NCERT Solutions for Class 8 Maths Chapter 16 Playing with Numbers

Exercise 16.1

Page No: 255
Find the values of the letters in each of the following and give reasons for the steps involved.
1.

3
+2
$+\quad 5$
B $\quad 2$

Solution:
Say, A = 7 and we get,
$7+5=12$
In which one's place is 2 .
Therefore, $\mathrm{A}=7$
And putting 2 and carry over 1 , we get
$B=6$
Hence $\mathbf{A}=\mathbf{7}$ and $\mathbf{B}=\mathbf{6}$
2.

4	A
+9	8
C B	3

Solution:
If $\mathrm{A}=5$ and we get,

NCERT Solutions for Class 8 Maths Chapter 16 Playing with Numbers

$8+5=13$ in which ones place is 3.
Therefore, $\mathrm{A}=5$ and carry over 1 then
$B=4$ and $C=1$
Hence, $A=5, B=4$ and $C=1$
3.
1
$\times$$\quad A$

Solution:

On putting $\mathrm{A}=1,2,3,4,5,6,7$ and so on and we get,
A $\times \mathrm{A}=6 \times 6=36$ in which ones place is 6 .
Therefore, $\mathbf{A}=\mathbf{6}$
4.

A
$+\quad 3$
6

Solution:

Here, we observe that $B=5$ so that $7+5=12$
Putting 2 at ones place and carry over 1 and $A=2$, we get
$2+3+1=6$

NCERT Solutions for Class 8 Maths Chapter 16 Playing with Numbers

Hence $\mathbf{A}=\mathbf{2}$ and $\mathbf{B}=\mathbf{5}$
5.

A	B
x	3
C	A

Solution:

Here on putting $B=0$, we get $0 \times 3=0$.
And $A=5$, then $5 \times 3=15$
$A=5$ and $C=1$
Hence $A=5, B=0$ and $C=1$
6.

A B
$\times \quad 5$
C A B

Solution:

On putting $B=0$, we get $0 \times 5=0$ and $A=5$, then $5 \times 5=25$
$A=5, C=2$
Hence $A=5, B=0$ and $C=2$
7.

NCERT Solutions for Class 8 Maths Chapter 16 Playing with Numbers

A	B
\times	6
B B	B

Solution:

Here product of B and 6 must be same as ones place digitas B.
$6 \times 1=6,6 \times 2=12,6 \times 3=18,6 \times 4=24$
On putting $B=4$, we get the ones digit 4 and remaining two B 's value should be 44 .
Therefore, for $6 \times 7=42+2=44$
Hence $\mathbf{A = 7}$ and $\mathbf{B = 4}$
8.

Solution:

On putting $B=9$, we get $9+1=10$
Putting 0 at ones place and carry over 1 , we get for $\mathrm{A}=7$
$7+1+1=9$
Hence, $\mathbf{A}=\mathbf{7}$ and $\mathbf{B}=\mathbf{9}$
9.

NCERT Solutions for Class 8 Maths Chapter 16 Playing with Numbers

2	A	B
+A	B	1
B	1	8

Solution:

On putting $B=7$, we get $7+1=8$
Now $A=4$, then $4+7=11$
Putting 1 at tens place and carry over 1 , we get
$2+4+1=7$
Hence, $\mathbf{A}=\mathbf{4}$ and $\mathbf{B}=\mathbf{7}$
10.
12 A
+6 AB

A 09

Solution:

Putting $A=8$ and $B=1$, we get
$8+1=9$
Now, again we add $2+8=10$
Tens place digit is ' 0 ' and carry over 1 . Now $1+6+1=8=A$
Hence $\mathbf{A = 8}$ and $\mathbf{B = 1}$

NCERT Solutions for Class 8 Maths Chapter 16 Playing with Numbers

Exercise 16.2

1. If $21 y 5$ is a multiple of 9 , where y is a digit, what is the value of y ?

Solution:

Suppose 21 y 5 is a multiple of 9 .
Therefore according to the divisibility rule of 9 , the sum of all the digits should be a multiple of 9.

That is, $2+1+y+5=8+y$
Therefore, $8+\mathrm{y}$ is a factor of 9 .
This is possible when $8+\mathrm{y}$ is any one of these numbers $0,9,18,27$, and so on
However, since y is a single digit number, this sum can be 9 only.
Therefore, the value of y should be 1 only i.e. $8+\mathrm{y}=8+1=9$.
2. If $31 z 5$ is a multiple of 9 , where z is a digit, what is the value of z ? You will find that there are two answers for the last problem. Why is this so?

Solution:

EDUGROSS

NCERT Solutions for Class 8 Maths Chapter 16 Playing with Numbers

Since, 31 z 5 is a multiple of 9 .
Therefore according to the divisibility rule of 9 , the sum of all the digits should be a multiple of 9.
$3+1+z+5=9+z$
Therefore, $9+z$ is a multiple of 9
This is only possible when $9+z$ is any one of these numbers: $0,9,18,27$, and so on.
This implies, $9+0=9$ and $9+9=18$
Hence 0 and 9 are two possible answers.
3. If $24 x$ is a multiple of 3 , where x is a digit, what is the value of x ?
(Since $24 x$ is a multiple of 3 , its sum of digits $6+x$ is a multiple of 3 ; so $6+x$ is one of these numbers: $0,3,6,9,12,15,18, \ldots$. But since x is a digit, it can only be that $6+x=6$ or 9 or 12 or 15 . Therefore, $x=0$ or 3 or 6 or 9 . Thus, x can have any of four different values.)

Solution: Let's say, $24 x$ is a multiple of 3 .
Then, according to the divisibility rule of 3 , the sum of all the digits should be a multiple of 3 .
$2+4+x=6+x$
So, $6+x$ is a multiple of 3 , and $6+x$ is one of these numbers: $0,3,6,9,12,15,18$ and so on.
Since, x is a digit, the value of x will be either 0 or 3 or 6 or 9 , and the sum of the digits can be 6 or 9 or 12 or 15 respectively.

Thus, x can have any of the four different values: 0 or 3 or 6 or 9 .
4. If $31 z 5$ is a multiple of 3 , where z is a digit, what might be the values of z ?

Solution: Since $31 z 5$ is a multiple of 3 .

NCERT Solutions for Class 8 Maths Chapter 16 Playing with Numbers

Therefore according to the divisibility rule of 3 , the sum of all the digits should be a multiple of 3.

That is, $3+1+z+5=9+z$
Therefore, $9+z$ is a multiple of 3 .
This is possible when the value of $9+z$ is any of the values: $0,3,6,9,12,15$, and so on.
At $z=0,9+z=9+0=9$
At $z=3,9+z=9+3=12$
At $z=6,9+z=9+6=15$
At $z=9,9+z=9+9=18$
The value of $9+z$ can be 9 or 12 or 15 or 18 .
Hence 0, 3, 6 or 9 are four possible answers for z.

