, find the value of:
(i) $4 p+7$

Solution:-

From the question it is given that $p=-2$
Then, substitute the value of p in the question

$$
\begin{aligned}
& =(4 \times(-2))+7 \\
& =-8+7 \\
& =-1
\end{aligned}
$$

(ii) $-3 p^{2}+4 p+7$

Solution:-

From the question it is given that $p=-2$
Then, substitute the value of p in the question

$$
\begin{aligned}
& =\left(-3 \times(-2)^{2}\right)+(4 \times(-2))+7 \\
& =(-3 \times 4)+(-8)+7 \\
& =-12-8+7 \\
& =-20+7 \\
& =-13
\end{aligned}
$$

(iii) $-2 p^{3}-3 p^{2}+4 p+7$

Solution:-

From the question it is given that $\mathrm{p}=-2$
Then, substitute the value of p in the question

$$
\begin{aligned}
& =\left(-2 \times(-2)^{3}\right)-\left(3 \times(-2)^{2}\right)+(4 \times(-2))+7 \\
& =(-2 \times-8)-(3 \times 4)+(-8)+7 \\
& =16-12-8+7 \\
& =23-20 \\
& =3
\end{aligned}
$$

3. Find the value of the following expressions, when $x=-1$:
(i) $2 x-7$

Solution:-

From the question it is given that $x=-1$
Then, substitute the value of x in the question

$$
\begin{aligned}
& =(2 \times-1)-7 \\
& =-2-7 \\
& =-9
\end{aligned}
$$

(ii) $-x+2$

Solution:-

From the question it is given that $x=-1$
Then, substitute the value of x in the question

$$
=-(-1)+2
$$

$$
=1+2
$$

$$
=3
$$

(iii) $x^{2}+2 x+1$

Solution:-

From the question it is given that $x=-1$
Then, substitute the value of x in the question

$$
\begin{aligned}
& =(-1)^{2}+(2 \times-1)+1 \\
& =1-2+1 \\
& =2-2 \\
& =0
\end{aligned}
$$

(iv) $2 x^{2}-x-2$

Solution:-

From the question it is given that $x=-1$
Then, substitute the value of x in the question

$$
\begin{aligned}
& =\left(2 \times(-1)^{2}\right)-(-1)-2 \\
& =(2 \times 1)+1-2 \\
& =2+1-2 \\
& =3-2 \\
& =1
\end{aligned}
$$

4. If $a=2, b=-2$, find the value of:
(i) $a^{2}+b^{2}$

Solution:-

From the question it is given that $a=2, b=-2$
Then, substitute the value of a and b in the question

$$
\begin{aligned}
& =(2)^{2}+(-2)^{2} \\
& =4+4 \\
& =8
\end{aligned}
$$

(ii) $a^{2}+a b+b^{2}$

Solution:-

From the question it is given that $a=2, b=-2$
Then, substitute the value of a and b in the question

$$
\begin{aligned}
& =2^{2}+(2 \times-2)+(-2)^{2} \\
& =4+(-4)+(4) \\
& =4-4+4 \\
& =4
\end{aligned}
$$

(iii) $a^{2}-b^{2}$

Solution:-

From the question it is given that $a=2, b=-2$
Then, substitute the value of a and b in the question

$$
\begin{aligned}
& =2^{2}-(-2)^{2} \\
& =4-(4) \\
& =4-4 \\
& =0
\end{aligned}
$$

5. When $a=0, b=-1$, find the value of the given expressions:
(i) $2 \mathrm{a}+2 \mathrm{~b}$

Solution:-

From the question it is given that $a=0, b=-1$
Then, substitute the value of a and b in the question

$$
\begin{aligned}
& =(2 \times 0)+(2 \times-1) \\
& =0-2 \\
& =-2
\end{aligned}
$$

(ii) $2 a^{2}+b^{2}+\mathbf{1}$

Solution:-

From the question it is given that $a=0, b=-1$
Then, substitute the value of a and b in the question

$$
\begin{aligned}
& =\left(2 \times 0^{2}\right)+(-1)^{2}+1 \\
& =0+1+1 \\
& =2
\end{aligned}
$$

(iii) $2 a^{2} b+2 a b^{2}+a b$

Solution:-

From the question it is given that $a=0, b=-1$
Then, substitute the value of a and b in the question

$$
\begin{aligned}
& =\left(2 \times 0^{2} \times-1\right)+\left(2 \times 0 \times(-1)^{2}\right)+(0 \times-1) \\
& =0+0+0 \\
& =0
\end{aligned}
$$

(iv) $a^{2}+a b+2$

Solution:-

From the question it is given that $a=0, b=-1$
Then, substitute the value of a and b in the question

$$
\begin{aligned}
& =\left(0^{2}\right)+(0 \times(-1))+2 \\
& =0+0+2 \\
& =2
\end{aligned}
$$

6. Simplify the expressions and find the value if x is equal to 2

(i) $x+7+4(x-5)$

Solution:-

From the question it is given that $\mathrm{x}=2$
We have,

$$
\begin{aligned}
& =x+7+4 x-20 \\
& =5 x+7-20
\end{aligned}
$$

Then, substitute the value of x in the equation

$$
\begin{aligned}
& =(5 \times 2)+7-20 \\
& =10+7-20 \\
& =17-20 \\
& =-3
\end{aligned}
$$

(ii) $3(x+2)+5 x-7$

Solution:-

From the question it is given that $\mathrm{x}=2$
We have,

$$
\begin{aligned}
& =3 x+6+5 x-7 \\
& =8 x-1
\end{aligned}
$$

Then, substitute the value of x in the equation

$$
\begin{aligned}
& =(8 \times 2)-1 \\
& =16-1 \\
& =15
\end{aligned}
$$

(iii) $6 x+5(x-2)$

Solution:-

From the question it is given that $x=2$
We have,

$$
\begin{aligned}
& =6 x+5 x-10 \\
& =11 x-10
\end{aligned}
$$

Then, substitute the value of x in the equation

$$
\begin{aligned}
& =(11 \times 2)-10 \\
& =22-10 \\
& =12
\end{aligned}
$$

(iv) $4(2 x-1)+3 x+11$

Solution:-

From the question it is given that $x=2$

We have,

$$
\begin{aligned}
& =8 x-4+3 x+11 \\
& =11 x+7
\end{aligned}
$$

Then, substitute the value of x in the equation

$$
\begin{aligned}
& =(11 \times 2)+7 \\
& =22+7 \\
& =29
\end{aligned}
$$

7. Simplify these expressions and find their values if $x=3, a=-1, b=-2$. (i) $3 x-5-x+9$

Solution:-

From the question it is given that $\mathrm{x}=3$
We have,

$$
\begin{aligned}
& =3 x-x-5+9 \\
& =2 x+4
\end{aligned}
$$

Then, substitute the value of x in the equation

$$
\begin{aligned}
& =(2 \times 3)+4 \\
& =6+4 \\
& =10
\end{aligned}
$$

(ii) $2-8 x+4 x+4$

Solution:-
From the question it is given that $\mathrm{x}=3$
We have,

$$
\begin{aligned}
& =2+4-8 x+4 x \\
& =6-4 x
\end{aligned}
$$

Then, substitute the value of x in the equation

$$
\begin{aligned}
& =6-(4 \times 3) \\
& =6-12 \\
& =-6
\end{aligned}
$$

(iii) $3 a+5-8 a+1$

Solution:-

From the question it is given that $\mathrm{a}=-1$

We have,

$$
\begin{aligned}
& =3 a-8 a+5+1 \\
& =-5 a+6
\end{aligned}
$$

Then, substitute the value of a in the equation

$$
\begin{aligned}
& =-(5 \times(-1))+6 \\
& =-(-5)+6 \\
& =5+6 \\
& =11
\end{aligned}
$$

(iv) $10-3 b-4-5 b$

Solution:-

From the question it is given that $b=-2$
We have,

$$
\begin{aligned}
& =10-4-3 b-5 b \\
& =6-8 b
\end{aligned}
$$

Then, substitute the value of b in the equation

$$
\begin{aligned}
& =6-(8 \times(-2)) \\
& =6-(-16) \\
& =6+16 \\
& =22
\end{aligned}
$$

(v) $2 a-2 b-4-5+a$

Solution:-

From the question it is given that $a=-1, b=-2$
We have,

$$
\begin{aligned}
& =2 a+a-2 b-4-5 \\
& =3 a-2 b-9
\end{aligned}
$$

Then, substitute the value of a and b in the equation

$$
\begin{aligned}
& =(3 \times(-1))-(2 \times(-2))-9 \\
& =-3-(-4)-9 \\
& =-3+4-9 \\
& =-12+4 \\
& =-8
\end{aligned}
$$

8. (i) If $z=10$, find the value of $z^{3}-3(z-10)$.

Solution:-

From the question it is given that $z=10$
We have,

$$
=z^{3}-3 z+30
$$

Then, substitute the value of z in the equation

$$
\begin{aligned}
& =(10)^{3}-(3 \times 10)+30 \\
& =1000-30+30 \\
& =1000
\end{aligned}
$$

(ii) If $p=-10$, find the value of $p^{2}-2 p-100$

Solution:-

From the question it is given that $p=-10$
We have,

$$
=p^{2}-2 p-100
$$

Then, substitute the value of p in the equation

$$
\begin{aligned}
& =(-10)^{2}-(2 \times(-10))-100 \\
& =100+20-100 \\
& =20
\end{aligned}
$$

9. What should be the value of a if the value of $2 x^{2}+x-a$ equals to 5 , when $x=0$?

Solution:-

From the question it is given that $\mathrm{x}=0$
We have,

$$
\begin{aligned}
& 2 x^{2}+x-a=5 \\
& a=2 x^{2}+x-5
\end{aligned}
$$

Then, substitute the value of x in the equation

$$
\begin{aligned}
& a=\left(2 \times 0^{2}\right)+0-5 a=0+0-5 \\
& a=-5
\end{aligned}
$$

10. Simplify the expression and find its value when $a=5$ and $b=-3$.

$$
2\left(a^{2}+a b\right)+3-a b
$$

Solution:-

From the question it is given that $\mathrm{a}=5 \mathrm{and} \mathrm{b}=-3$
We have,

$$
\begin{aligned}
& =2 a^{2}+2 a b+3-a b \\
& =2 a^{2}+a b+3
\end{aligned}
$$

Then, substitute the value of a and b in the equation

$$
\begin{aligned}
& =\left(2 \times 5^{2}\right)+(5 \times(-3))+3 \\
& =(2 \times 25)+(-15)+3 \\
& =50-15+3 \\
& =53-15 \\
& =38
\end{aligned}
$$

1. Observe the patterns of digits made from line segments of equal length. You will find such segmented digits on the display of electronic watches or calculators.
(a)

6

11

16

21 ...

$$
(5 n+1) \ldots
$$

(b)

4
(c)
7

.

7

10
13.

$$
(3 n+1) \ldots
$$

12

17
22 ...

If the number of digits formed is taken to be n, the number of segments required to form n digits is given by the algebraic expression appearing on the right of each pattern. How many segments are required to form $5,10,100$ digits of the kind

Solution:-

(a) From the question it is given that the numbers of segments required to form n digits of the kind \square is $(5 n+1)$
Then,
The number of segments required to form 5 digits $=((5 \times 5)+1)$

$$
\begin{aligned}
& =(25+1) \\
& =26
\end{aligned}
$$

The number of segments required to form 10 digits $=((5 \times 10)+1)$

$$
\begin{aligned}
& =(50+1) \\
& =51
\end{aligned}
$$

The number of segments required to form 100 digits $=((5 \times 100)+1)$

$$
\begin{aligned}
& =(500+1) \\
& =501
\end{aligned}
$$

(b) From the question it is given that the numbers of segments required to form n digits of the kind is $(3 n+1)$

Then,
The number of segments required to form 5 digits $=((3 \times 5)+1)$

$$
\begin{aligned}
& =(15+1) \\
& =16
\end{aligned}
$$

The number of segments required to form 10 digits $=((3 \times 10)+1)$

$$
\begin{aligned}
& =(30+1) \\
& =31
\end{aligned}
$$

The number of segments required to form 100 digits $=((3 \times 100)+1)$

$$
\begin{aligned}
& =(300+1) \\
& =301
\end{aligned}
$$

(c) From the question it is given that the numbers of segments required to form n digits of the kind \square is $(5 n+2)$
Then,
The number of segments required to form 5 digits $=((5 \times 5)+2)$

$$
\begin{aligned}
& =(25+2) \\
& =27
\end{aligned}
$$

The number of segments required to form 10 digits $=((5 \times 10)+2)$

$$
\begin{aligned}
& =(50+2) \\
& =52
\end{aligned}
$$

The number of segments required to form 100 digits $=((5 \times 100)+1)$

$$
\begin{aligned}
& =(500+2) \\
& =502
\end{aligned}
$$

2. Use the given algebraic expression to complete the table of number patterns.

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Expression	Terms									
		1st	2nd	3rd	4th	5th	...	10th	...	100th	...
(i)	2n-1	1	3	5	7	9	-	19	-	-	-
(ii)	$3 \mathrm{n}+2$	5	8	11	14	-	-	-	-	-	-
(iii)	$4 \mathrm{n}+1$	5	9	13	17	-	-	-	-	-	-
(iv)	$7 \mathrm{n}+20$	27	34	41	48	-	-	-	-	-	-

(v)	$\mathrm{n}^{2}+1$	2	5	10	17	-	-	-	-	10001	-

Solution:-

(i) From the table (2n-1)

Then, $100^{\text {th }}$ term $=$?
Where $\mathrm{n}=100$

$$
\begin{aligned}
& =(2 \times 100)-1 \\
& =200-1 \\
& =199
\end{aligned}
$$

(ii) From the table $(3 n+2)$
$5^{\text {th }}$ term $=$?
Where $\mathrm{n}=5$

$$
\begin{aligned}
& =(3 \times 5)+2 \\
& =15+2 \\
& =17
\end{aligned}
$$

Then, $10^{\text {th }}$ term $=$?
Where $\mathrm{n}=10$

$$
\begin{aligned}
& =(3 \times 10)+2 \\
& =30+2 \\
& =32
\end{aligned}
$$

Then, $100^{\text {th }}$ term $=$?
Where $\mathrm{n}=100$

$$
\begin{aligned}
& =(3 \times 100)+2 \\
& =300+2 \\
& =302
\end{aligned}
$$

(iii) From the table $(4 n+1) 5^{\text {th }}$
term =?
Where $\mathrm{n}=5$

$$
\begin{aligned}
& =(4 \times 5)+1 \\
& =20+1
\end{aligned}
$$

$=21$
Then, $10^{\text {th }}$ term $=$?
Where $\mathrm{n}=10$

$$
\begin{aligned}
& =(4 \times 10)+1 \\
& =40+1 \\
& =41
\end{aligned}
$$

Then, $100^{\text {th }}$ term $=$?
Where $\mathrm{n}=100$

$$
\begin{aligned}
& =(4 \times 100)+1 \\
& =400+1 \\
& =401
\end{aligned}
$$

(iv) From the table $(7 \mathrm{n}+20) 5^{\text {th }}$ term =?
Where $\mathrm{n}=5$

$$
\begin{aligned}
& =(7 \times 5)+20 \\
& =35+20 \\
& =55
\end{aligned}
$$

Then, $10^{\text {th }}$ term $=$? Where $\mathrm{n}=10$

$$
\begin{aligned}
& =(7 \times 10)+20 \\
& =70+20 \\
& =90
\end{aligned}
$$

Then, $100^{\text {th }}$ term $=$? Where

$$
\begin{aligned}
& \mathrm{n}=100 \\
&=(7 \times 100)+20 \\
&=700+20 \\
&=720
\end{aligned}
$$

(v) From the table $\left(\mathrm{n}^{2}+1\right) 5^{\text {th }}$
term =?
Where $\mathrm{n}=5$

$$
\begin{aligned}
& =\left(5^{2}\right)+1 \\
& =25+1
\end{aligned}
$$

EDUGRロSS

$$
=26
$$

Then, $10^{\text {th }}$ term $=$? Where

$$
\begin{aligned}
n=10 & \\
& =\left(10^{2}\right)+1 \\
& =100+1 \\
& =101
\end{aligned}
$$

So the table is completed below.

$\begin{aligned} & \text { S. } \\ & \text { No. } \end{aligned}$	Expression	Terms									
		1st	2nd	3rd	4th	5th	...	10th	...	100th	...
(i)	$2 \mathrm{n}-1$	1	3	5	7	9	-	19	-	199	-
(ii)	$3 \mathrm{n}+2$	5	8	11	14	17	-	32	-	302	-
(iii)	$4 \mathrm{n}+1$	5	9	13	17	21	-	41	-	401	-
(iv)	$7 \mathrm{n}+20$	27	34	41	48	55	-	90	-	720	-
(v)	$\mathrm{n}^{2}+1$	2	5	10	17	26	-	101	-	10001	-

