NCERT Solution For Class 10 Maths Chapter 2- Polynomials

Exercise 2.4

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:
(i) $2 x^{3}+x^{2}-5 \mathrm{x}+2 ; \frac{1}{2}, 1,-2$

Solutions: Given, $\mathrm{p}(\mathrm{x})=2 x^{3}+x_{2}-5 \mathrm{x}+2$
And zeroes for $\mathrm{p}(\mathrm{x})$ are $=\frac{1}{2}, 1,-2$
$\therefore \mathrm{p}(1 / 2)=2\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}{ }^{-} 5(1 / 2)+2=1 / 4+1 / 4-5 / 2+2=0$
$p(1)=2.1^{3}+1^{2}-5 \cdot 1+2=0$
$\mathrm{p}(-2)=2(-2)^{3}+(-2)^{2}-5(-2)+2=0$
Hence, proved $\frac{1}{2}, 1,-2$ are the zeroes of $2 x^{3}+x^{2}-5 \mathrm{x}+2$.
Now, comparing the given polynomial with general expression, we get;
$\therefore a x^{3}+b x^{2}+c x+d=2 x^{3}+x^{2}-5 \mathrm{x}+2$
$a=3, b=1, c=-5$ and $d=2$
As we know, if α, β, γ are the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d$ then;
$\alpha+\beta+\gamma=-\mathrm{b} / \mathrm{a}$
$\alpha \beta+\beta \gamma+\gamma \alpha=c / a$
$\alpha \beta \gamma=-\mathrm{d} / \mathrm{a}$.
Therefore, putting the values of zeroes of the polynomial,
$\alpha+\beta+\gamma=1 / 2+1+(-2)=-1 / 2=-b / a$
$\alpha \beta+\beta \gamma+\gamma \alpha=(1 / 2 \times 1)+(1 \times-2)+(-2 \times 1 / 2)=-5 / 2=c / a$
$\alpha \beta \gamma=1 / 2 \times 1 \times(-2)=-2 / 2=-d / a$
Hence, the relationship between the zeroes and the coefficients are satisfied.
(ii) $x^{3}-4 x^{2}+5 x+2 ; 2,1,1$

NCERT Solution For Class 10 Maths Chapter 2- Polynomials

Solutions: Given, $\mathrm{p}(\mathrm{x})=x^{3}-4 x^{2}+5 x+2$
And zeroes for $\mathrm{p}(\mathrm{x})$ are $2,1,1$.
$\therefore \mathrm{p}(2)=2^{3}-4.2^{2}+5.2+2=0$
$p(1)=1^{3}-4.1^{2}+5.1+2=0$
Hence proved,2,1,1 are the zeroes of $x^{3}-4 x^{2}+5 x+2$

Now, comparing the given polynomial with general expression, we get;
$\therefore a x^{3}+b x^{2}+c x+d=x^{3}-\mathbf{4} \boldsymbol{x}^{2}+\mathbf{5 x}+\mathbf{2}$
$\mathrm{a}=1, \mathrm{~b}=-4, \mathrm{c}=5$ and $\mathrm{d}=2$

As we know, if α, β, γ are the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d$ then;
$\alpha+\beta+\gamma=-\mathrm{b} / \mathrm{a} \alpha \beta$
$+\beta \gamma+\gamma \alpha=\mathrm{c} / \mathrm{a} \alpha \beta$
$\gamma=-\mathrm{d} / \mathrm{a}$.

Therefore, putting the values of zeroes of the polynomial,
$\alpha+\beta+\gamma=2+1+1=4=-(-4) / 1=-b / a$
$\alpha \beta+\beta \gamma+\gamma \alpha=2.1+1.1+1.2=5=5 / 1=c / a$
$\alpha \beta \gamma=2 \times 1 \times 1=2=-(-2) / 1=-d / a$
Hence, the relationship between the zeroes and the coefficients are satisfied.
2. Find a cubic polynomial with the sum, sum of the product of its ze roes taken two at a time, and the product of its zeroes as $2,-7,-14$ respectively.

Solutions: Let us consider the cubic polynomial is $a x^{3}+b x^{2}+c x+d$ and the values of the zeroes of the polynomials be α, β, γ.

As per the given question,
$\alpha+\beta+\gamma=-\mathrm{b} / \mathrm{a}=2 / 1$
$\alpha \beta+\beta \gamma+\gamma \alpha=c / a=-7 / 1$
$\alpha \beta \gamma=-\mathrm{d} / \mathrm{a}=-14 / 1$

NCERT Solution For Class 10 Maths Chapter 2- Polynomials

Thus, from above three expressions we get the values of coefficient of polynomial. $\mathrm{a}=1, \mathrm{~b}=-2, \mathrm{c}=-7, \mathrm{~d}=14$

Hence, the cubic polynomial is $x^{3}-2 x^{2}-7 x+14$.
3. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, find a and b.

Solutions: We are given with the polynomial here,
$\mathrm{p}(\mathrm{x})=x^{3}-3 x^{2}+x+1$

And zeroes are given as $\mathrm{a}-\mathrm{b}, \mathrm{a}, \mathrm{a}+\mathrm{b}$
Now, comparing the given polynomial with general expression, we get;
$\therefore p x^{3}+q x^{2}+r x+s=x^{3}-3 x^{2}+x+1$
$\mathrm{p}=1, \mathrm{q}=-3, \mathrm{r}=1$ and $\mathrm{s}=1$

Sum of zeroes $=a-b+a+a+b$
$-q / p=3 a$

Putting the values q and p .
$-(-3) / 1=3 \mathrm{a}$
$a=1$

Thus, the zeroes are 1-b, 1, 1+b.

Now, product of zeroes $=1(1-b)(1+b)$
$-\mathrm{s} / \mathrm{p}=1-b^{2}$
$-\quad b^{2} \quad 1 / 1=1-$
$b \quad+1 \quad 2=1 \quad=2$
$\mathrm{b}=\sqrt{2}$
Hence, $1-\sqrt{2}, 1,1+\sqrt{2}$ are the zeroes of $x^{3}-3 x^{2}+x+1$.
4. If two zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$,find other zeroes.

NCERT Solution For Class 10 Maths Chapter 2- Polynomials

Solutions: Since this is a polynomial equation of degree 4, hence there will be total 4 roots.

Let $\mathrm{f}(\mathrm{x})=x^{4}-6 x^{3}-26 x^{2}+138 x-35$
Since $2+\sqrt{3}$ and $2-\sqrt{3}$ are zeroes of given polynomial $f(x)$.
$\therefore[\mathrm{x}-(2+\sqrt{3})][\mathrm{x}-2-\sqrt{3}]=0$
$(\mathrm{x}-2-\sqrt{3})(\mathrm{x}-2+\sqrt{3})=0$
On multiplying the above equation we get,
$x^{2}-4 x+1$, this is a factor of a given polynomial $\mathrm{f}(\mathrm{x})$.
Now, if we will divide $f(x)$ by $g(x)$, the quotient will also be a factor of $f(x)$ and the remainder will be 0 .

So, $x^{4}-6 x^{3}-26 x^{2}+138 x-35=\left(x^{2}-4 x+1\right)\left(x^{2}-2 x-35\right)$

Now, on further factorizing ($\mathrm{x}^{2}-2 \mathrm{x}-35$) we get,
$x^{2}-(7-5) \mathrm{x}-35=x^{2}-7 \mathrm{x}+5 \mathrm{x}+35=0 \mathrm{x}(\mathrm{x}$
$-7)+5(x-7)=0$
$(x+5)(x-7)=0$
So, its zeroes are given by:
$\mathrm{x}=-5$ and $\mathrm{x}=7$.

Therefore, all four zeroes of given polynomial equation are: $2+\sqrt{3}, 2-\sqrt{3},-5$ and 7 .

