NCERT Solution For Class 9 Maths Chapter 2-Polynomials

Exercise 2.1

1. Which of the following expressions are polynomials in one variable and which are not?

State reasons for your answer.
(i) $\mathbf{4} \mathbf{x}^{\mathbf{2}}-\mathbf{3 x}+\mathbf{7}$ Solution:

The equation $4 x^{2}-3 x+7$ can be written as $4 x^{2}-3 x^{1}+7 x^{0}$
Since x is the only variable in the given equation and the powers of x (i.e., 2,1 and 0) are whole numbers, we can say that the expression $4 x^{2}-3 x+7$ is a polynomial in one variable.
(ii) $\mathbf{y}^{\mathbf{2}}+\sqrt{2}$ Solution:

The equation $y^{2}+\sqrt{2}$ can be written as $y^{2}+\sqrt{2} \mathrm{y}^{0}$
Since y is the only variable in the given equation and the powers of y (i.e., 2 and 0) are whole numbers, we can say that the expression $y^{2}+\sqrt{2}$ is a polynomial in one variable.
(iii) $3 \sqrt{ } t+t \sqrt{2}$ Solution:

The equation $3 \sqrt{ } t+\mathrm{t} \sqrt{2}$ can be written as $3 t^{\overline{2}}+\sqrt{2} t$
Though, t is the only variable in the given equation, the powers of t (i.e., $\frac{1}{2}$) is not a whole number. Hence, we can say that the expression $3 \sqrt{ } t+\mathrm{t} \sqrt{2}$ is not a polynomial in one variable.
(iv) $\mathbf{y}+{ }^{2}$

y

Solution:
The equation $\mathrm{y}+\frac{2}{y}$ can be written as $\mathrm{y}+2 \mathrm{y}^{-1}$
Though, y is the only variable in the given equation, the powers of y (i.e.,-1) is not a whole number.
Hence, we can say that the expression $\mathrm{y}+\frac{2}{y}$ is not a polynomial in one variable.
(v) $x^{10}+y^{3}+t^{50}$

Solution:
Here, in the equation $x^{10}+y^{3}+t^{50}$
Though, the powers, 10, 3,50, are whole numbers, there are 3 variables used in the expression x^{10} $+y^{3}+t^{50}$. Hence, it is not a polynomial in one variable.

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.1

2. Write the coefficients of x^{2} in each of the following:
(i) $\mathbf{2}+\mathbf{x}^{\mathbf{2}}+\mathrm{x}$ Solution:

The equation $2+x^{2}+x$ can be written as $2+(1) x^{2}+x$
We know that, coefficient is the number which multiplies the variable. Here, the number that multiplies the variable x^{2} is $1 \therefore$, the coefficients of x^{2} in $2+x^{2}+x$ is 1 .
(ii) $2-\mathbf{x}^{2}+\mathbf{x}^{3}$ Solution:

The equation $2-x^{2}+x^{3}$ can be written as $2+(-1) x^{2}+x^{3}$
We know that, coefficient is the number (along with its sign,ie., - or +) which multiplies the variable.
Here, the number that multiplies the variable x^{2} is $-1 \therefore$, the coefficients of x^{2} in $2-x^{2}+x^{3}$ is -1 .
(iii) $\quad \frac{\pi}{2} x^{2}+x$

Solution:
The equation $\frac{\pi}{2} \mathrm{x}^{2}+\mathrm{x}$ can be written as $\left(\frac{\pi}{2}\right) \mathrm{x}^{2}+\mathrm{x}$
We know that, coefficient is the number (along with its sign,ie., - or +) which multiplies the variable.
Here, the number that multiplies the variable x^{2} is $\frac{\pi}{2}$
\therefore, the coefficients of x^{2} in $\frac{\pi}{2} \mathrm{x}^{2}+\mathrm{x}$ is $\frac{\pi}{2}$.
(iv) $\sqrt{2 x}$ -

1 Solution:

We know that, coefficient is the number (along with its sign,ie., - or +) which multiplies the variable.
Here, the number that multiplies the variable x^{2} is 0
\therefore, the coefficients of x^{2} in $\sqrt{2} \mathrm{x}-1$ is 0 .
3. Give one example each of a binomial of degree 35 , and of a monomial of degree 100 . Solution:
Binomial of degree 35: A polynomial having two terms and the highest degree 35 is called a binomial of degree 35
Eg., $3 x^{35}+5$
Monomial of degree 100: A polynomial having one term and the highest degree 100 is called a monomial of degree 100
Eg., $4 x^{100}$

4. Write the degree of each of the following polynomials:

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.1

(i) $\quad \mathbf{5} \mathrm{x}^{3}+\mathbf{4} \mathrm{x}^{2}+\mathbf{7 x}$

Solution:
The highest power of the variable in a polynomial is the degree of the polynomial.
Here, $5 x^{3}+4 x^{2}+7 x=5 x^{3}+4 x^{2}+7 x^{1}$
The powers of the variable x are: $3,2,1$
\therefore, the degree of $5 \mathrm{x}^{3}+4 \mathrm{x}^{2}+7 \mathrm{x}$ is 3 as 3 is the highest power of x in the equation.
(ii) $\mathbf{4}-\mathbf{y}^{2}$ Solution:

The highest power of the variable in a polynomial is the degree of the polynomial. Here, in $4-y^{2}$,
The power of the variable y is: 2
\therefore, the degree of $4-\mathrm{y}^{2}$ is 2 as 2 is the highest power of y in the equation.
(iii) $\mathbf{5 t}-\sqrt{7}$

Solution:
The highest power of the variable in a polynomial is the degree of the polynomial.
Here, in $5 \mathrm{t}-\sqrt{7}$,
The power of the variable y is: 1
\therefore, the degree of $5 \mathrm{t}-\sqrt{7}$ is 1 as 1 is the highest power of y in the equation.
(iv) 3

Solution:
The highest power of the variable in a polynomial is the degree of the polynomial.
Here, $3=3 \times 1=3 \times x^{0}$
The power of the variable here is: $0 \therefore$,
the degree of 3 is 0 .

5. Classify the following as linear, quadratic and cubic polynomials:

Solution:
We know that,
Linear polynomial: A polynomial of degree one is called a linear polynomial.
Quadratic polynomial: A polynomial of degree two is called a quadratic polynomial. Cubic polynomial: A polynomial of degree three a cubic polynomial.
(i) $\mathrm{x}^{2}+\mathrm{x}$

Solution:
The highest power of $x^{2}+x$ is 2
\therefore, the degree is 2
Hence, $x^{2}+x$ is a quadratic polynomial

Exercise 2.1

(ii) $\mathrm{x}-\mathrm{x}^{3}$

Solution:
The highest power of $x-x^{3}$ is 3
\therefore the degree is 3
Hence, $x-x^{3}$ is a cubic polynomial
(iii) $\mathbf{y}+\mathrm{y}^{2}+\mathbf{4}$

Solution:
The highest power of $y+y^{2}+4$ is 2
\therefore the degree is 2
Hence, $y+y^{2}+4$ is a quadratic polynomial
(iv) $\mathbf{1 + x}$

Solution:
The highest power of $1+x$ is 1
\therefore the degree is 1
Hence, $1+\mathrm{x}$ is a linear polynomial
(v) 3 t

Solution:
The highest power of $3 t$ is 1
\therefore the degree is 1
Hence, 3 t is a linear polynomial
(vi) \mathbf{r}^{2}

Solution:
The highest power of r^{2} is 2
\therefore the degree is 2
Hence, r^{2} is a quadratic polynomial
(vii) $7 \mathbf{x}^{\mathbf{3}}$

Solution:
The highest power of $7 x^{3}$ is 3
\therefore the degree is 3
Hence, $7 \mathrm{x}^{3}$ is a cubic polynomial

EDUGROSS
WISDOMISINE KNQwLEDEE

Exercise 2.2

1. Find the value of the polynomial $(x)=5 x-4 x^{2}+3$
(i) $\mathrm{x}=0$ (ii) $\mathrm{x}=-\mathbf{1}$ (iii)

$$
x=2
$$

Solution:
Let $f(x)=5 x-4 x^{2}+3$
(i) When $\quad x=0$
$f(0)=5(0)+4(0)^{2}+3$
$=3$
(ii) When $x=-1$

$$
\begin{aligned}
& f(x)=5 x-4 x^{2}+3 \\
& f(-1)=5(-1)-4(-1)^{2}+3 \\
& =-5-4+3 \\
& =-6
\end{aligned}
$$

(iii) When $x=2 f(x)=5 x-4 x^{2}+3$

$$
\begin{aligned}
& f(2)=5(2)-4(2)^{2}+3=10-16+3 \\
& =-3
\end{aligned}
$$

2. Find $p(0), p(1)$ and $p(2)$ for each of the following polynomials:
(i) $p(y)=y^{2}-y+1$

$$
p(y)=y^{2}-
$$

Solution: $\mathrm{y}+1$

$$
\begin{aligned}
& \therefore \mathrm{p}(0)=(0)-(0)+1=1 \mathrm{p}(1)=(1)^{2}- \\
& (1)+1=1 \mathrm{p}(2)=(2)^{2}-(2)+1=3
\end{aligned}
$$

(ii) $\mathbf{p}(\mathbf{t})=\mathbf{2}+\mathbf{t}+\mathbf{2 t ^ { 2 } - \mathbf { t } ^ { \mathbf { 3 } } .}$

Solution:

$$
\begin{aligned}
& \quad 2+t+2 t^{2}-t^{3} \quad \begin{array}{l}
p(t)= \\
2
\end{array} \\
& \therefore \quad \mathrm{p}(0)=2+0+2(0)-(0)=2+1+2(1)^{2}-(1)^{3}=2+1+2-1=4 \mathrm{p}(2)=2+2+2(2)^{2}- \\
& (2)^{3}=2+2+8-8=4
\end{aligned}
$$

(iii) $\quad \mathbf{p}(\mathbf{x})=\mathbf{x}^{3}$

Solution:

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=\mathrm{x}^{3} \\
& \therefore \mathrm{p}(0)=(0)^{3}=0 \\
& \mathrm{p}(1)=(1)^{3}=1 \mathrm{p}(2)=(2)^{3}=8
\end{aligned}
$$

Exercise 2.2

(iv) $p(x)=(x-1)(x+1)$

Solution: $\mathrm{p}(\mathrm{x})=(\mathrm{x}-$

1) $(\mathrm{x}+1)$
$\therefore \mathrm{p}(0)=(0-1)(0+1)=(-1)(1)=-1 \mathrm{p}(1)=(1-$
2) $(1+1)=0(2)=0 \mathrm{p}(2)=(2-1)(2+1)=1(3)=3$
3. Verify whether the following are zeroes of the polynomial, indicated against them. (i) $p(x)=3 x+1, x=-1$

3
Solution:
For, $\mathrm{x}=-1, \mathrm{p}(\mathrm{x})=3 \mathrm{x}+13$
$\therefore \mathrm{p}\left(-\frac{1}{3}\right)=3\left(-\frac{1}{3}\right)+1=-1+1=0$
$\therefore-\frac{1}{3}$ is a zero of $\mathrm{p}(\mathrm{x})$.
(ii) $\mathbf{p}(\mathbf{x})=5 \mathrm{x}-\pi, \mathbf{x}=4$

Solution: For, $x=4$

$$
\mathrm{p}(\mathrm{x})=5 \mathrm{x}-\pi
$$

$\therefore p\left(\frac{4}{5}\right)=5\left(\frac{4}{5}\right)-\pi=4-\pi$
$\therefore \frac{4}{5}$ is not a zero of $\mathrm{p}(\mathrm{x})$.
(iii)

For, $\quad, \quad,-1 \quad x=1$
; $\quad \mathrm{p}(\mathrm{x})=\mathrm{x}$
-1
$\therefore p(1)=1^{2}-1=1-1=0$
$\mathrm{p}(-1)=(-1)^{2}-1=1-1=0$
$\therefore 1,-1$ are zeros of $\mathrm{p}(\mathrm{x})$.
(iv) $\quad p(x)=(x+1)(x-2), x=-1,2$ Solution:

For, $\mathrm{x}=-1,2 ; \mathrm{p}(\mathrm{x})=(\mathrm{x}+1)(\mathrm{x}-2)$
$\therefore p(-1)=(-1+1)(-1-2)$
$=((0)(-3))=0 \mathrm{p}(2)=(2+1)(2-2)=(3)(0)=0$
$\therefore-1,2$ are zeros of $\mathrm{p}(\mathrm{x})$.
(v) $p(x)=x^{2}, x=0$ Solution:

Exercise 2.2

For, $2_{2} x=0 p(x)=x^{2}$
$p(0)=0=0$
$\therefore 0$ is a zero of $\mathrm{p}(\mathrm{x})$.
(vi)

$$
\mathbf{p}(\mathbf{x})=\mathbf{l x}+\mathbf{m}, \quad \mathbf{x}=-\mathbf{m}_{-}
$$

Solution:
For, $\mathrm{x}=-\bar{l} m ; \mathrm{p}(\mathrm{x})=\mathrm{l} \mathrm{x}+\mathrm{m}$
$\therefore \mathrm{p}\left(-\frac{m}{l}\right)=\mathrm{l}\left(-\frac{m}{l}\right)+\mathrm{m}=-\mathrm{m}+\mathrm{m}=0$
$\therefore-\frac{m}{l}$ is a zero of $\mathrm{p}(\mathrm{x})$.
(vii)

$$
p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}
$$

Solution:
For, $\mathrm{x}=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} ; \mathrm{p}(\mathrm{x})=3 \mathrm{x}^{2}-1$
$\therefore \mathrm{p}\left(-\frac{1}{\sqrt{3}}\right)=3\left(-\frac{1}{\sqrt{3}}\right)^{2}-1=3\left(\frac{1}{3}\right)-1=1-1=0$
$\therefore \mathrm{p}\left(\frac{2}{\sqrt{3}}\right)=3\left(\frac{2}{\sqrt{3}}\right)^{2}-1=3\left(\frac{4}{3}\right)-1=4-1=3 \neq 0$
$\therefore-\frac{1}{\sqrt{3}}$ is a zero of $\mathrm{p}(\mathrm{x})$ but ${ }^{2} \sqrt{3}$ is not a zero of $\mathrm{p}(\mathrm{x})$.
(viii) $\quad \mathrm{p}(\mathrm{x})=\mathbf{2 x + 1 , x = 1}$

Solution: For, $x={ }^{1}$

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=2 \mathrm{x}+1 \\
& \therefore \mathrm{p}\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)+1=1+1=2 \neq 0 \\
& \therefore \frac{1}{2} \text { is not a zero of } \mathrm{p}(\mathrm{x}) .
\end{aligned}
$$

4. Find the zero of the polynomial in each of the following cases:
(i) $p(x)=x+5$

Solution: $\mathrm{p}(\mathrm{x})=\mathrm{x}+5$
$\Rightarrow x+5=0$
$\Rightarrow \mathrm{x}=-5$
$\therefore-5$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(ii) $p(x)=x-5$

Exercise 2.2

Solution:

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=\mathrm{x}-5 \\
& \Rightarrow \mathrm{x}-5=0 \\
& \Rightarrow \mathrm{x}=5
\end{aligned}
$$

$\therefore 5$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(iii) $p(x)=2 x+5$

Solution:

$$
\begin{aligned}
& \mathrm{p}(\mathrm{x})=2 \mathrm{x}+5 \\
& \Rightarrow 2 \mathrm{x}+5=0 \\
& \Rightarrow 2 \mathrm{x}=-5 \\
& \Rightarrow \mathrm{x}=-\frac{5}{2} \\
& \quad \therefore \mathrm{x}=-\frac{5}{2} \text { is a zero polynomial of the polynomial } \mathrm{p}(\mathrm{x}) .
\end{aligned}
$$

(iv) $p(x)=3 x-2$

Solution: $p(x)=3 x-$
2
$\Rightarrow 3 \mathrm{x}-2=0$
$\Rightarrow 3 \mathrm{x}=2$
$\Rightarrow \mathrm{x}=\frac{2}{3}$
$\therefore \mathrm{x}=\frac{2}{3}$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(v) $\mathbf{p}(\mathbf{x})=\mathbf{3 x}$

Solution: $\mathrm{p}(\mathrm{x})=3 \mathrm{x}$

$$
\Rightarrow 3 x=0 \Rightarrow x=0
$$

$\therefore 0$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(vi) $\mathbf{p}(\mathbf{x})=\mathbf{a x}, \mathbf{a} \neq \mathbf{0}$

Solution: $\mathrm{p}(\mathrm{x})=\mathrm{ax}$
$\Rightarrow a x=0 \Rightarrow x=0$
$\therefore \mathrm{x}=0$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.
(vii) $\quad \mathbf{p}(\mathbf{x})=\mathbf{c x}+\mathbf{d}, \mathbf{c} \neq \mathbf{0}, \mathbf{c}, \mathbf{d}$ are real numbers.

Solution: $\mathrm{p}(\mathrm{x})=\mathrm{cx}+\mathrm{d}$

$$
\Rightarrow \mathrm{cx}+\mathrm{d}=0
$$

$\Rightarrow \mathrm{x}=\frac{-d}{c}$
$\therefore \mathrm{x}=\frac{-d}{c}$ is a zero polynomial of the polynomial $\mathrm{p}(\mathrm{x})$.

Exercise 2.3

1. Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by
(i) $\mathrm{x}+1$

Solution: $\mathrm{x}+1=0 \Rightarrow \mathrm{x}=-1$

$$
\begin{aligned}
& \therefore \text { Remainder } 3 \\
& \mathrm{p}(-1)=(-1)+3(-1)+3(-1)+1 \\
&=-1+3-3+1 \\
&=0
\end{aligned}
$$

(ii) $x-\frac{1}{2}$

Solution: $\mathrm{x}-$
$\frac{1}{2}=0$
$\Rightarrow \mathrm{x}=\frac{1}{2}$
\therefore Remainder:

$$
\begin{aligned}
\left(\frac{1}{2}\right)= & \left(\frac{1}{2}\right)^{3}+3\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)+1 \\
& =\frac{1}{8}+\frac{3}{4}+\frac{3}{2}+1 \\
\mathrm{p} \quad & =\frac{27}{8}
\end{aligned}
$$

(iii) \mathbf{x}

Solution: $\mathrm{x}=0$
\therefore Remainde
r

$$
\begin{gathered}
p(0)=(0)+3(0)+3(0)+1 \\
=1
\end{gathered}
$$

(iv) $\mathbf{x}+\pi$

Solution:

$$
\begin{gathered}
x+\pi=0 \Rightarrow x=-\pi \quad \therefore \text { Remainder } \\
3 \quad 2 p(0)=(-\pi)+3(-\pi) \\
+3(-\pi)+1 \\
=-\pi^{3}+3 \pi^{2}-3 \pi+1
\end{gathered}
$$

(v) $5+2 x$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Solution:

$$
\begin{aligned}
& 5+2 x=0 \\
& \Rightarrow 2 x=-5 \\
& \Rightarrow x=-\frac{5}{2}
\end{aligned}
$$

Exercise 2.3

Remainder:

$$
\begin{gathered}
\therefore 5 \begin{array}{c}
5 \\
\left(-\frac{-}{2}\right)^{3}+3\left(-\frac{1}{2}\right)^{2}+3\left(-\frac{1}{2}\right)+1
\end{array} \begin{array}{c}
125 \\
=-\frac{75}{8}+\frac{75}{4}
\end{array} \\
=\frac{15}{2}+1
\end{gathered}
$$

2. Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$. Solution:

Let $p(x)=x^{3}-a x^{2}+6 x-a$
$x-a=0 \quad \therefore x=a$
Remainder:

$$
\begin{aligned}
\mathrm{p}(\mathrm{a})=(\mathrm{a})^{3}-\mathrm{a}\left(\mathrm{a}^{2}\right)+6(\mathrm{a})-\mathrm{a} \\
=\mathrm{a}^{3}-\mathrm{a}^{3}+6 \mathrm{a}-\mathrm{a}=5 \mathrm{a}
\end{aligned}
$$

3. Check whether $7+3 x$ is a factor of $3 x^{3}+7 x$.

Solution:
$7+3 x=0$
$\Rightarrow 3 \mathrm{x}=-7$
$\Rightarrow x=\frac{-7}{3}$ only if $7+3 x$ divides $3 x^{3}+7 x$ leaving no remainder.
Remainder:

$$
\begin{aligned}
& \begin{aligned}
& \therefore \overbrace{}^{7} \\
&\left.\begin{array}{l}
-\frac{7}{3}
\end{array}\right)^{3}+7\left(\frac{-7}{3}\right)=-\frac{-^{343}}{9}+\frac{-{ }^{49}}{3} \\
&=\frac{-343-(49) 3}{9} \\
&=\frac{-343-147}{9} \\
&=\frac{-490}{9} \neq 0
\end{aligned}
\end{aligned}
$$

$\therefore 7+3 \mathrm{x}$ is not a factor of $3 \mathrm{x}^{3}+7 \mathrm{x}$

Exercise 2.4

1. Determine which of the following polynomials has $(x+1)$ a factor:
(i) $\mathbf{x}^{3}+x^{2}+x+1$ Solution:

Let $p(x)=x^{3}+x^{2}+x+1$
The zero of $\mathrm{x}+1$ is -1 . $[\mathrm{x}+1=0$ means $\mathrm{x}=-1] \mathrm{p}(-1)=(-1)^{3}+(-1)^{2}+(-1)+1$

$$
\begin{aligned}
& =-1+1-1+1 \\
& =0
\end{aligned}
$$

\therefore By factor theorem, $\mathrm{x}+1$ is a factor of $\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$
(ii) $x^{4}+x^{3}+x^{2}+x+1$ Solution:

Let $p(x)=x^{4}+x^{3}+x^{2}+x+1$
The zero of $\mathrm{x}+1$ is $-1 .[\mathrm{x}+1=0$ means $\mathrm{x}=-1] \mathrm{p}(-1)=(-1)^{4}+(-1)^{3}+(-1)^{2}+(-1)+1$

$$
\begin{aligned}
& =1-1+1-1+1 \\
& =1 \neq 0
\end{aligned}
$$

\therefore By factor theorem, $\mathrm{x}+1$ is a factor of $\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1$
(iii) $x^{4}+\mathbf{3} x^{3}+3 x^{2}+x+1$ Solution:

Let $p(x)=x^{4}+3 x^{3}+3 x^{2}+x+1$
The zero of $x+1$ is -1 .

$$
\begin{aligned}
\mathrm{p}(-1)= & (-1) 4+3(-1) 3+3(-1) 2+(-1)+1 \\
& =1-3+3-1+1 \\
& =1 \neq 0
\end{aligned}
$$

\therefore By factor theorem, $\mathrm{x}+1$ is a factor of $\mathrm{x}^{4}+3 \mathrm{x}^{3}+3 \mathrm{x}^{2}+\mathrm{x}+1$
(iv) $x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$

Solution:
Let $p(x)=x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$ The
zero of $x+1$ is -1 .

$$
\begin{aligned}
p(-1)=(-1)^{3} & -(-1)^{2}-(2+\quad \sqrt{2})(-1)+\sqrt{ } 2 \\
& =-1-1+2+\sqrt{ } 2+\sqrt{ } 2 \\
& =2 \sqrt{ } 2
\end{aligned}
$$

\therefore By factor theorem, $\mathrm{x}+1$ is not a factor of $\mathrm{x}^{3}-\mathrm{x}^{2}-(2+\sqrt{2}) \mathrm{x}+\sqrt{2}$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.4

2. Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in each of the following cases:
(i) $p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1$

Solution: $p(x)=2 x^{3}+x^{2}-2 x-1, g(x)$

$$
\begin{aligned}
& =\mathrm{x}+1 \mathrm{~g}(\mathrm{x})=0 \\
& \quad \Rightarrow \mathrm{x}+1=0 \\
& \Rightarrow \mathrm{x}=-1 \\
& \therefore \text { Zero of } \mathrm{g}(\mathrm{x}) \text { is }-1 . \text { Now, } \\
& \mathrm{p}(-1)=2(-1)^{3}+(-1)^{2}-2(-1)-1 \\
& =-2+1+2-1 \\
& =0
\end{aligned}
$$

\therefore By factor theorem, $\mathrm{g}(\mathrm{x})$ is a factor of $\mathrm{p}(\mathrm{x})$.
(ii) $\mathbf{p}(\mathbf{x})=\mathrm{x}^{3}+3 \mathrm{x}^{2}+3 \mathrm{x}+1, \mathbf{g}(\mathbf{x})=\mathbf{x}+2$

Solution: $\mathrm{p}(\mathrm{x})=\mathrm{x} 3+3 \mathrm{x} 2+3 \mathrm{x}+1, \mathrm{~g}(\mathrm{x})$
$=\mathrm{x}+2 \mathrm{~g}(\mathrm{x})=0$
$\Rightarrow \mathrm{x}+2=0$
$\Rightarrow \mathrm{x}=-2$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is -2 . Now,
$p(-2)=(-2)^{3}+3(-2)^{2}+3(-2)+1$

$$
=-8+12-6+1
$$

$$
=-1 \neq 0
$$

\therefore By factor theorem, $\mathrm{g}(\mathrm{x})$ is not a factor of $\mathrm{p}(\mathrm{x})$.
(iii) $\quad p(x)=x^{3}-4 x^{2}+x+6, g(x)=$
$\mathbf{x}-3$ Solution: $p(x)=x^{3}-4 x^{2}+x+6$,
$g(x)=x-3 g(x)=0$
$\Rightarrow \mathrm{x}-3=0 \Rightarrow \mathrm{x}=3$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is 3 .
Now,

$$
\begin{aligned}
& \mathrm{p}(3)=(3)^{3}-4(3)^{2}+(3)+6 \\
&=27-36+3+6 \\
&=0
\end{aligned}
$$

\therefore By factor theorem, $\mathrm{g}(\mathrm{x})$ is a factor of $\mathrm{p}(\mathrm{x})$.
3. Find the value of k, if $x-1$ is a factor of $p(x)$ in each of the following cases:
(i) $\mathbf{p}(\mathbf{x})=\mathbf{x}^{2}+\mathbf{x}+\mathrm{k}$ Solution:

If $x-1$ is a factor of $p(x)$, then $p(1)=0$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.4

By ${ }_{2}$ Theorem Factor

$$
\Rightarrow(1)+(1)+\mathrm{k}=0
$$

$$
\Rightarrow 1+1+\mathrm{k}=0 \Rightarrow 2+\mathrm{k}=0
$$

$$
\Rightarrow \mathrm{k}=-2
$$

(ii) $\mathbf{p}(\mathbf{x})=2 \mathbf{x}^{2}+\mathbf{k x}+\sqrt{2}$ Solution:

If $x-1$ is a factor of $p(x)$, then $p(1)=0$

$$
\begin{aligned}
& \Rightarrow 2(1)^{2}+\mathrm{k}(1)+\sqrt{ } 2=0 \\
& \Rightarrow 2+\mathrm{k}+\sqrt{ } 2=0 \\
& \Rightarrow \mathrm{k}=-(2+\sqrt{ } 2)
\end{aligned}
$$

(iii) $\mathbf{p}(\mathbf{x})=k x^{2}-\sqrt{2} \mathbf{x}+1$ Solution:

If $x-1$ is a factor of $p(x)$, then $p(1)=0$
By Factor Theorem

$$
\begin{aligned}
& \Rightarrow k(1)^{2}-\sqrt{2}(1)+1=0 \\
& \Rightarrow k=\sqrt{2}-1
\end{aligned}
$$

(iv) $\mathbf{p}(\mathbf{x})=\mathbf{k} \mathbf{x}^{2}-\mathbf{3 x}+\mathbf{k}$ Solution:

If $x-1$ is a factor of $p(x)$, then $p(1)=0$
By Factor Theorem

$$
\begin{aligned}
& \Rightarrow \mathrm{k}(1)^{2}-3(1)+\mathrm{k}=0 \\
& \Rightarrow \mathrm{k}-3+\mathrm{k}=0 \\
& \Rightarrow 2 \mathrm{k}-3=0 \\
& \Rightarrow \mathrm{k}=\frac{3}{2}
\end{aligned}
$$

4. Factorize:

(i) $\mathbf{1 2} \mathbf{x}^{2}-7 \mathbf{x}+1$ Solution:

Using the splitting the middle term method,
We have to find a number whose sum=-7 and product $=1 \times 12=12$
We get -3 and -4 as the numbers

$$
[-3+-4=-7 \text { and }-3 \times-4=12] 12 x^{2}-
$$

$7 x+1=12 x^{2}-4 x-3 x+1$

$$
=4 x(3 x-1)-1(3 x-1)
$$

$$
=(4 x-1)(3 x-1)
$$

(ii) $\mathbf{2} \mathbf{x}^{\mathbf{2}}+\mathbf{7} \mathbf{x}+\mathbf{3}$ Solution:

Using the splitting the middle term method,
We have to find a number whose sum=7 and product $=2 \times 3=6$
We get 6 and 1 as the numbers
$[6+1=7$ and $6 \times 1=6]$

$$
2 x^{2}+7 x+3=2 x^{2}+6 x+1 x+3
$$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.4

$$
\begin{aligned}
& =2 x(x+3)+1(x+3) \\
& =(2 x+1)(x+3)
\end{aligned}
$$

(iii) $6 x^{2}+5 x-6$ Solution:

Using the splitting the middle term method,
We have to find a number whose sum=5 and product $=6 \times-6=-36$
We get -4 and 9 as the numbers
$[-4+9=5$ and $-4 \times 9=-36]$

$$
\begin{aligned}
6 x^{2}+5 x-6 & =6 x^{2}+9 x-4 x-6 \\
= & 3 x(2 x+3)-2(2 x+3) \\
= & (2 x+3)(3 x-2)
\end{aligned}
$$

(iv) $3 \mathrm{x}^{2}-\mathrm{x}-4$

Solution:
Using the splitting the middle term method,
We have to find a number whose sum $=-1$ and product $=3 \times-4=-12$
We get -4 and 3 as the numbers
$[-4+3=-1$ and $-4 \times 3=-12]$

$$
\begin{aligned}
3 x^{2}-x-4 & =3 x^{2}-x-4 \\
& =3 x^{2}-4 x+3 x-4 \\
& =x(3 x-4)+1(3 x-4) \\
& =(3 x-4)(x+1)
\end{aligned}
$$

5. Factorize:

(i) $x^{3}-2 x^{2}-x+2$ Solution:

Let $p(x)=x^{3}-2 x^{2}-x+2$
Factors of 2 are ± 1 and ± 2 By
trial method, we find that $\mathrm{p}(1)$
$=0$
So, $(x+1)$ is factor of $p(x)$
Now, $p(x)=x^{3}-2 x^{2}-x+2$
$\mathrm{p}(-1)=(-1)^{3}-2(-1)^{2}-(-1)+2$
$=-1-1+1+2$
$=0$
Therefore, $(x+1)$ is the factor of $p(x)$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.4

Now, Dividend $=$ Divisor \times Quotient + Remainder

$$
\begin{aligned}
(\mathrm{x}+1)\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right) & =(\mathrm{x}+1)\left(\mathrm{x}^{2}-\mathrm{x}-2 \mathrm{x}+2\right)=(\mathrm{x}+1)(\mathrm{x}(\mathrm{x}-1)-2(\mathrm{x}-1)) \\
& =(\mathrm{x}+1)(\mathrm{x}-1)(\mathrm{x}-2)
\end{aligned}
$$

(ii) $x^{3}-3 x^{2}-9 x-5$ Solution:

Let $p(x)=x^{3}-3 x^{2}-9 x-5$
Factors of 5 are ± 1 and ± 5 By
trial method, we find that
$\mathrm{p}(5)=0$
So, $(x-5)$ is factor of $p(x)$
Now,

$$
\begin{aligned}
p(x) & =x^{3}-3 x^{2}-9 x-5 \\
p(5) & =(5)^{3}-3(5)^{2}-9(5)-5 \\
& =125-75-45-5 \\
& =0
\end{aligned}
$$

Therefore, $(x-5)$ is the factor of $p(x)$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.4

$$
x^{2}+2 x+1
$$

0
Now, Dividend $=$ Divisor \times Quotient + Remainder

$$
\begin{aligned}
(x-5)\left(x^{2}+2 x+1\right) & =(x-5)\left(x^{2}+x+x+1\right) \\
= & (x-5)(x(x+1)+1(x+1))=(x-5)(x+1)(x+1)
\end{aligned}
$$

(iii) $\mathbf{x}^{\mathbf{3}}+\mathbf{1 3} \mathbf{x}^{2}+\mathbf{3 2 x} \mathbf{x}+\mathbf{2 0}$ Solution:

Let $p(x)=x^{3}+13 x^{2}+32 x+20$
Factors of 20 are $\pm 1, \pm 2, \pm 4, \pm 5, \pm 10$ and ± 20
By trial method, we find that $\mathrm{p}(-1)$
$=0$
So, $(x+1)$ is factor of $p(x)$ Now,

$$
\begin{aligned}
\mathrm{p}(\mathrm{x}) & =\mathrm{x}^{3}+13 \mathrm{x}^{2}+32 \mathrm{x}+20 \\
\mathrm{p}(-1) & =(-1)^{3}+13(-1)^{2}+32(-1)+20 \\
& =-1+13-32+20 \\
& =0
\end{aligned}
$$

Therefore, $(x+1)$ is the factor of $p(x)$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.4

0
Now, Dividend $=$ Divisor \times Quotient + Remainder

$$
\begin{aligned}
(x+1)\left(x^{2}+12 x+20\right) & =(x+1)\left(x^{2}+2 x+10 x+20\right) \\
& =(x+1) x(x+2)+10(x+2) \\
& =(x+1)(x+2)(x+10)
\end{aligned}
$$

(iv) $\mathbf{2} \mathbf{y}^{\mathbf{3}}+\mathbf{y}^{\mathbf{2}} \mathbf{- 2} \mathbf{y}-\mathbf{1}$ Solution:

Let $p(y)=2 y^{3}+y^{2}-2 y-1$ Factors $=$ $2 \times(-1)=-2$ are ± 1 and ± 2 By trial method, we find that $\mathrm{p}(1)=0$
So, $(\mathrm{y}-1)$ is factor of $\mathrm{p}(\mathrm{y})$
Now,

$$
\begin{aligned}
p(y) & =2 y^{3}+y^{2}-2 y-1 \\
p(1) & =2(1)^{3}+(1)^{2}-2(1)-1 \\
& =2+1-2 \\
& =0
\end{aligned}
$$

Therefore, $(y-1)$ is the factor of $p(y)$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.4

Now, Dividend $=$ Divisor \times Quotient + Remainder

$$
\begin{aligned}
(\mathrm{y}-1)\left(2 \mathrm{y}^{2}+3 \mathrm{y}+1\right) & =(\mathrm{y}-1)\left(2 \mathrm{y}^{2}+2 \mathrm{y}+\mathrm{y}+1\right) \\
& =(\mathrm{y}-1)(2 \mathrm{y}(\mathrm{y}+1)+1(\mathrm{y}+1)) \\
& =(\mathrm{y}-1)(2 \mathrm{y}+1)(\mathrm{y}+1)
\end{aligned}
$$

EDUGRロSS

WISDOMISINE KNロWLEDEE NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.5

1. Use suitable identities to find the following products:
(i) $(x+4)(x+10)$ Solution:

Using the identity, $(x+a)(x+b)=x^{2}+(a+b) x+a b$
[Here, $\mathrm{a}=4$ and $\mathrm{b}=10$]
We get,

$$
\begin{aligned}
(x+4)(x+10) & =x^{2}+(4+10) x+(4 \times 10) \\
& =x^{2}+14 x+40
\end{aligned}
$$

(ii) $(x+8)(x-10)$

Solution:
Using the identity, $(x+a)(x+b)=x^{2}+(a+b) x+a b$
[Here, $a=8$ and $b=-10$]
We get,

$$
\begin{gathered}
(x+8)(x-10)=x^{2}+(8+(-10)) x+(8 \times(-10))=x^{2}+(8-10) x-80 \\
=x^{2}-2 x-80
\end{gathered}
$$

(iii) $(3 x+4)(3 x-5)$

Solution:
Using the identity, $(x+a)(x+b)=x^{2}+(a+b) x+a b$
[Here, $x=3 x, a=4$ and $b=-5$]
We get,

$$
\begin{aligned}
(3 x+4)(3 x-5) & =(3 x)^{2}+4+(-5) 3 x+4 \times(-5) \\
& =9 x^{2}+3 x(4-5)-20 \\
& =9 x^{2}-3 x-20
\end{aligned}
$$

(iv) $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$

Solution:
Using the identity, $(x+y)(x-y)=x^{2}-y^{2}$
[Here, $x=y^{2}$ and $y=\frac{3}{2}$]
We get,

$$
\begin{aligned}
\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right) & =\left(y^{2}\right)^{2}-\left(\frac{3}{2}\right)^{2} \\
& =y^{4}-\frac{9}{4}
\end{aligned}
$$

2. Evaluate the following products without multiplying directly:
(i) $\mathbf{1 0 3 \times 1 0 7}$ Solution:

$$
103 \times 107=(100+3) \times(100+7)
$$

Using identity, $[(x+a)(x+b)=x 2+(a+b) x+a b$

Exercise 2.5

Here, $x=100$
$a=3$
b=7
We get, $103 \times 107=(100+3) \times(100+7)$

$$
\begin{aligned}
& \left.=(100)^{2}+(3+7) 100+(3 \times 7)\right) \\
& =10000+1000+21 \\
& =11021
\end{aligned}
$$

(ii) 95×96

Solution:
$95 \times 96=(100-5) \times(100-4)$
Using identity, $\left[(x-a)(x-b)=x^{2}+(a+b) x+a b\right.$ Here, $x=100$
$a=-5$
$b=-4$
We get, $95 \times 96=(100-5) \times(100-4)$

$$
\begin{aligned}
& =(100)^{2}+100(-5+(-4))+(-5 \times-4) \\
& =10000-900+20 \\
& =9120
\end{aligned}
$$

(iii) 104×96 Solution:
$104 \times 96=(100+4) \times(100-4)$
Using identity, $\left[(a+b)(a-b)=a^{2}-b^{2}\right]$
Here, $\quad a=100$
$\mathrm{b}=4$
We get, $104 \times 96=(100+4) \times(100-4)$

$$
\begin{aligned}
& =(100)^{2}-(4)^{2} \\
& =10000-16 \\
& =9984
\end{aligned}
$$

3. Factorize the following using appropriate identities:
(i) $9 x^{2}+6 x y+y^{2}$

Solution:
$9 x^{2}+6 x y+y^{2}=(3 x)^{2}+(2 \times 3 x \times y)+y^{2}$
Using identity, $x^{2}+2 x y+y^{2}=(x+y)^{2}$
Here, $\quad x=3 x$
$y=y$

Exercise 2.5

$$
\begin{aligned}
9 x^{2}+6 x y+y^{2}=(3 x)^{2} & +(2 \times 3 x x y)+y^{2} \\
& =(3 x+y)^{2} \\
& =(3 x+y)(3 x+y)
\end{aligned}
$$

(ii) $\mathbf{4} \mathbf{y}^{\mathbf{2}} \mathbf{- 4 y + 1}$ Solution:

$$
4 y^{2}-4 y+1=(2 y)^{2}-(2 \times 2 y \times 1)+12
$$

Using identity, $x^{2}-2 x y+y^{2}=(x-y)^{2}$
Here, $\quad x=2 y$
$\mathrm{y}=1$
$4 y^{2}-4 y+1=(2 y)^{2}-(2 \times 2 y \times 1)+1^{2}$

$$
=(2 \mathrm{y}-1)^{2}
$$

$$
=(2 y-1)(2 y-1)
$$

(iii) $x^{2}-\frac{y^{2}}{100}$

Solution:

$$
\mathrm{x}^{2}-\frac{y^{2}}{100}=\mathrm{x}^{2}-\left(\frac{y}{10}\right)^{2}
$$

Using identity, $x^{2}-y^{2}=(x-y)(x y)$
Here,

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x} \\
& \mathrm{y}=\frac{y}{10}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{x}^{2}-\frac{y^{2}}{100} & =\mathrm{x}^{2}-\left(\frac{y}{10}\right)^{2} \\
& =\left(\mathrm{x}-\frac{y}{10}\right)\left(\mathrm{x}+\frac{y}{10}\right)
\end{aligned}
$$

4. Expand each of the following, using suitable identities:
(i) $(x+2 y+4 z)^{2}$
(ii) $(2 x-y+z)^{2}$
(iii) $(-2 x+3 y+2 z)^{2}$
(iv) $(\mathbf{3 a}-7 b-c)^{2}$
(v) $\left(\begin{array}{l}- \\ 1 \\ 12 x+5 y-3 z\end{array}\right)^{2}$
(vi) $\left(\frac{1}{4}--\frac{b}{2}+1\right)^{2}$

Solutions:

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.5

(i) $(x+2 y+4 z)^{2}$

Solution:
Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $x=x y=2 y$

$$
\begin{aligned}
\mathrm{z}=4 \mathrm{z} \\
\begin{aligned}
(\mathrm{x}+2 \mathrm{y}+4 \mathrm{z})^{2} & = \\
& \mathrm{x}^{2}+(2 \mathrm{y})^{2}+(4 \mathrm{z})^{2}+(2 \times x \times 2 \mathrm{y})+(2 \times 2 \mathrm{y} \times 4 \mathrm{z})+(2 \times 4 \mathrm{z} \times x) \\
& =
\end{aligned} \mathrm{x}^{2}+4 \mathrm{y}^{2}+16 \mathrm{z}^{2}+4 \mathrm{xy}+16 \mathrm{yz}+8 \mathrm{xz}
\end{aligned}
$$

(ii) $(\mathbf{2 x}-\mathbf{y}+\mathrm{z})^{\mathbf{2}}$ Solution:

Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $\mathrm{x}=2 \mathrm{x}$

$$
\begin{aligned}
& \mathrm{y}=-\mathrm{y} \mathrm{z}=\mathrm{z} \\
& \begin{aligned}
(2 \mathrm{x}-\mathrm{y}+\mathrm{z})^{2} & =(2 \mathrm{x})^{2}+(-\mathrm{y})^{2}+\mathrm{z}^{2}+(2 \times 2 \mathrm{x} \times-\mathrm{y})+(2 \times-\mathrm{y} \times \mathrm{z})+(2 \times \mathrm{z} \times 2 \mathrm{x}) \\
& =4 \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}-4 \mathrm{xy}-2 \mathrm{yz}+4 \mathrm{xz}
\end{aligned}
\end{aligned}
$$

(iii) $\quad(-2 x+3 y+2 z)^{2}$ Solution:

Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $x=-2 x$

$$
y=3 y z=2 z
$$

$(-2 x+3 y+2 z)^{2}=(-2 x)^{2}+(3 y)^{2}+(2 z)^{2}+(2 x-2 x \times 3 y)+(2 \times 3 y \times 2 z)+(2 \times 2 z \times-2 x)$ $=4 x^{2}+9 y^{2}+4 z^{2}-12 x y+12 y z-8 x z$
(iv) $(\mathbf{3 a}-\mathbf{7 b}-\mathbf{c})^{\mathbf{2}}$ Solution:

Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $x=3 a y=$

$$
-7 \mathrm{~b} \mathrm{z}=
$$

$$
-\mathrm{c}
$$

$(3 \mathrm{a}-7 \mathrm{~b}-\mathrm{c})^{2}=(3 \mathrm{a})^{2}+(-7 \mathrm{~b})^{2}+(-\mathrm{c})^{2}+(2 \times 3 \mathrm{a} \times-7 \mathrm{~b})+(2 \mathrm{x}-7 \mathrm{~b} \times-\mathrm{c})+(2 \times-\mathrm{c} \times 3 \mathrm{a})$ $=9 a^{2}+49 b^{2}+c^{2}-42 a b+14 b c-6 c a$
(v) $\quad(-2 x+5 y-3 z)^{2}$

Solution:
Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$

Exercise 2.5

Here, $x=-2 x y=$
$5 \mathrm{y} \mathrm{z}=-$
$3 z$

$$
\begin{aligned}
(-2 \mathrm{x}+5 \mathrm{y}-3 \mathrm{z})^{2} & =(-2 \mathrm{x})^{2}+(5 \mathrm{y})^{2}+(-3 \mathrm{z})^{2}+(2 \mathrm{x}-2 \mathrm{x} \times 5 \mathrm{y})+(2 \times 5 \mathrm{y} \times-3 \mathrm{z})+(2 \mathrm{x}-3 \mathrm{z} \times-2 \mathrm{x}) \\
& =4 \mathrm{x}^{2}+25 \mathrm{y}^{2}+9 \mathrm{z}^{2}-20 \mathrm{xy}-30 \mathrm{yz}+12 \mathrm{zx}
\end{aligned}
$$

(vi) $\quad\left(\frac{1}{4} \mathrm{a}-\frac{1}{2} \mathrm{~b}+1\right)^{2}$

Solution:

Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $x=\frac{1}{4} a y=$

$$
\begin{aligned}
& \quad-\frac{1}{2} b \\
& z=1 \\
&\left(\frac{1}{4} a-\frac{1}{2} b+1\right)^{2}=\left(\frac{1}{4} a\right)^{2}+\left(-\frac{1}{2} b\right)^{2}+(1)^{2}+\left(2 \times \frac{1}{4} a \times-\frac{1}{2} b\right)+\left(2 \times-\frac{1}{2} b \times 1\right)+\left(2 \times 1 \times \frac{1}{4} a\right) \\
&=\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1^{2}-\frac{2}{8} a b-\frac{2}{2} b+\frac{2}{4} a \\
&=\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1-\frac{1}{4} a b-b+\frac{1}{2} a
\end{aligned}
$$

5. Factorize:

(i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$
(ii) $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{ } 2 y z-8 x z$ Solutions:
(i) $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$

Solution:

Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
We can say that, $x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x=(x+y+z)^{2}$

$$
\begin{aligned}
4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z=(2 x)^{2} & +(3 y)^{2}+(-4 z)^{2}+(2 \times 2 x \times 3 y)+(2 \times 3 y \times-4 z)+(2 \times-4 z \times 2 x) \\
& =(2 x+3 y-4 z)^{2} \\
& =(2 x+3 y-4 z)(2 x+3 y-4 z)
\end{aligned}
$$

(ii) $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2 y z}-8 x z$

Solution:
Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
We can say that, $x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x=(x+y+z)^{2}$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.5

6. Write the following cubes in expanded form:
(i) $(2 x+1)^{3}$
(ii) ($\mathbf{2}_{3} \quad$ a-3b)
(iii) $(-x+1)^{3}$
(iv) $\left(x_{3}^{-2}-\right)^{3}$

Solutions:
(i) $(2 x+1)^{3}$

Solution:
Using identity, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$

$$
\begin{aligned}
(2 \mathrm{x}+1)^{3} & =(2 \mathrm{x})^{3}+1^{3}+(3 \times 2 \mathrm{x} \times 1)(2 \mathrm{x}+1) \\
& =8 \mathrm{x}^{3}+1+6 \mathrm{x}(2 \mathrm{x}+1) \\
& =8 \mathrm{x}^{3}+12 \mathrm{x}^{2}+6 \mathrm{x}+1
\end{aligned}
$$

(ii) $(2 a-3 b)^{3}$

Solution:
Using identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$(2 a-3 b)^{3}=(2 a)^{3}-(3 b)^{3}-(3 \times 2 a \times 3 b)(2 a-3 b)$

$$
=8 a^{3}-27 b^{3}-18 a b(2 a-3 b)
$$

$$
=8 a^{3}-27 b^{3}-36 a^{2} b+54 a b^{2}
$$

(iii) $\left(\frac{3}{2} x+1\right)^{3}$

Solution:
Using identity, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$

$$
\begin{aligned}
\left(\frac{3}{2} x+1\right)^{3} & =\left(\frac{3}{2} x\right)^{3}+1^{3}+\left(3 \times \frac{3}{2} x \times 1\right)(\\
& \left.{ }_{2} \mathrm{x}+1\right)=\frac{27}{8} x^{3}+1+\frac{9}{2} x\left(\frac{3}{2} x+1\right) \\
& =\frac{27}{8} x^{3}+1+\frac{27}{4} x^{2}+\frac{9}{2} x \\
& =\frac{27}{8} x^{3}+\frac{27}{4} x^{2}+\frac{9}{2} x+1
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \\
& =(-\sqrt{2 x})^{2}+(y)^{2}+(2 \sqrt{2} z)^{2}+(2 x-\sqrt{2} x \times y)+(2 \times y \times 2 \sqrt{2} z)+(2 \times 2 \sqrt{2 z}-\sqrt{2} x) \\
& =(-\sqrt{2} x+y+2 \sqrt{2} z)^{2} \\
& =(-\sqrt{2 x} x+y+2 \sqrt{2 z})(-\sqrt{2 x}+y+2 \sqrt{2} z)
\end{aligned}
$$

Exercise 2.5

(iv) $\left(x-\frac{2}{3} y\right)^{3}$

Solution:
Using identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$

$$
\begin{aligned}
\left(\mathrm{x}-\frac{2}{3} \mathrm{y}\right)^{3} & =(\mathrm{x})^{3}-\left(\frac{2}{3} \mathrm{y}\right)^{3}-\left(3 \times \mathrm{x} \times \frac{2}{3} \mathrm{y}\right)\left(\mathrm{x}-\frac{2}{3} \mathrm{y}\right) \\
& =(\mathrm{x})^{3}-\frac{8}{27} \mathrm{y}^{3}-2 \mathrm{xy}\left(\mathrm{x}-\frac{2}{3} \mathrm{y}\right) \\
& =(\mathrm{x})^{3}-\frac{8}{27} \mathrm{y}^{3}-2 \mathrm{x}^{2} \mathrm{y}+\frac{4}{3} \mathrm{x} y^{2}
\end{aligned}
$$

7. Evaluate the following using suitable identities:
(i) $(99)^{3}$
(ii) $(102)^{3}$
(iii)(998) ${ }^{3}$

Solutions: (i)
(99) ${ }^{3}$

Solution:
We can write 99 as $100-1$
Using identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$

$$
\begin{aligned}
(99)^{3} & =(100-1)^{3} \\
& =(100)^{3}-1^{3}-(3 \times 100 \times 1)(100-1) \\
& =1000000-1-300(100-1) \\
& =1000000-1-30000+300 \\
& =970299
\end{aligned}
$$

(ii) (102) ${ }^{3}$ Solution:

We can write 102 as $100+2$
Using identity, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$

$$
\begin{aligned}
(100+2)^{3} & =(100)^{3}+2^{3}+(3 \times 100 \times 2)(100+2) \\
& =1000000+8+600(100+2) \\
& =1000000+8+60000+1200 \\
& =1061208
\end{aligned}
$$

(iii)(998) ${ }^{3}$ Solution:

We can write 99 as 1000-2
Using identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$

$$
\begin{aligned}
(998)^{3} & =(1000-2)^{3} \\
& =(1000)^{3}-2^{3}-(3 \times 1000 \times 2)(1000-2) \\
& =1000000000-8-6000(1000-2) \\
& =1000000000-8-6000000+12000
\end{aligned}
$$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Page: 49

$$
=994011992
$$

Exercise 2.5

8. Factorise each of the following:

(i) $8 \mathrm{a}^{3}+\mathrm{b}^{3}+12 \mathrm{a}^{2} b+6 \mathrm{ab}^{2}$
(ii) $8 \mathbf{a}^{3}-b^{3}-12 a^{2} b+6 a b^{2}$
(iii) $27-125 a^{3}-135 a+225 a^{2}$ (iv) $64 a^{3}-27 b^{3}-144 a^{2} b+108 a^{2}$ (v) $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$

Solutions:
(i) $\mathbf{8 a}^{\mathbf{3}}+\mathbf{b}^{\mathbf{3}}+\mathbf{1 2} \mathbf{a}^{\mathbf{2}} \mathbf{b}+\mathbf{6} \mathbf{a b}^{\mathbf{2}}$ Solution:

The expression, $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$ can be written as $(2 a)^{3}+b^{3}+3(2 a)^{2} b+3(2 a)(b)^{2}$

$$
\begin{aligned}
8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2} & =(2 a)^{3}+b^{3}+3(2 a)^{2} b+3(2 a)(b)^{2} \\
& =(2 a+b)^{3} \\
& =(2 a+b)(2 a+b)(2 a+b)
\end{aligned}
$$

Here, the identity, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$ is used.
(ii) $\mathbf{8} \mathbf{a}^{\mathbf{3}}-\mathbf{b}^{\mathbf{3}}-\mathbf{1 2 a} \mathbf{a}^{\mathbf{2}} \mathbf{b}+\mathbf{6} \mathbf{a b}^{\mathbf{2}}$ Solution:

The expression, $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$ can be written as $(2 a)^{3}-b^{3}-3(2 a)^{2} b+3(2 a)(b)^{2}$

$$
\begin{aligned}
8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2} & =(2 a)^{3}-b^{3}-3(2 a)^{2} b+3(2 a)(b)^{2} \\
& =(2 a-b)^{3} \\
& =(2 a-b)(2 a-b)(2 a-b)
\end{aligned}
$$

Here, the identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$ is used.

(iii) $27-125 a^{3}-\mathbf{1 3 5 a}+225 a^{2}$

Solution:
The expression, $27-125 \mathrm{a}^{3}-135 \mathrm{a}+225 \mathrm{a}^{2}$ can be written as $3^{3}-(5 \mathrm{a})^{3}-3(3)^{2}(5 \mathrm{a})+3(3)(5 \mathrm{a})^{2} 27-$

$$
\begin{aligned}
125 \mathrm{a}^{3}-135 \mathrm{a}+225 \mathrm{a}^{2}=3^{3} & -(5 \mathrm{a})^{3}-3(3)^{2}(5 \mathrm{a})+3(3)(5 \mathrm{a})^{2} \\
& =(3-5 \mathrm{a})^{3} \\
& =(3-5 a)(3-5 \mathrm{a})(3-5 \mathrm{a})
\end{aligned}
$$

Here, the identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$ is used.
(iv) 64a3-27b3-144a ${ }^{2} b+108 a^{2}$

Solution:
The expression, $64 a^{3}-27 b^{3}-144 a^{2} b+108 a^{2}$ can be written as $(4 a)^{3}-(3 b)^{3}-3(4 a)^{2}(3 b)+3(4 a)(3 b)^{2}$

$$
\begin{aligned}
& 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}=(4 a)^{3}-(3 b)^{3}-3(4 a)^{2}(3 b)+3(4 a)(3 b)^{2} \\
&(4 a-3 b)^{3} \\
&=(4 a-3 b)(4 a-3 b)(4 a-3 b)
\end{aligned}
$$

Here, the identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$ is used.

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Page: 49

Exercise 2.5

(v) $\mathbf{2 7} \mathbf{p}^{3}-\frac{1}{216}-\frac{9}{2} \mathbf{p}^{2}+\frac{1}{4}$ p Solution:
The expression, $27 \mathrm{p}^{3}-\frac{1}{216}-\frac{9}{2} \mathrm{p}^{2}+\frac{1}{4} \mathrm{p}$ can be written as $(3 \mathrm{p})^{3}-\left(\frac{1}{6}\right)^{3}-3(3 \mathrm{p})^{2}\left(\frac{1}{6}\right)+3(3 \mathrm{p})\left(\frac{1}{6}\right)^{2}$

$$
\begin{aligned}
27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p & =(3 p)^{3}-\left(\frac{1}{6}\right)^{3}-3(3 p)^{2}\left(\frac{1}{6}\right)+3(3 p)\left(\frac{1}{6}\right)^{2} \\
& =\left(3 p-\frac{1}{6}\right)^{3} \\
& =\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)
\end{aligned}
$$

9. Verify:

(i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
(ii) $\mathbf{x}^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

Solutions:
(i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

We know that, $\quad(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$

$$
\begin{aligned}
& \Rightarrow x^{3}+y^{3}=(x+y)^{3}-3 x y(x+y) \\
& \Rightarrow x^{3}+y^{3}=(x+y)\left[(x+y)^{2}-3 x y\right]
\end{aligned}
$$

Taking $(x+y)$ common $\Rightarrow x^{3}+y^{3}=(x+y)\left[\left(x^{2}+y^{2}+2 x y\right)-3 x y\right]$

$$
\Rightarrow x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}-x y\right)
$$

(ii) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

We know that, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$

$$
\begin{aligned}
& \Rightarrow x^{3}-y^{3}=(x-y)^{3}+3 x y(x-y) \\
& \Rightarrow x^{3}-y^{3}=(x-y)\left[(x-y)^{2}+3 x y\right]
\end{aligned}
$$

Taking $(x+y)$ common $\Rightarrow x^{3}-y^{3}=(x-y)\left[\left(x^{2}+y^{2}-2 x y\right)+3 x y\right]$

$$
\Rightarrow x^{3}+y^{3}=(x-y)\left(x^{2}+y^{2}+x y\right)
$$

10. Factorize each of the following:
(i) $\mathbf{2 7} \mathbf{y}^{\mathbf{3}}+\mathbf{1 2 5} \mathbf{z}^{3}$
(ii) $64 m^{3}-343 n^{3}$

Solutions:
(i) $27 y^{3}+125 z^{3}$

$$
3 \quad 3 \begin{aligned}
& x^{3}+y^{3}=(x+y)\left(x^{2} \quad\right. \text { We know that, }\left.-x y+y^{2}\right) \\
& \therefore 27 y+125 z=(3 y)+(5 z) \\
&=(3 y+5 z)\left[(3 y)^{2}-(3 y)(5 z)+(5 z)^{2}\right]
\end{aligned}
$$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Page: 49

(ii) $64 m^{3}-343 n^{3}$

$$
\begin{aligned}
& 3 \\
& 3
\end{aligned} \quad \begin{gathered}
64 \mathrm{~m}^{3}-343 \mathrm{n}^{3} \\
3
\end{gathered} \quad \begin{aligned}
& \text { The expression, } \\
& 64 \mathrm{~m}-343 \mathrm{n} \\
&
\end{aligned}
$$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

We know that, $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

Exercise 2.5

Page: 49

$$
\begin{aligned}
\therefore 64 m-343 n & =(4 m)-(7 n) \\
& =(4 m+7 n)\left[(4 m)^{2}+(4 m)(7 n)+(7 n)^{2}\right] \\
& =(4 m+7 n)\left(16 m^{2}+28 m n+49 n^{2}\right)
\end{aligned}
$$

11. Factorise : $\mathbf{2 7} \mathbf{x}^{\mathbf{3}}+\mathrm{y}^{\mathbf{3}}+\mathrm{z}^{\mathbf{3}}-\mathbf{9 x y z}$

Solution:
The expression $27 x^{3}+y^{3}+z^{3}-9 x y z$ can be written as $(3 x)^{3}+y^{3}+z^{3}-3(3 x)(y)(z)$

$$
27 x^{3}+y^{3}+z^{3}-9 x y z \quad=(3 x)^{3}+y^{3}+z^{3}-3(3 x)(y)(z)
$$

We know that, $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$

$$
\begin{aligned}
\therefore 27 x^{3}+y^{3}+z^{3}-9 x y z & =(3 x)^{3}+y^{3}+z^{3}-3(3 x)(y)(z) \\
& =(3 x+y+z)(3 x)^{2}+y^{2}+z^{2}-3 x y-y z-3 x z \\
& =(3 x+y+z)\left(9 x^{2}+y^{2}+z^{2}-3 x y-y z-3 x z\right)
\end{aligned}
$$

12. Verify that:

$$
x^{3+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]}
$$

Solution: We
know that,

$$
\begin{aligned}
x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z) & \left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right) \\
\Rightarrow x^{3}+y^{3}+z^{3}-3 x y z \quad & =\frac{1}{2} x(x+y+z)\left[2\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)\right] \\
& =\frac{1}{2}(x+y+z)\left(2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 x z\right) \\
& =\frac{1}{2}(x+y+z)\left[\left(x^{2}+y^{2}-2 x y\right)+\left(y^{2}+z^{2}-2 y z\right)+\left(x^{2}+z^{2}-2 x z\right)\right] \\
& =\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]
\end{aligned}
$$

13. If $x+y+z=0$, show that $x^{3}+y^{3}+z^{3}=3 x y z$.

Solution:
We know that, $\quad x^{3}+y^{3}+z^{3}=3 x y z=(x+y+z)\left(x^{2}+\right.$ $\left.y^{2}+z^{2}-x y-y z-x z\right) \quad$ Now, according to the question, let $(x+y+z)=0$,
then, $\quad x-{ }_{3}^{3}+y_{3}^{3}+z_{3}^{3}=3 x y z=(0)\left(x^{2}+y^{2}+z^{2} \quad x y-y z-x z\right)$

$$
\Rightarrow x+y+z-3 x y z=0
$$

$$
\Rightarrow \quad x^{3}+y^{3}+z^{3}=3 x y z
$$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Hence Proved
14. Without actually calculating the cubes, find the value of each of the following: (i) $(-12)^{3}+(7)^{3}+(5)^{3}$
(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

Exercise 2.5

(i) $(-12)^{3}+(7)^{3}+(5)^{3}$ Solution:
$(-12)^{3}+(7)^{3}+(5)^{3}$
Let $a=-12$
b= 7
$\mathrm{c}=5$
We know that if $x+y+z=0$, then $x^{3}+y^{3}+z^{3}=3 x y z$.
Here, $-12+7+5=0$
$\therefore(-12)^{3}+(7)^{3}+(5)^{3} \quad=3 \mathrm{xyz}$

$$
=3 \times-12 \times 7 \times 5
$$

$$
=-1260
$$

(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

Solution:
$(28)^{3}+(-15)^{3}+(-13)^{3}$
Let $a=28 b=$
$-15 c=-13$
We know that if $x+y+z=0$, then $x^{3}+y^{3}+z^{3}=3 x y z$.
Here, $x+y+z=28-15-13=0$

$$
\begin{aligned}
\therefore(28)^{3}+(-15)^{3}+(-13)^{3} & =3 \mathrm{xyz} \\
& =0+3(28)(-15)(-13) \\
& =16380
\end{aligned}
$$

15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:
(i) Area : 25a ${ }^{\mathbf{2}} \mathbf{- 3 5 a}+\mathbf{1 2}$
(ii) Area : 35y $\mathbf{y}^{2}+13 y-12$

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Solution:
(i) Area : $25 \mathrm{a}^{2}-35 \mathrm{a}+12$

Using the splitting the middle term method,
We have to find a number whose sum $=-35$ and product $=25 \times 12=300$
We get -15 and -20 as the numbers
$[-15+-20=-35$ and $-3 \times-4=300]$

Exercise 2.5

$$
25 a^{2}-35 a+12=25 a^{2}-15 a-20 a+12
$$

$$
=5 \mathrm{a}(5 \mathrm{a}-3)-4(5 \mathrm{a}-3)
$$

$$
=(5 a-4)(5 a-3)
$$

Possible expression for length $=5 \mathrm{a}-4$
Possible expression for breadth $=5 \mathrm{a}-3$
(ii) Area : $35 y^{2}+13 y-12$

Using the splitting the middle term method,
We have to find a number whose sum= 13 and product $=35 \times-12=420$
We get -15 and 28 as the numbers

$$
\begin{array}{r}
35 y^{2}+13 y-12=35 y^{2}-15 y+28 y-12=5 y(7 y- \\
3)+4(7 y-3) \\
=(5 y+4)(7 y-3)
\end{array}
$$

Possible expression for length $\quad=(5 y+4)$
Possible expression for breadth $=(7 y-3)$
16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?
(i) Volume : $3 \mathrm{x}^{2}-12 \mathrm{x}$
(ii) Volume : $12 \mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k}$

Solution:
(i) Volume : $3 x^{2}-12 x$
$3 x^{2}-12 x$ can be written as $3 x(x-4)$ by taking $3 x$ out of both the terms.
Possible expression for length $=3$
Possible expression for breadth $=\mathrm{x}$
Possible expression for height $=(x-4)$
(ii) Volume : $12 \mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k}$
$12 \mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k}$ can be written as $4 \mathrm{k}\left(3 \mathrm{y}^{2}+2 \mathrm{y}-5\right)$ by taking 4 k out of both the terms.

$$
12 k y^{2}+8 k y-20 k=4 k\left(3 y^{2}+2 y-5\right)
$$

[Here, $3 y^{2}+2 y-5$ can be written as $3 y^{2}+5 y-3 y-5$ using splitting the middle term method.]

$$
\begin{aligned}
& =4 \mathrm{k}\left(3 y^{2}+5 \mathrm{y}-3 \mathrm{y}-5\right) \\
& =4 \mathrm{k}[y(3 \mathrm{y}+5)-1(3 \mathrm{y}+5)] \\
& =4 \mathrm{k}(3 \mathrm{y}+5)(\mathrm{y}-1)
\end{aligned}
$$

Possible expression for length $=4 \mathrm{k}$
Possible expression for breadth $=(3 y+5)$
Possible expression for height $=(y-1)$

