NCERT Solution For Class 10 Maths Chapter 2- Polynomials

Exercise 2.2

Page: 33

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

Solutions:

$$
\begin{equation*}
x^{2}-2 x-8 \tag{i}
\end{equation*}
$$

$\Rightarrow x^{2}-4 \mathrm{x}+2 \mathrm{x}-8=\mathrm{x}(\mathrm{x}-4)+2(\mathrm{x}-4)=(\mathrm{x}-4)(\mathrm{x}+2)$
Thereforezeroes of polynomial equation $x^{2}-2 \mathrm{x}-8$ are $\{4,-2\}$
Sum of zeroes $=4-2=2=-\frac{(-2)}{1}=\frac{(- \text { Coefficient of } \mathrm{x})}{\text { Coefficient of } x^{2}}$ Product of zeroes $=4 \times(-2)=-8=\frac{(-8)}{1}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
(ii)

$$
4 s^{2}-4 s+1
$$

$\Rightarrow 4 s^{2}-2 s-2 s+1=2 s(2 s-1)-1(2 s-1)=(2 s-1)(2 s-1)$
Thereforezeroes of polynomial equation $4 s^{2}-4 s+1$ are $\left\{\frac{1}{2}, \frac{1}{2}\right\}$.
Sum of zeroes $=\frac{1}{2}+\frac{1}{2}=1=\frac{-4}{4}=\frac{(- \text { Coefficient of s) }}{\text { Coefficient of } s^{2}}$ Product of zeroes $=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}=\frac{\text { Constant term }}{\text { Coefficient of } s^{2}}$
(iii) $6 x^{2}-3-7 x$
$\Rightarrow 6 x^{2}-7 \mathrm{x}-3=(3 \mathrm{x}+1)(2 \mathrm{x}-3)$
Thereforezeroes of polynomial equation $6 x^{2}-3-7 \mathrm{x}$ are $\left\{-\frac{1}{3}, \frac{3}{2}\right\}$

Sum of zeroes $=-\frac{1}{3}+\frac{3}{2}=\frac{7}{6}=\frac{-(-7)}{6}=\frac{(- \text { Coefficient of } x)}{\text { Coefficient of } x^{2}}$ Product of zeroes $=-\frac{1}{3} \times \frac{3}{2}=-\frac{3}{6}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
(iv) $4 u^{2}+8 u$

NCERT Solution For Class 10 Maths Chapter 2- Polynomials

$\Rightarrow 4 \mathrm{u}(\mathrm{u}+2)$ Thereforezeroes of polynomial equation $4 u^{2}+$ 8 u are $\{0,-2\}$.

Sum of zeroes $=0+(-2)=-2=\frac{(-8)}{4}=\frac{(- \text { Coefficient of } \mathrm{u})}{\text { Coefficient of } u^{2}}$ Product of zeroes $=0 \times-2=0=\frac{0}{4}=\frac{\text { Constant term }}{\text { Coefficient of } u^{2}}$
(v) $t^{2}-15$
$\Rightarrow t^{2}=15$ or $t= \pm \sqrt{15}$
Thereforezeroes of polynomial equation $t^{2}-15$ are $\{\sqrt{15},-\sqrt{15}\}$.
Sum of zeroes $=\sqrt{15}+(-\sqrt{15})=0=\frac{-0}{1}=\frac{(- \text { Coefficient of } \mathrm{t})}{\text { Coefficient of } t^{2}}$ Product of zeroes $=\sqrt{15} \times(-\sqrt{15})=-15=\frac{-15}{1}=\frac{\text { Constant term }}{\text { Coefficient of } t^{2}}$
(vi) $3 x^{2}-\mathrm{x}-4$
$\Rightarrow 3 x^{2}-4 \mathrm{x}+3 \mathrm{x}-4=\mathrm{x}(3 \mathrm{x}-4)+1(3 \mathrm{x}-4)=(3 \mathrm{x}-4)(\mathrm{x}+1)$
Thereforezeroes of polynomial equation $3 x^{2}-x-4$ are $\left\{\frac{4}{3},-1\right\}$
Sum of zeroes $=\frac{4}{3}+(-\mathbf{1})=\frac{1}{3}=\frac{-(-1)}{3}=\frac{(- \text { Coefficient of } \mathrm{x})}{\text { Coefficient of } x^{2}}$ Product of zeroes $=\frac{4}{3} \times(-\mathbf{1})=\frac{-4}{3}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$
2. Find a quadratic polynomial each with the given numbers as the sum and product of its ze roes respectively.
(i) $\frac{1}{4},-1$

Solution:

From the formulas of sum and product of zeroes, we know,
Sum of zeroes $=\alpha+\beta$
Product of zeroes $=\alpha \beta$
Sum of zeroes $=\alpha+\beta=\frac{1}{4}$
Product of zeroes $=\alpha \beta=-1$

NCERT Solution For Class 10 Maths Chapter 2- Polynomials

\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-(1 / 4) \mathrm{x}+(-1)=0$
$4 x^{2}-x-4=0$

Thus, $4 x^{2}-x-4$ is the quadratic polynomial.
(ii) $\sqrt{2}, \frac{1}{3}$

Solution:

Sum of zeroes $=\alpha+\beta=\sqrt{2}$
1
Product of zeroes $=\alpha \beta=$

$$
3
$$

\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-(\sqrt{2}) x+\frac{1}{3}=0$
$3 x^{2}-3 \sqrt{2} x+1=0$
Thus, $3 x^{2}-3 \sqrt{2} x+1$ is the quadratic polynomial.
(iii) $0, \sqrt{5}$

Solution:

Given,
Sum of zeroes $=\alpha+\beta=0$
Product of zeroes $=\alpha \beta=\sqrt{5}$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

NCERT Solution For Class 10 Maths Chapter 2- Polynomials

$x^{2}-(\alpha+\beta) x+\alpha \beta=0$

2
$x-(0) x+\sqrt{5}=0$

Thus, $x^{2}+\sqrt{5}$ is the quadratic polynomial.
(iv)1,1

Solution:

Given,
Sum of zeroes $=\alpha+\beta=1$
Product of zeroes $=\alpha \beta=1$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-x+1=0$

Thus, $x^{2}-x+1$ is the quadratic polynomial.
(v) $-\frac{1}{4}, \frac{1}{4}$

Solution:

Given, Sum of zeroes $=\alpha+$
$\beta=-\frac{1}{4}$
Product of zeroes $=\alpha \beta=\frac{1}{4}$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-\left(-\frac{1}{4}\right) x+\frac{1}{4}=0$

NCERT Solution For Class 10 Maths Chapter 2- Polynomials

$4 x^{2}+x+1=0$

Thus, $4 x^{2}+\mathrm{x}+1$ is the quadratic polynomial.
(vi) 4,1

Solution:

Given,
Sum of zeroes $=\alpha+\beta=4$
Product of zeroes $=\alpha \beta=1$
\therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
$x^{2}-(\alpha+\beta) x+\alpha \beta=0$
$x^{2}-4 x+1=0$

Thus, $x^{2}-4 \mathrm{x}+1$ is the quadratic polynomial.

