1. Find the value of:

(i) 2^{6}

Solution:-
The above value can be written as,

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 2 \times 2 \times 2 \\
& =64
\end{aligned}
$$

(ii) 9^{3}

Solution:-
The above value can be written as,
$=9 \times 9 \times 9$
$=729$
(iii) 11^{2}

Solution:-
The above value can be written as,
$=11 \times 11$
$=121$
(iv) 5^{4}

Solution:-

The above value can be written as,

$$
\begin{aligned}
& =5 \times 5 \times 5 \times 5 \\
& =625
\end{aligned}
$$

2. Express the following in exponential form:
(i) $6 \times 6 \times 6 \times 6$

Solution:-
The given question can be expressed in the exponential form as 6^{4}.
(ii) $t \times t$

Solution:-

The given question can be expressed in the exponential form as t^{2}.
(iii) $\mathbf{b} \times \mathbf{b} \times \mathbf{b} \times \mathbf{b}$

Solution:-
The given question can be expressed in the exponential form as b^{4}.
(iv) $5 \times 5 \times 7 \times 7 \times 7$

Solution:-

The given question can be expressed in the exponential form as $5^{2} \times 7^{3}$.
(v) $2 \times 2 \times a \times a$

Solution:-

The given question can be expressed in the exponential form as $2^{2} \times a^{2}$.
(vi) $a \times a \times a \times c \times c \times c \times c \times d$

Solution:-

The given question can be expressed in the exponential form as $a^{3} \times c^{4} \times d$.
3. Express each of the following numbers using exponential notation:
(i) 512

Solution:-

The factors of $512=2 \times 2 \times 2$ So
it can be expressed in the exponential form as 2^{9}.
(ii) 343

Solution:-
The factors of $343=7 \times 7 \times 7$
So it can be expressed in the exponential form as 7^{3}.
(iii) 729

Solution:-
The factors of $729=3 \times 3 \times 3 \times 3 \times 3 \times 3$

So it can be expressed in the exponential form as 3^{6}.
(iv) 3125

Solution:-

The factors of $3125=5 \times 5 \times 5 \times 5 \times 5$
So it can be expressed in the exponential form as 5^{5}.
4. Identify the greater number, wherever possible, in each of the following? (i) 4^{3} or 3^{4} Solution:-
The expansion of $4^{3}=4 \times 4 \times 4=64$
The expansion of $3^{4}=3 \times 3 \times 3 \times 3=81$
Clearly,

$$
64<81
$$

So, $4^{3}<3^{4}$
Hence 3^{4} is the greater number.
(ii) 5^{3} or 3^{5}

Solution:-

The expansion of $5^{3}=5 \times 5 \times 5=125$
The expansion of $3^{5}=3 \times 3 \times 3 \times 3 \times 3=243$
Clearly,
$125<243$
So, $5^{3}<3^{5}$
Hence 3^{5} is the greater number.
(iii) 2^{8} or 8^{2}

Solution:-

The expansion of $2^{8}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=256$
The expansion of $8^{2}=8 \times 8=64$
Clearly,

$$
256>64
$$

So, $2^{8}>8^{2}$
Hence 2^{8} is the greater number.
(iv) $\mathbf{1 0 0}^{\mathbf{2}}$ or $\mathbf{2}^{\mathbf{1 0 0}}$

Solution:-

The expansion of $100^{2}=100 \times 100=10000$
The expansion of 2^{100}
$2^{10}=2 \times 2 \times 2=1024$
Then,
$2^{100}=1024 \times 1024 \times 1024=$ Clearly, $100_{2}<2100$
Hence 2^{100} is the greater number.
(v) $\mathbf{2}^{10}$ or 10^{2}

Solution:-

The expansion of $2^{10}=2 \times 2 \times 2=1024$
The expansion of $10^{2}=10 \times 10=100$
Clearly,

$$
1024>100
$$

So, $2^{10}>10^{2}$
Hence 2^{8} is the greater number.
5. Express each of the following as product of powers of their prime factors: (i)

648

Solution:-
Factors of $648=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3$

$$
=2^{3} \times 3^{4}
$$

(ii) 405

Solution:-
Factors of $405=3 \times 3 \times 3 \times 3 \times 5$

$$
=3^{5} \times 3
$$

(iii) 540

Solution:-

$$
\text { Factors of } \begin{aligned}
540 & =2 \times 2 \times 3 \times 3 \times 3 \times 5 \\
& =2^{2} \times 3^{3} \times 5
\end{aligned}
$$

(iv) 3,600

Solution:-

Factors of $3600=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5$

$$
=2^{4} \times 3^{2} \times 5^{2}
$$

6. Simplify:

(i) 2×10^{3}

Solution:-

The above question can be written as,

$$
\begin{aligned}
& =2 \times 10 \times 10 \times 10 \\
& =2 \times 1000 \\
& =2000
\end{aligned}
$$

(ii) $7^{2} \times 2^{2}$

Solution:-

The above question can be written as,

$$
\begin{aligned}
& =7 \times 7 \times 2 \times 2 \\
& =49 \times 4 \\
& =196
\end{aligned}
$$

(iii) $2^{3} \times 5$

Solution:-
The above question can be written as,

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 5 \\
& =8 \times 5 \\
& =40
\end{aligned}
$$

(iv) 3×4^{4}

Solution:-
The above question can be written as,

$$
\begin{aligned}
& =3 \times 4 \times 4 \times 4 \times 4 \\
& =3 \times 256 \\
& =768
\end{aligned}
$$

(v) 0×10^{2}

Solution:-

The above question can be written as,

$$
\begin{aligned}
& =0 \times 10 \times 10 \\
& =0 \times 100 \\
& =0
\end{aligned}
$$

(vi) $5^{2} \times 3^{3}$

Solution:-

The above question can be written as,

$$
\begin{aligned}
& =5 \times 5 \times 3 \times 3 \times 3 \\
& =25 \times 27 \\
& =675
\end{aligned}
$$

(vii) $2^{4} \times 3^{2}$

Solution:-

The above question can be written as,

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 2 \times 3 \times 3 \\
& =16 \times 9 \\
& =144
\end{aligned}
$$

(viii) $\mathbf{3}^{2} \times 10^{4}$

Solution:-
The above question can be written as,

$$
\begin{aligned}
& =3 \times 3 \times 10 \times 10 \times 10 \times 10 \\
& =9 \times 10000 \\
& =90000
\end{aligned}
$$

7. Simplify: (i)

$(-4)^{3}$

Solution:-

The expansion of -4^{3}

$$
\begin{aligned}
& =-4 \times-4 \times-4 \\
& =-64
\end{aligned}
$$

(ii) $(-3) \times(-2)^{3}$

Solution:-

The expansion of $(-3) \times(-2)^{3}$

$$
\begin{aligned}
& =-3 \times-2 \times-2 \times-2 \\
& =-3 \times-8 \\
& =24
\end{aligned}
$$

(iii) $(-3)^{2} \times(-5)^{2}$

Solution:-
The expansion of $(-3)^{2} \times(-5)^{2}$

$$
\begin{aligned}
& =-3 \times-3 \times-5 \times-5 \\
& =9 \times 25 \\
& =225
\end{aligned}
$$

(iv) $(-2)^{3} \times(-10)^{3}$

Solution:-

The expansion of $(-2)^{3} \times(-10)^{3}$

$$
\begin{aligned}
& =-2 \times-2 \times-2 \times-10 \times-10 \times-10 \\
& =-8 \times-1000 \\
& =8000
\end{aligned}
$$

8. Compare the following numbers:

(i) $2.7 \times 10^{12} ; 1.5 \times 10^{8}$

Solution:- By observing
the question
Comparing the exponents of base 10 ,

Clearly,

$$
2.7 \times 10^{12}>1.5 \times 10^{8}
$$

(ii) $4 \times 10^{14} ; \mathbf{3 \times 1 0 ^ { 1 7 }}$

Solution:- By observing the question
Comparing the exponents of base 10, Clearly,

$$
4 \times 10^{14}<3 \times 10^{17}
$$

1. Using laws of exponents, simplify and write the answer in exponential form:
(i) $3^{2} \times 3^{4} \times 3^{8}$

Solution:-
By the rule of multiplying the powers with same base $=a^{m} \times a^{n}=a^{m+n}$ Then,

$$
\begin{aligned}
& =(3)_{2+4+8} \\
& =3_{14}
\end{aligned}
$$

(ii) $6^{15} \div 6^{10}$

Solution:-

By the rule of dividing the powers with same base $=a^{m} \div a^{n}=a^{m-n}$
Then,

$$
\begin{aligned}
& =(6)_{15-10} \\
& =6^{5}
\end{aligned}
$$

(iii) $a^{3} \times a^{2}$

Solution:-

By the rule of multiplying the powers with same base $=a^{m} \times a^{n}=a^{m+n}$
Then,

$$
\begin{aligned}
& =(a)_{3+2} \\
& =a^{5}
\end{aligned}
$$

(iv) $7^{x} \times 7^{2}$

Solution:-

By the rule of multiplying the powers with same base $=a^{m} \times a^{n}=a^{m+n}$
Then,

$$
=(7)_{x+2}
$$

(v) $\left(5^{2}\right)^{3} \div 5^{3}$

Solution:-
By the rule of taking power of as power $=\left(a^{m}\right)^{n}=a^{m n}$
$\left(5^{2}\right)^{3}$ can be written as $=(5)^{2 \times 3}$

$$
=5^{6}
$$

Now, $5^{6} \div 5^{3}$
By the rule of dividing the powers with same base $=a^{m} \div a^{n}=a^{m-n}$
Then,

$$
=(5)_{6-3}
$$

$$
=5^{3}
$$

(vi) $2^{5} \times 5^{5}$

Solution:-

By the rule of multiplying the powers with same exponents $=a^{m} \times b^{m}=a b^{m}$ Then,

$$
\begin{aligned}
& =(2 \times 5)^{5} \\
& =10^{5}
\end{aligned}
$$

(vii) $a^{4} \times b^{4}$

Solution:-

By the rule of multiplying the powers with same exponents $=a^{m} \times b^{m}=a b^{m}$ Then,

$$
\begin{aligned}
& =(a \times b)^{4} \\
& =a b^{4}
\end{aligned}
$$

(viii) $\left(3^{4}\right)^{3}$

Solution:-

By the rule of taking power of as power $=\left(a^{m}\right)^{n}=a^{m n}$
$\left(3^{4}\right)^{3}$ can be written as $=(3)^{4 \times 3}$

$$
=3^{12}
$$

(ix) $\left(\mathbf{2}^{20} \div \mathbf{2}^{15}\right) \times 2^{3}$

Solution:-

By the rule of dividing the powers with same base $=a^{m} \div a^{n}=a^{m-n}$
$\left(2^{20} \div 2^{15}\right)$ can be simplified as,

$$
\begin{aligned}
& =(2)_{20-15} \\
& =25
\end{aligned}
$$

Then,
By the rule of multiplying the powers with same base $=a^{m} \times a^{n}=a^{m+n}$
$2^{5} \times 2^{3}$ can be simplified as,

$$
\begin{aligned}
& =(2)_{5+3} \\
& =28
\end{aligned}
$$

(x) $8^{t} \div 8^{2}$

Solution:-

By the rule of dividing the powers with same base $=a^{m} \div a^{n}=a^{m-n}$ Then,

$$
=(8)_{t-2}
$$

2. Simplify and express each of the following in exponential form:
(i) $\left(2^{3} \times 3^{4} \times 4\right) /(3 \times 32)$

Solution:-

Factors of $32=2 \times 2 \times 2 \times 2 \times 2$

$$
=2^{5}
$$

Factors of $4=2 \times 2$

$$
=2^{2}
$$

Then,

$$
\begin{aligned}
& =\left(2^{3} \times 3^{4} \times 2^{2}\right) /\left(3 \times 2^{5}\right) \\
& =\left(2^{3+2} \times 3^{4}\right) /\left(3 \times 2^{5}\right) \\
& =\left(2^{5} \times 3^{4}\right) /\left(3 \times 2^{5}\right) \\
& =25-5 \times 3_{4-1} \\
& =2^{0} \times 3^{3} \\
& =1 \times 3^{3} \\
& =3^{3}
\end{aligned}
$$

(ii) $\left(\left(5^{2}\right)^{3} \times 5^{4}\right) \div 5^{7}$

Solution:-

$\left(5^{2}\right)^{3}$ can be written as $=(5)^{2 \times 3}$

$$
\ldots\left[\because\left(a^{m}\right)^{n}=a^{m n}\right]
$$

$$
=5^{6}
$$

Then,

$$
\begin{array}{ll}
=\left(5^{6} \times 5^{4}\right) \div 5^{7} & \\
=(56+4) \div 57 & \ldots\left[\because a_{m} \times a_{n}=a_{m+n}\right] \\
=5^{10} \div 5^{7} & \\
=510-7 & \ldots\left[\because a_{m} \div a_{n}=a_{m-n}\right] \\
=5^{3} &
\end{array}
$$

(iii) $25^{4} \div 5^{3}$

Solution:-

$(25)^{4}$ can be written as $=(5 \times 5)^{4}$

$$
=\left(5^{2}\right)^{4}
$$

$\left(5^{2}\right)^{4}$ can be written as $=(5)^{2 \times 4} \quad \ldots\left[\because\left(a^{m}\right)^{n}=a^{m n}\right]$

$$
=5^{8}
$$

Then,

$$
\begin{aligned}
& =5^{8} \div 5^{3} \\
& =58-3 \\
& =5^{5}
\end{aligned}
$$

$$
\ldots\left[\because a_{m} \div a_{n}=a_{m-n}\right]
$$

(iv) $\left(3 \times 7^{2} \times 11^{8}\right) /\left(21 \times 11^{3}\right)$

Solution:- Factors
of $21=7 \times 3$
Then,

$$
\begin{aligned}
& =\left(3 \times 7^{2} \times 11^{8}\right) /\left(7 \times 3 \times 11^{3}\right) \\
& =31-1 \times 72-1 \times 11_{8-3} \\
& =3^{0} \times 7 \times 11^{5} \\
& =1 \times 7 \times 11^{5} \\
& =7 \times 11^{5}
\end{aligned}
$$

(v) $3^{7} /\left(3^{4} \times 3^{3}\right)$

Solution:-

$$
\begin{array}{lr}
=3^{7} /\left(3^{4+3}\right) & \ldots\left[\because a^{m} \times a^{n}=a^{m+n}\right] \\
=3^{7} / 3^{7} & \\
=3^{7-7} & \ldots\left[\because a m \div a_{n}=a m-n\right] \\
=3^{0} &
\end{array}
$$

(vi) $2^{0}+3^{0}+4^{0}$

Solution:-

$$
\begin{aligned}
& =1+1+1 \\
& =3
\end{aligned}
$$

(vii) $2^{0} \times 3^{0} \times 4^{0}$

Solution:-

$$
\begin{aligned}
& =1 \times 1 \times 1 \\
& =1
\end{aligned}
$$

(viii) $\left(3^{0}+2^{0}\right) \times 5^{0}$

Solution:-

$$
\begin{aligned}
& =(1+1) \times 1 \\
& =(2) \times 1 \\
& =2
\end{aligned}
$$

(ix) $\left(2^{8} \times a^{5}\right) /\left(4^{3} \times a^{3}\right)$

Solution:-

$(4)^{3}$ can be written as $=(2 \times 2)^{3}$

$$
=\left(2^{2}\right)^{3}
$$

$\left(5^{2}\right)^{4}$ can be written as $=(2)^{2 \times 3}$

$$
\ldots\left[\because\left(a^{m}\right)^{n}=a^{m n}\right]
$$

$$
=2^{6}
$$

Then,

$$
\begin{aligned}
& =\left(2^{8} \times a^{5}\right) /\left(2^{6} \times a^{3}\right) \\
& =28-6 \times a 5-3 \\
& =22 \times a 2 \\
& =2 a^{2}
\end{aligned}
$$

$$
\ldots\left[\because\left(a^{m}\right)^{n}=a^{m n}\right]
$$

(x) $\left(a^{5} / a^{3}\right) \times a^{8}$

Solution:-

$$
\begin{array}{ll}
=\left(a^{5-}-3\right) \times a^{8} & \ldots\left[\because a^{m} \div a^{n}=a^{m-n}\right] \\
=a^{2} \times a^{8} & \ldots\left[\because a m \times a_{n}=a m+n\right] \\
=a 2+8 & \ldots .\left[\begin{array}{l}
a
\end{array}\right.
\end{array}
$$

$$
=a^{10}
$$

(xi) $\left(4^{5} \times a^{8} b^{3}\right) /\left(4^{5} \times a^{5} b^{2}\right)$

Solution:-

$$
\begin{aligned}
& =45-5 \times\left(a_{8-5} \times b_{3-2}\right) \quad \ldots\left[\because a m \div a_{n}=a m-n\right] \\
& =4^{0} \times\left(a^{3} b\right) \\
& =1 \times a^{3} b \\
& =a^{3} b
\end{aligned}
$$

(xii) $\left(2^{3} \times 2\right)^{2}$

Solution:-

$$
\begin{array}{rlr}
& =(23+1)_{2} & \ldots\left[\because a m \times a_{n}=a_{m+}\right. \\
& =\left(2^{4}\right)^{2} & \ldots\left[\because\left(a^{m}\right)^{n}=a^{m n}\right]
\end{array}
$$

3. Say true or false and justify your answer:

(i) $\mathbf{1 0 \times 1 0 ^ { 1 1 } = 1 0 0 ^ { 1 1 }}$

Solution:-

Let us consider Left Hand Side (LHS) $=10 \times 10^{11}$

$$
\begin{aligned}
& =10^{1+11} \quad \ldots\left[\because \cdot a^{m} \times a^{n}=a^{m+n}\right] \\
& =10^{12}
\end{aligned}
$$

Now, consider Right Hand Side (RHS) $=100^{11}$

$$
\begin{aligned}
& =(10 \times 10)^{11} \\
& =(101+1)_{11} \\
& =\left(10^{2}\right)^{11} \\
& =(10)^{2 \times 11} \\
& =10^{22}
\end{aligned}
$$

By comparing LHS and RHS, LHS

$$
\neq \mathrm{RHS}
$$

Hence, the given statement is false.
(ii) $2^{3}>5^{2}$

Solution:-

Let us consider LHS $=2^{3}$
Expansion of $2^{3}=2 \times 2 \times 2$

$$
=8
$$

Now, consider RHS $=5^{2}$
Expansion of $5^{2}=5 \times 5$

$$
=25
$$

By comparing LHS and RHS, LHS < RHS $23<5^{2}$

Hence, the given statement is false.
(iii) $2^{3} \times 3^{2}=6^{5}$

Solution:-

Let us consider LHS $=2^{3} \times 3^{2}$
Expansion of $2^{3} \times 3^{2}=2 \times 2 \times 2 \times 3 \times 3$

$$
=72
$$

Now, consider RHS $=6^{5}$
Expansion of $6^{5}=6 \times 6 \times 6 \times 6 \times 6$

$$
=7776
$$

By comparing LHS and RHS,
LHS < RHS $23<5^{2}$
Hence, the given statement is false.
(iv) $3^{0}=(1000)^{0}$

Solution:-

Let us consider LHS = 3^{0}

$$
=1
$$

Now, consider RHS $=1000^{\circ}$

$$
=1
$$

By comparing LHS and RHS,
LHS = RHS

$$
3^{0}=1000^{0}
$$

Hence, the given statement is true.
4. Express each of the following as a product of prime factors only in exponential form:
(i) 108×192

Solution:-
The factors of $108=2 \times 2 \times 3 \times 3 \times 3$

$$
=2^{2} \times 3^{3}
$$

The factors of $192=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$

$$
=2^{6} \times 3
$$

Then,

$$
\begin{aligned}
& =\left(2^{2} \times 3^{3}\right) \times\left(2^{6} \times 3\right) \\
& =22+6 \times 33+3 \\
& =2^{8} \times 3^{6}
\end{aligned}
$$

(ii) 270

Solution:-
The factors of $270=2 \times 3 \times 3 \times 3 \times 5$

$$
=2 \times 3^{3} \times 5
$$

(iii) 729×64

The factors of $729=3 \times 3 \times 3 \times 3 \times 3 \times 3$

$$
=3^{6}
$$

The factors of $64=2 \times 2 \times 2 \times 2 \times 2 \times 2$

$$
=2^{6}
$$

Then,

$$
\begin{aligned}
& =\left(3^{6} \times 2^{6}\right) \\
& =3^{6} \times 2^{6}
\end{aligned}
$$

(iv) 768

Solution:-

The factors of $768=2 \times 2 \times 3$

$$
=2^{8} \times 3
$$

5. Simplify:

(i) $\left(\left(2^{5}\right)^{2} \times 7^{3}\right) /\left(8^{3} \times 7\right)$

Solution:-

8^{3} can be written as $=(2 \times 2 \times 2)^{3}$

$$
=\left(2^{3}\right)^{3}
$$

We have,

$$
\begin{aligned}
& =\left(\left(2^{5}\right)^{2} \times 7^{3}\right) /\left(\left(2^{3}\right)^{3} \times 7\right) \\
& =\left(2^{5 \times 2} \times 7^{3}\right) /\left(\left(2^{3 \times 3} \times 7\right)\right. \\
& =\left(2^{10} \times 7^{3}\right) /\left(2^{9} \times 7\right) \\
& =(210-9 \times 73-1) \\
& =2 \times 7^{2} \\
& =2 \times 7 \times 7 \\
& =98
\end{aligned}
$$

(ii) $\left(25 \times 5^{2} \times \mathrm{t}^{8}\right) /\left(10^{3} \times \mathrm{t}^{4}\right)$

Solution:-

25 can be written as $=5 \times 5$

$$
=5^{2}
$$

10^{3} can be written as $=10^{3}$

$$
\begin{aligned}
& =(5 \times 2)^{3} \\
& =5^{3} \times 2^{3}
\end{aligned}
$$

We have,

$$
\begin{aligned}
& =\left(5^{2} \times 5^{2} \times t^{8}\right) /\left(5^{3} \times 2^{3} \times t^{4}\right) \\
& =\left(5^{2+2} \times t^{8}\right) /\left(5^{3} \times 2^{3} \times t^{4}\right) \\
& =\left(5^{4} \times t^{8}\right) /\left(5^{3} \times 2^{3} \times t^{4}\right) \\
& =\left(54-3 \times t_{8-4}\right) / 23 \\
& =\left(5 \times t^{4}\right) /(2 \times 2 \times 2) \\
& =\left(5 t^{4}\right) / 8
\end{aligned}
$$

(iii) $\left(3^{5} \times 10^{5} \times 25\right) /\left(5^{7} \times 6^{5}\right)$

Solution:-

10^{5} can be written as $=(5 \times 2)^{5}$

$$
=5^{5} \times 2^{5}
$$

25 can be written as $=5 \times 5$

$$
=5^{2}
$$

6^{5} can be written as $=(2 \times 3)^{5}$

$$
=2^{5} \times 3^{5}
$$

Then we have,

$$
\begin{aligned}
& =\left(3^{5} \times 5^{5} \times 2^{5} \times 5^{2}\right) /\left(5^{7} \times 2^{5} \times 3^{5}\right) \\
& =\left(3^{5} \times 5^{5+2} \times 2^{5}\right) /\left(5^{7} \times 2^{5} \times 3^{5}\right) \\
& =\left(3^{5} \times 5^{7} \times 2^{5}\right) /\left(5^{7} \times 2^{5} \times 3^{5}\right) \\
& =(35-5 \times 57-7 \times 25-5) \\
& =\left(3^{0} \times 5^{0} \times 2^{0}\right) \\
& =1 \times 1 \times 1 \\
& =1
\end{aligned}
$$

1. Write the following numbers in the expanded forms:

279404

Solution:-

The expanded form of the number 279404 is,

$$
=(2 \times 100000)+(7 \times 10000)+(9 \times 1000)+(4 \times 100)+(0 \times 10)+(4 \times 1)
$$

Now we can express it using powers of 10 in the exponent form,

$$
=\left(2 \times 10^{5}\right)+\left(7 \times 10^{4}\right)+\left(9 \times 10^{3}\right)+\left(4 \times 10^{2}\right)+\left(0 \times 10^{1}\right)+\left(4 \times 10^{0}\right)
$$

3006194

Solution:-

The expanded form of the number 3006194 is,

$$
=(3 \times 1000000)+(0 \times 100000)+(0 \times 10000)+(6 \times 1000)+(1 \times 100)+(9 \times 10)+4
$$

Now we can express it using powers of 10 in the exponent form,

$$
=\left(3 \times 10^{6}\right)+\left(0 \times 10^{5}\right)+\left(0 \times 10^{4}\right)+\left(6 \times 10^{3}\right)+\left(1 \times 10^{2}\right)+\left(9 \times 10^{1}\right)+\left(4 \times 10^{0}\right)
$$

2806196

Solution:-

The expanded form of the number 2806196 is,

$$
=(2 \times 1000000)+(8 \times 100000)+(0 \times 10000)+(6 \times 1000)+(1 \times 100)+(9 \times 10)+6
$$

Now we can express it using powers of 10 in the exponent form,

$$
=\left(2 \times 10^{6}\right)+\left(8 \times 10^{5}\right)+\left(0 \times 10^{4}\right)+\left(6 \times 10^{3}\right)+\left(1 \times 10^{2}\right)+\left(9 \times 10^{1}\right)+\left(6 \times 10^{0}\right)
$$

120719

Solution:-

The expanded form of the number 120719 is,

$$
=(1 \times 100000)+(2 \times 10000)+(0 \times 1000)+(7 \times 100)+(1 \times 10)+(9 \times 1)
$$

Now we can express it using powers of 10 in the exponent form,

$$
=\left(1 \times 10^{5}\right)+\left(2 \times 10^{4}\right)+\left(0 \times 10^{3}\right)+\left(7 \times 10^{2}\right)+\left(1 \times 10^{1}\right)+\left(9 \times 10^{0}\right)
$$

20068

Solution:-

The expanded form of the number 20068 is,

$$
=(2 \times 10000)+(0 \times 1000)+(0 \times 100)+(6 \times 10)+(8 \times 1)
$$

Now we can express it using powers of 10 in the exponent form,

$$
=\left(2 \times 10^{4}\right)+\left(0 \times 10^{3}\right)+\left(0 \times 10^{2}\right)+\left(6 \times 10^{1}\right)+\left(8 \times 10^{0}\right)
$$

2. Find the number from each of the following expanded forms:
(a) $(8 \times 10)^{4}+(6 \times 10)^{3}+(0 \times 10)^{2}+(4 \times 10)^{1}+(5 \times 10)^{0}$

Solution:-

The expanded form is,

$$
\begin{aligned}
& =(8 \times 10000)+(6 \times 1000)+(0 \times 100)+(4 \times 10)+(5 \times 1) \\
& =80000+6000+0+40+5 \\
& =86045
\end{aligned}
$$

(b) $(4 \times 10)^{5}+(5 \times 10)^{3}+(3 \times 10)^{2}+(2 \times 10)^{0}$

Solution:-

The expanded form is,

$$
\begin{aligned}
& =(4 \times 100000)+(0 \times 10000)+(5 \times 1000)+(3 \times 100)+(0 \times 10)+(2 \times 1) \\
& =400000+0+5000+300+0+2 \\
& =405302
\end{aligned}
$$

(c) $(3 \times 10)^{4}+(7 \times 10)^{2}+(5 \times 10)^{0}$

Solution:-
The expanded form is,

$$
\begin{aligned}
& =(3 \times 10000)+(0 \times 1000)+(7 \times 100)+(0 \times 10)+(5 \times 1) \\
& =30000+0+700+0+5 \\
& =30705
\end{aligned}
$$

(d) $(9 \times 10)^{5}+(2 \times 10)^{2}+(3 \times 10)^{1}$

Solution:-

The expanded form is,

$$
\begin{aligned}
& =(9 \times 100000)+(0 \times 10000)+(0 \times 1000)+(2 \times 100)+(3 \times 10)+(0 \times 1) \\
& =900000+0+0+200+30+0 \\
& =900230
\end{aligned}
$$

3. Express the following numbers in standard form:

(i) $5,00,00,000$

Solution:-

The standard form of the given number is 5×10^{7}
(ii) 70,00,000

Solution:-
The standard form of the given number is 7×10^{6}
(iii) 3,18,65,00,000

Solution:-
The standard form of the given number is 3.1865×10^{9}
(iv) 3,90,878

Solution:-

The standard form of the given number is 3.90878×10^{5}
(v) 39087.8

Solution:-
The standard form of the given number is 3.90878×10^{4}
(vi) 3908.78

Solution:-
The standard form of the given number is 3.90878×10^{3}
4. Express the number appearing in the following statements in standard form.
(a) The distance between Earth and Moon is $384,000,000 \mathrm{~m}$.

Solution:-
The standard form of the number appearing in the given statement is $3.84 \times 10^{8} \mathrm{~m}$.
(b) Speed of light in vacuum is $300,000,000 \mathrm{~m} / \mathrm{s}$.

Solution:-
The standard form of the number appearing in the given statement is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

(c) Diameter of the Earth is $1,27,56,000 \mathrm{~m}$.

Solution:-

The standard form of the number appearing in the given statement is $1.2756 \times 10^{7} \mathrm{~m}$.
(d) Diameter of the Sun is $1,400,000,000 \mathrm{~m}$.

Solution:-

The standard form of the number appearing in the given statement is $1.4 \times 10^{9} \mathrm{~m}$.
(e) In a galaxy there are on an average 100,000,000,000 stars.

Solution:-

The standard form of the number appearing in the given statement is 1×10^{11} stars. (f) The universe is estimated to be about $\mathbf{1 2 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$ years old. Solution:The standard form of the number appearing in the given statement is 1.2×10^{10} years old.
(g)The distance of the Sun from the centre of the Milky Way Galaxy is estimated to be $300,000,000,000,000,000,000 \mathrm{~m}$.

Solution:-

The standard form of the number appearing in the given statement is $3 \times 10^{20} \mathrm{~m}$.
(h) $60,230,000,000,000,000,000,000$ molecules are contained in a drop of water weighing 1.8 gm . Solution:-
The standard form of the number appearing in the given statement is 6.023×10^{22} molecules.
(i) The earth has $1,353,000,000$ cubic km of sea water.

Solution:-
The standard form of the number appearing in the given statement is 1.353×10^{9} cubic km.
(j) The population of India was about 1,027,000,000 in March, 2001.

Solution:-
The standard form of the number appearing in the given statement is 1.027×10^{9}.

