In-text questions set 1

Page number - 18

1. You are given three test tubes. The three test tubes contain distilled water, acidic solution and the basic solution respectively. There is only red litmus paper available in order to identify what is there in each test tube. How will you find out what is in each of the test tubes?

Solution: We can identify the content in each of the test tubes using red litmus paper. This can be done by noticing the colour change of the red litmus paper.

- If the red litmus paper changes to blue colour the solution is a basic solution.
- If the red litmus paper changes to red colour the solution is acidic solution.
- Ifyou did not observe any colour change then the solution is distilled water.

In-text questions set 2

Page number - 22

1. Why should curd and sour substances not be kept in brass and copper vessels? Solution: Curd and sour food substances contain acids; these acidic substances combine with metal. This reaction turns food to poison which damage people's health.
2. Which gas is usually liberated when an acid reacts with a metal? Illustrate with an example. How will you test for the presence of this gas?

Solution: When an acid reacts with any metal, salt and hydrogen gas are formed.
Metal + Acid \rightarrow Salt + Hydrogen gas
3. Metal compound A reacts with dilute hydrochloric acid to produce effervescence. The gas evolved extinguishes a burning candle. Write a balanced chemical equation for the reaction if one of the compounds formed is calcium chloride.

Solution: As metal compound released is Calcium Chloride the gas evolved here is CO_{2}. Hence metal A should be Calcium Carbonate. Hence the reaction between Calcium Carbonate and HCl is
$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{Aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{Aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

in text questions set 3

Page number - 25

1. Why do $\mathrm{HCl}, \mathrm{HNO} 3$, etc., show acidic characters in aqueous solutions while solutions of compounds like alcohol and glucose do not show acidic character?

Solution: Release of H^{+}ion in water will make a compound acidic or non-acidic. Acids are the substance which upon dissociating with water results in production of Hydrogen ions. Some compounds show acidic character as they dissociate in the aqueous solution which results in the production of hydrogen ions (acids like $\mathrm{HCl}, \mathrm{HNO}_{3}$).

Compounds similar to glucose or alcohol do contain hydrogen element but they do not show signs of acidic nature. The fact that the hydrogen in them will not separate as like the hydrogen in the acids. They will not separate to become hydrogen ions, on dissolving in the water.

Hence dissociation of hydrogen gas will decide the acidic or non-acidic nature of a compound.

2. Why does an aqueous solution of an acid conduct electricity?

Solution: Charged particles are responsible for the conductance of electricity in an acid. These charged particles called as ions are the reason behind conductance of electricity in acid.

3. Why does dry HCl gas not change the colour of the dry litmus paper?

Solution: HCL does not give out Hydrogen ions, therefore HCL does not show any acidic behaviour and colour of the litmus paper remain the same on reacting with HCl gas.

4. While diluting an acid, why is it recommended that the acid should be added to water and not water to the acid?

Solution: While diluting an acid, it is recommended that the acid should be added to water and not water to the acid because if water is added to concentrated acid, it release huge amount of heat which may result in explosion and can cause acid burns o face, clothes and body parts. Hence it is safe to add acid to water but not water to acid.

5. How is the concentration of hydronium ions $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$affected when a solution of an acid is diluted?

Solution: When acid is added to water there will be a fixed amount of hydronium present in the fixed volume of solution. If we dilute the solution hydronium ion per volume of solution decrease, this in-turn decreases Hydronium concentration in the solution.
6. How is the concentration of hydroxide ions (OH^{-}) affected when excess base is dissolved in a solution of sodium hydroxide?

Solution: When base is dissolved in sodium hydroxide solution its hydroxide ions increase but it will reach saturation at some point. After saturation point hydroxide ion concentration is not affected even after adding base further.

In-text questions set 4

Page number - 33

1. You have two solutions, A and B. The $p H$ of solution A is 6 and $p H$ of solution B is 8. Which solution has more hydrogen ion concentration? Which of this is acidic and which one is basic?

Solution: In order to find the hydrogen ion concentration, we can use the rule that states, "The pH of any solution is inversely proportional to the hydrogen ion concentration". Therefore, it means that the solution that has a lower pH number will have a higher hydrogen ion concentration. Hence, solution A will have a higher hydrogen ion concentration. In addition, solution B will be basic and A will be acidic.

2. What effect does the concentration of $\mathrm{H}^{+}(\mathbf{a q})$ ions have on the nature of the solution?

Solution: Hydrogen ion concentration decides the nature of the solution. If Hydrogen ion concentration increase then solution turn acidic and similarly if Hydrogen ion concentration decreases then solution turn basic.
3. Do basic solutions also have $H^{+}(\mathbf{a q})$ ions? If yes, then why are these basic?

Solution: Basic solutions has H^{+}ions, but hydroxide ions present in basic solution are more in basic solution. Hence Hydroxide ions turn solution to basic.
4. Under what soil condition do you think a farmer would treat the soil of his fields with quick lime (calcium oxide) or slaked lime (calcium hydroxide) or chalk (calcium carbonate)?

Solution: If the soil is acidic in nature (PH below 7) then such field should be treated with quick lime (calcium oxide) or slaked lime (calcium hydroxide) or chalk (calcium carbonate).

In text questions set 5

Page number - 34-35

1. What is the common name of the compound CaOCl_{2} ? Solution: Common name of CaOCl_{2} is bleaching powder.
2. Name the substance which on treatment with chlorine yields bleaching powder Solution: The substance which on treatment with chlorine yields bleaching powder is Calcium hydroxide.
3. Name the sodium compound which is used for softening hard water. Solution: Sodium carbonate is the compound which is used for softening hard water.
4. What will happen if a solution of sodium hydrocarbonate is heated? Give the equation of the reaction involved.

Solution: Heating sodium hydrocarbonate yields sodium carbonate and carbon dioxide gas is liberated in the process.
$2 \mathrm{NaHCO}_{3} \xrightarrow{\text { heat }} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
5. Write an equation to show the reaction between Plaster of Paris and water.

Solution: The chemical equation for the reaction of Plaster of Paris and water is
$\mathrm{CaSO}_{4} .1 / 2 \mathrm{H}_{2} \mathrm{O}+3 / 2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CaSO}_{4} .2 \mathrm{H}_{2} \mathrm{O}$

1. A solution turns red litmus blue, its pH is likely to be
$\begin{array}{llll}\text { (a) } 1 & \text { (b) } 4 & \text { (c) } 5 & \text { (d) } 10\end{array}$
Solution: Answer is 10 because litmus paper turns blue when reacts with basic solution (PH more than 7). Hence 10 is the answer.
2. A solution reacts with crushed egg-shells to give a gas that turns lime-water milky. The solution contains
(a)NaCl
(b) HCl
(c) LiCl
(d) KCl

Solution: Answer is HCl.
Egg shells contains calcium carbonate, which on reaction with HCl liberates CO_{2} gas which turn lime water to milky.
$\mathrm{CaCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
3.10 mL of a solution of NaOH is found to be completely neutralised by 8 mL of a given solution of HCl . If we take 2 O mL of the same solution of NaOH , the amount HCl solution (the same solution as before) required to neutralise it will be
(a) 4 mL
(b) 8 mL
(c) 12 mL
(d) $\mathbf{1 6} \mathbf{m L}$

Solution: Since 10 ml of NaOH requires 8 mL of HCL, 20 ml of NaOH require $8 \times 2=16 \mathrm{~mL}$ of HCl Hence the answer id option d 16 mL .
4. Which one of the following types of medicines is used for treating indigestion?
(a) Antibiotic
(b) Analgesic
(c) Antacid
(d) Antiseptic

Solution: Indigestion is due to excess production of acid in the stomach. Medicines used to treat indigestion is called as Antacid.
5. Write word equations and then balanced equations for the reaction taking place when
(a) Dilute sulphuric acid reacts with zinc granules.
(b) Dilute hydrochloric acid reacts with magnesium ribbon.
(c) Dilute sulphuric acid reacts with aluminium powder.
(d) Dilute hydrochloric acid reacts with iron filings.

Solution:

(a) dilute sulphuric acid reacts with zinc granules:
$=>$ dilute sulphuric acid + zinc \rightarrow Zinc Sulphate + Hydrogen Gas
$=>\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Zn} \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(b) dilute hydrochloric acid reacts with magnesium ribbon.
$=>$ dilute Hydrochloric + Magnesium \rightarrow Magnesium Chloride + Hydrogen Gas $=>$ $2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Mg} \rightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
(c) dilute sulphuric acid reacts with aluminium powder.
$=>$ dilute Sulphuric Acid + Aluminium \rightarrow Aluminium Sulphate + Hydrogen Gas
$=>3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$
(d) dilute hydrochloric acid reacts with iron filings.
$=>$ dilute Hydrochloric Acid + Iron \rightarrow Ferrous Chloride + Hydrogen Gas =>
$6 \mathrm{HCl}(\mathrm{aq})+3 \mathrm{Fe}(\mathrm{s}) \rightarrow 3 \mathrm{FeCl}_{2}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})$

6. Compounds such as alcohols and glucose also contain hydrogen but are not categorised as acids. Describe an Activity to prove it

Solution: Insert two nails on the wooden or rubber cork and place them on a beaker as shown in figure. Connect iron nail to a bulb, 6 volt battery and a wire connected to switch. Pour some alcohol or glucose so as to dip the nails in glucose or alcohol. Turn the switch on and you the see the bulb not glowing despite of connection to switch. Now empty the beaker and add HCL solution. This time bulb glows. This proves acid can conduct electricity but alcohol and glucose does not conduct electricity.

7. Why does distilled water not conduct electricity, whereas rain water does? Solution:

- Distilled water does not contain any ionic compounds in it.
- Whereas rainwater has a lot, more compounds.
- Rainwater has dissolved acidic gas such as carbon dioxide from the air and that forms carbonic acid. This means that it has hydrogen ions and carbonate ions. Therefore, with the presence of acids, rainwater can conduct electricity.

8. Why do acids not show acidic behaviour in the absence of water?

EDUGRロSS

Solution: The acidic behaviour from acids is because of the presence of hydrogen ions. Hydrogen ions can only be produced in the presence of water and therefore water is definitely needed if acids are to show their acidic behaviour.
9. Five solutions A, B, C, D and E when tested with universal indicator showed $\mathbf{p H}$ as $4,1,11,7$ and 9 , respectively. Which solution is
(a) neutral?
(b) Strongly alkaline?
(c) Strongly acidic?
(d) Weakly acidic?
(e) Weakly alkaline?

Solution: In increasing order of hydrogen ion concentration:
pH 11(B) -> pH 9(E) -> pH 7(A) -> pH 4(D) -> pH 1 (B) PH11

- Strongly alkaline pH 9 - weakly alkaline PH 7 - Neutral pH 4 -

Weakly acidic pH 1 - Strongly acidic
10. Equal lengths of magnesium ribbons are taken in test tubes A and B. Hydrochloric acid (HCl) is added to test tube A, while acetic acid $\left(\mathrm{CH}_{3} \mathbf{C O O H}\right)$ is added to test tube B. Amount and concentration taken for both the acids are same. In which test tube will the fizzing occur more vigorously and why?

Solution: HCl is a strong acid whereas acetic is a weaker acid. Fizzing occurs because of the production of the hydrogen gas obtained due to reaction of the acid on the magnesium ribbon. Since HCl is a very strong acid there is a lot of liberation of hydrogen gas from test tube A. therefore, more fizzing take place in test tube A.
11. Fresh milk has apH of 6 . How do you think the $\mathbf{p H}$ will change as it turns into curd? Explain your answer.

Solution: Fresh milk is turned to curd due to production of lactic acid. Lactic acid reduces the pH of the milk.
12. A milkman adds a very small amount of baking soda to fresh milk.
(a) Why does he shift the pH of the fresh milk from 6 to slightly alkaline?
(b) Why does this milk take a long time to set as curd?

Solution: (a) He shifted the pH of the fresh milk from 6 to slightly alkaline to prevent milk from getting sour due to production of lactic acid.
(b) This milk takes long time to set into curd because the lactic acid produced here first neutralises the pH then the pH is reduced to turn milk to curd.

13. Plaster of Paris should be stored in a moisture-proof container. Explain why?

Solution: Plaster of Paris should be stored in moisture-proof container because moisture can affect plaster of Paris by slowing down the setting of the plaster because of hydration. This will turn plaster useless.

14. What is a neutralisation reaction? Give two examples.

Solution: The reaction of the acid + base gives a product of salt + water, which is considered as neutralization reaction.

Examples:
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{MgCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
15. Give two important uses of washing soda and baking soda.

Solution:

Washing soda

1. It is used as an electrolyte
2. It can be used domestically as water softener for laundry.

Baking soda

1. It can be used to test the garden soil for acidity. If bubbles are developed then the soil Is too acidic
2. If used on washing car then it will remove dead bug bodies without damaging the colour or the paint on the car.
