

Exercise 2.1 Page: 32

1. Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer.

(i)
$$4x^2 - 3x + 7$$
 Solution:

The equation $4x^2 - 3x + 7$ can be written as $4x^2 - 3x^1 + 7x^0$

Since x is the only variable in the given equation and the powers of x (i.e., 2, 1 and 0) are whole numbers, we can say that the expression $4x^2 - 3x + 7$ is a polynomial in one variable.

(ii)
$$y^2 + \sqrt{2}$$
 Solution:

The equation $y^2 + \sqrt{2}$ can be written as $y^2 + \sqrt{2}y^0$

Since y is the only variable in the given equation and the powers of y (i.e., 2 and 0) are whole numbers, we can say that the expression $y^2 + \sqrt{2}$ is a polynomial in one variable.

(iii)
$$3\sqrt{t} + t\sqrt{2}$$
 Solution:

The equation $3\sqrt{t} + t\sqrt{2}$ can be written as $3t^{\frac{1}{2}} + \sqrt{2}t$

Though, t is the only variable in the given equation, the powers of $t^{(i.e., \frac{1}{2})}$ is not a whole number. Hence, we can say that the expression $3\sqrt{t} + t\sqrt{2}$ is **not** a polynomial in one variable.

(iv)
$$y + 2$$

y

Solution:

2

The equation y + y can be written as $y+2y^{-1}$

Though, y is the only variable in the given equation, the powers of y (i.e.,-1) is not a whole number.

Hence, we can say that the expression y + y is **not** a polynomial in one variable.

(v)
$$x^{10} + y^3 + t^{50}$$

Solution:

Here, in the equation $x^{10} + y^3 + t^{50}$

Though, the powers, 10, 3, 50, are whole numbers, there are 3 variables used in the expression $x^{10} + y^3 + t^{50}$. Hence, it is **not** a polynomial in one variable.

Exercise 2.1 Page: 32

2. Write the coefficients of x^2 in each of the following:

(i) $2 + x^2 + x$ Solution:

The equation $2 + x^2 + x$ can be written as $2 + (1) x^2 + x$

We know that, coefficient is the number which multiplies the variable. Here, the number that multiplies the variable x^2 is $1 ilde{\cdot}$, the coefficients of x^2 in $2 + x^2 + x$ is 1.

(ii) $2 - x^2 + x^3$ Solution:

The equation $2 - x^2 + x^3$ can be written as $2 + (-1) x^2 + x^3$

We know that, coefficient is the number (along with its sign,i.e., - or +) which multiplies the variable.

Here, the number that multiplies the variable x^2 is $-1 \div$, the coefficients of x^2 in $2 - x^2 + x^3$ is -1.

(iii)
$$\frac{\pi}{2}x^2 + x$$

Solution:

The equation $\frac{\pi}{2}x^2 + x$ can be written as $(\frac{\pi}{2})x^2 + x$

We know that, coefficient is the number (along with its sign,i.e., - or +) which multiplies the variable.

Here, the number that multiplies the variable x^2 is $\frac{\pi}{2}$. \therefore , the coefficients of x^2 in $\frac{\pi}{2}x^2 + x$ is $\frac{\pi}{2}$.

(iv)
$$\sqrt{2x}$$

1 Solution:

The equation $\sqrt{2x-1}$ can be written as $0x^2 + \sqrt{2x-1}$ [Since $0x^2$ is 0]

We know that, coefficient is the number (along with its sign,i.e., - or +) which multiplies the variable.

Here, the number that multiplies the variable x^2 is 0

 \therefore , the coefficients of x^2 in $\sqrt{2}x-1$ is 0.

3. Give one example each of a binomial of degree 35, and of a monomial of degree 100. Solution:

Binomial of degree 35: A polynomial having two terms and the highest degree 35 is called a binomial of degree 35

Eg.,
$$3x^{35}+5$$

Monomial of degree 100: A polynomial having one term and the highest degree 100 is called a monomial of degree 100

Eg., $4x^{100}$

4. Write the degree of each of the following polynomials:

Exercise 2.1 Page: 32

(i) $5x^3 + 4x^2 + 7x$

Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.

Here, $5x^3 + 4x^2 + 7x = 5x^3 + 4x^2 + 7x^1$

The powers of the variable x are: 3, 2, 1

 \therefore , the degree of $5x^3 + 4x^2 + 7x$ is 3 as 3 is the highest power of x in the equation.

(ii) $4 - y^2$ Solution:

The highest power of the variable in a polynomial is the degree of the polynomial. Here, in $4 - y^2$,

The power of the variable y is: 2

 \therefore , the degree of $4 - y^2$ is 2 as 2 is the highest power of y in the equation.

(iii) $5t - \sqrt{7}$

Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.

Here, in $5t - \sqrt{7}$,

The power of the variable y is: 1

 \therefore , the degree of $5t - \sqrt{7}$ is 1 as 1 is the highest power of y in the equation.

(iv) 3

Solution:

The highest power of the variable in a polynomial is the degree of the polynomial.

Here, $3=3 \times 1= 3 \times x^0$

The power of the variable here is: 0 :,

the degree of 3 is 0.

5. Classify the following as linear, quadratic and cubic polynomials:

Solution:

We know that,

Linear polynomial: A polynomial of degree one is called a linear polynomial.

Quadratic polynomial: A polynomial of degree two is called a quadratic polynomial. Cubic polynomial: A polynomial of degree three a cubic polynomial.

(i) $x^2 + x$

Solution:

The highest power of $x^2 + x$ is 2

 \therefore , the degree is 2

Hence, $x^2 + x$ is a quadratic polynomial

Exercise 2.1 Page: 32

(ii) $x-x^3$

Solution:

The highest power of $x - x^3$ is 3

: the degree is 3

Hence, $x - x^3$ is a cubic polynomial

(iii) $y + y^2 + 4$

Solution:

The highest power of $y + y^2 + 4$ is 2

:, the degree is 2

Hence, $y + y^2 + 4$ is a quadratic polynomial

(iv) 1 + x

Solution:

The highest power of 1 + x is 1

:, the degree is 1

Hence, 1 + x is a linear polynomial

(v) 3t

Solution:

The highest power of 3t is 1

:, the degree is 1

Hence, 3t is a linear polynomial

(vi) r^2

Solution:

The highest power of r^2 is 2

:, the degree is 2

Hence, r² is a quadratic polynomial

(vii) $7x^3$

Solution:

The highest power of $7x^3$ is 3

:, the degree is 3

Hence, $7x^3$ is a cubic polynomial

Exercise 2.1 Page: 32

Exercise 2.2 Page: 3

1. Find the value of the polynomial $(x)=5x-4x^2+3$

(i)
$$x=0$$
 (ii) $x=-1$ (iii)

$$\mathbf{x} = \mathbf{2}$$

Solution:

Let
$$f(x) = 5x-4x^2+3$$

(i) When
$$x=0$$

$$f(0)=5(0)+4(0)^2+3$$

(ii) When x=-1

$$f(x)=5x-4x^2+3$$

$$f(-1)=5(-1)$$
 $-4(-1)^2+3$

$$=-6$$

(iii) When $x=2 f(x)=5x-4x^2+3$

$$f(2)=5(2) -4(2)^2+3=10-16+3$$

=-3

2. Find p(0), p(1) and p(2) for each of the following polynomials:

(i) $p(y)=y^2-y+1$

$$p(y)=y^2-$$

Solution: y+1

$$p(0)=(0) - (0)+1=1 p(1)=(1)^2-$$

$$(1)+1=1$$
 $p(2)=(2)^2-(2)+1=3$

(ii) $p(t)=2+t+2t^2-t^3$

Solution:

$$2+t+2t^2-t^3 p(t)=$$

$$p(1)=2+1+2(1)^2-(1)^3=2+1+2-1=4 p(2)=2+2+2(2)^2-(2)^3=2+2+8-8=4$$

(iii) $p(x)=x^3$

$$p(x)=x^3$$

$$p(0)=(0)^3=0$$

$$p(1)=(1)^3=1$$
 $p(2)=(2)^3=8$

Exercise 2.2 Page: 35

(iv)
$$p(x)=(x-1)(x+1)$$

Solution: $p(x)=(x-1)(x+1)$
 $\therefore p(0)=(0-1)(0+1)=(-1)(1)=-1$ $p(1)=(1-1)(1+1)=0(2)=0$ $p(2)=(2-1)(2+1)=1(3)=3$

3. Verify whether the following are zeroes of the polynomial, indicated against them. (i)

$$p(x)=3x+1, x=-1$$

3

For,
$$x=-1$$
, $p(x)=3x+1$ 3

$$\therefore p(-\frac{1}{3})=3(-\frac{1}{3})+1=-1+1=0$$

$$\therefore -\frac{1}{3} \text{ is a zero of } p(x).$$

(ii)
$$p(x)=5x-\pi$$
, $x=4$

Solution: For, $x=4$
 $p(x)=5x-\pi$

$$\therefore p(\frac{4}{5}) = 5(\frac{4}{5}) - \pi = 4 - \pi$$

$$\therefore \frac{4}{5} \text{ is not a zero of } p(x).$$

(iii)
$$p(x)=x^2-1, x=1, -1$$
 Solution:
For, $p(x)=x^2-1, x=1$ $p(x)=x$ $p($

(iv)
$$p(x)=(x+1)(x-2), x=-1, 2$$
 Solution:
For, $x=-1,2$; $p(x)=(x+1)(x-2)$
 $\therefore p(-1)=(-1+1)(-1-2)$
 $=((0)(-3))=0$ $p(2)=(2+1)(2-2)=(3)(0)=0$
 $\therefore -1,2$ are zeros of $p(x)$.

(v)
$$p(x)=x^2$$
, $x=0$ Solution:

Page: 35

Exercise 2.2

For, x=0 $p(x)=x^2$ p(0)=0

 $\therefore 0$ is a zero of p(x).

(vi)
$$p(x)=lx+m, x=-m_l$$

Solution:

For,
$$x = \frac{\overline{l}}{l} m$$
; $p(x) = lx + m$
 $\therefore p(-\frac{m}{l}) = l(-\frac{m}{l}) + m = -m + m = 0$
 $\therefore -\frac{m}{l}$ is a zero of $p(x)$.

(vii)
$$p(x)=3x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$$

Solution:

For,
$$x = -\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$$
; $p(x) = 3x^2 - 1$

$$\therefore p(-\frac{1}{\sqrt{3}}) = 3(-\frac{1}{\sqrt{3}})^2 - 1 = 3(\frac{1}{3}) - 1 = 1 - 1 = 0$$

$$\therefore p(\frac{2}{\sqrt{3}}) = 3(\frac{2}{\sqrt{3}})^2 - 1 = 3(\frac{4}{3}) - 1 = 4 - 1 = 3 \neq 0$$

$$\therefore -\frac{1}{\sqrt{3}} \text{ is a zero of } p(x) \text{ but } ^2 = \frac{1}{\sqrt{3}} \text{ is not a zero of } p(x).$$

(viii)
$$p(x)=2x+1, x=1$$

Solution: For, x=1

$$p(x)=2x+1$$

$$\therefore p(\frac{1}{2}) = 2(\frac{1}{2}) + 1 = 1 + 1 = 2 \neq 0$$

 $\therefore \frac{1}{2}$ is not a zero of p(x).

4. Find the zero of the polynomial in each of the following cases:

(i)
$$p(x) = x + 5$$

Solution: p(x)=x+5

$$\Rightarrow$$
x+5=0

$$\Rightarrow$$
x=-5

 \therefore -5 is a zero polynomial of the polynomial p(x).

(ii)
$$p(x) = x - 5$$

WISDOMISING KNOWLEDGE

NCERT Solution For Class 9 Maths Chapter 2- Polynomials

Exercise 2.2 Page: 35

Solution:

$$p(x)=x-5$$

$$\Rightarrow$$
x-5=0

$$\Rightarrow$$
x=5

 \therefore 5 is a zero polynomial of the polynomial p(x).

$$(iii)p(x) = 2x + 5$$

Solution:

$$p(x)=2x+5$$

$$\Rightarrow 2x+5=0$$

$$\Rightarrow 2x = -5$$

$$\therefore \chi = -\frac{5}{2}$$

 $\therefore x = -\frac{5}{2}$ is a zero polynomial of the polynomial p(x).

(iv) p(x) = 3x - 2

Solution:
$$p(x)=3x-$$

$$\Rightarrow$$
3x-2=0

$$\Rightarrow$$
3x=2

$$\Rightarrow X = \frac{2}{3}$$

 $\frac{1}{3}$ is a zero polynomial of the polynomial p(x).

(v) p(x) = 3x

Solution:
$$p(x)=3x$$

$$\Rightarrow 3x=0 \Rightarrow x=0$$

 $\therefore 0$ is a zero polynomial of the polynomial p(x).

(vi) $p(x) = ax, a \neq 0$

Solution:
$$p(x)=ax$$

$$\Rightarrow ax=0 \Rightarrow x=0$$

x=0 is a zero polynomial of the polynomial p(x).

(vii) p(x) = cx + d, $c \neq 0$, c, d are real numbers.

Solution:
$$p(x) = cx + d$$

$$\Rightarrow$$
 cx + d =0

$$\Rightarrow x = \frac{-d}{c}$$

$$\begin{array}{c} c \\ -d \end{array}$$

 \therefore x= \overline{c} is a zero polynomial of the polynomial p(x).

Exercise 2.3 Page: 40

1. Find the remainder when x^3+3x^2+3x+1 is divided by

(i) x+1

Solution:
$$x+1=0 \Rightarrow x=-1$$

:Remainder 3 2
 $p(-1)=(-1)+3(-1)+3(-1)+1$
 $=-1+3-3+1$
 $=0$

(ii)
$$x^{-\frac{1}{2}}$$

Solution:
$$x-\frac{1}{2}=0$$

 $\Rightarrow x=\frac{1}{2}$

∴Remainder:

(iii) x

∴Remainde

r
$$p(0)=(0) + 3(0) + 3(0) + 1$$
=1

(iv) $x+\pi$

$$(v)$$
 5+2x

Page: 40

Solution:

$$5+2x=0$$

$$\Rightarrow 2x = -5$$

$$\Rightarrow x = -\frac{5}{2}$$

Exercise 2.3

Remainder:

2. Find the remainder when x^3-ax^2+6x-a is divided by x-a. Solution:

Let
$$p(x)=x^3-ax^2+6x-a$$

$$x-a=0$$
 $\therefore x=a$

Remainder:

$$p(a)= (a)^3 -a(a^2)+6(a)-a$$

= $a^3-a^3+6a-a=5a$

3. Check whether 7+3x is a factor of $3x^3+7x$.

Solution:

$$7+3x=0$$

$$\Rightarrow 3x = -7$$

$$\Rightarrow x = \frac{-7}{3} \text{ only if } 7+3x \text{ divides } 3x^3+7x \text{ leaving no remainder.}$$

Remainder:

$$\begin{array}{ccc}
\vdots & 7 & 7 & 343 & 49 \\
3(\frac{-}{3})^3 + 7(\frac{-}{3}) = -\frac{-}{9} + \frac{-49}{3} \\
& = \frac{-343 - (49)3}{9} \\
& = \frac{-343 - 147}{9} \\
& = \frac{-490}{9} \neq 0
\end{array}$$

 \therefore 7+3x is not a factor of 3x³+7x

Exercise 2.4

Page: 43

- 1. Determine which of the following polynomials has (x + 1) a factor:
- (i) x^3+x^2+x+1 Solution:

Let
$$p(x) = x^3 + x^2 + x + 1$$

The zero of x+1 is -1. [x+1=0 means x=-1] $p(-1)=(-1)^3+(-1)^2+(-1)+1$

$$=-1+1-1+1$$

=0

:. By factor theorem, x+1 is a factor of x^3+x^2+x+1

(ii) $x^4 + x^3 + x^2 + x + 1$ Solution:

Let
$$p(x) = x^4 + x^3 + x^2 + x + 1$$

The zero of x+1 is -1. $[x+1=0 \text{ means } x=-1] p(-1)=(-1)^4+(-1)^3+(-1)^2+(-1)+1$

$$=1-1+1-1+1$$

 $=1\neq 0$

:.By factor theorem, x+1 is a factor of $x^4 + x^3 + x^2 + x + 1$

(iii) $x^4 + 3x^3 + 3x^2 + x + 1$ Solution:

Let
$$p(x) = x^4 + 3x^3 + 3x^2 + x + 1$$

The zero of x+1 is -1.

$$p(-1)=(-1)4+3(-1)3+3(-1)2+(-1)+1$$

$$=1-3+3-1+1$$

$$=1\neq 0$$

..By factor theorem, x+1 is a factor of $x^4 + 3x^3 + 3x^2 + x + 1$

(iv) $x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$

Solution:

Let
$$p(x) = x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$$
 The zero of x+1 is -1.

$$p(-1)=(-1)^{3}-(-1)^{2}-(2+\sqrt{2})(-1)+\sqrt{2}$$

$$=-1-1+2+\sqrt{2}+\sqrt{2}$$

$$=2\sqrt{2}$$

:.By factor theorem, x+1 is not a factor of $x^3 - x^2 - (2 + \sqrt{2})x + \sqrt{2}$

Exercise 2.4

Page: 44

2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:

(i)
$$p(x)=2x^3+x^2-2x-1$$
, $g(x) = x + 1$
Solution: $p(x)=2x^3+x^2-2x-1$, $g(x)$
 $= x + 1$ $g(x)=0$
 $\Rightarrow x+1=0$
 $\Rightarrow x=-1$
 \therefore Zero of $g(x)$ is -1. Now,
 $p(-1)=2(-1)^3+(-1)^2-2(-1)-1$
 $=-2+1+2-1$
 $=0$

 \therefore By factor theorem, g(x) is a factor of p(x).

(ii)
$$p(x)=x^3+3x^2+3x+1$$
, $g(x) = x + 2$
Solution: $p(x)=x^3+3x^2+3x+1$, $g(x) = x + 2$ $g(x)=0$
 $\Rightarrow x+2=0$
 $\Rightarrow x=-2$
 \therefore Zero of $g(x)$ is -2 . Now,
 $p(-2)=(-2)^3+3(-2)^2+3(-2)+1$
 $=-8+12-6+1$
 $=-1\neq 0$

 \therefore By factor theorem, g(x) is not a factor of p(x).

(iii)
$$p(x)=x^3-4x^2+x+6$$
, $g(x) = x-3$ Solution: $p(x)=x^3-4x^2+x+6$, $g(x) = x-3$ $g(x)=0$

$$\Rightarrow x-3=0 \Rightarrow x=3$$

$$\therefore \text{Zero of } g(x) \text{ is } 3.$$
Now,
$$p(3)=(3)^3-4(3)^2+(3)+6$$

$$=27-36+3+6$$

$$=0$$

 \therefore By factor theorem, g(x) is a factor of p(x).

3. Find the value of k, if x - 1 is a factor of p(x) in each of the following cases:

(i) $p(x)=x^2+x+k$ Solution:

If x-1 is a factor of p(x), then p(1)=0

Exercise 2.4 Page: 44

By Theorem Factor
$$\Rightarrow (1) + (1) + k = 0$$

 $\Rightarrow 1 + 1 + k = 0 \Rightarrow 2 + k = 0$
 $\Rightarrow k = -2$

(ii) $p(x)=2x^2+kx+\sqrt{2}$ Solution:

If x-1 is a factor of p(x), then p(1)=0 $\Rightarrow 2(1)^2 + k(1) + \sqrt{2} = 0$ $\Rightarrow 2 + k + \sqrt{2} = 0$ $\Rightarrow k = -(2 + \sqrt{2})$

(iii) $p(x)=kx^2-\sqrt{2}x+1$ Solution:

If x-1 is a factor of p(x), then p(1)=0 By Factor Theorem $\Rightarrow k(1)^2 - \sqrt{2}(1) + 1 = 0$ $\Rightarrow k = \sqrt{2} - 1$

(iv) $p(x)=kx^2-3x+k$ Solution:

If x-1 is a factor of p(x), then p(1)=0 By Factor Theorem $\Rightarrow k(1)^2-3(1)+k=0$ $\Rightarrow k-3+k=0$ $\Rightarrow 2k-3=0$ $\Rightarrow k=\frac{3}{2}$

4. Factorize:

(i) $12x^2-7x+1$ Solution:

Using the splitting the middle term method, We have to find a number whose sum=-7 and product= $1 \times 12=12$

We get -3 and -4 as the numbers $[-3+-4=-7 \text{ and } -3\times-4=12] 12x^2-$

$$7x+1=12x^{2}-4x-3x+1$$

$$=4x (3x-1)-1(3x-1)$$

$$= (4x-1)(3x-1)$$

(ii) $2x^2+7x+3$ Solution:

Using the splitting the middle term method,

We have to find a number whose sum=7 and product= $2 \times 3=6$

We get 6 and 1 as the numbers $[6+1=7 \text{ and } 6 \times 1=6]$ $2x^2+7x+3=2x^2+6x+1x+3$

Exercise 2.4

$$=2x (x+3)+1(x+3)$$

= $(2x+1)(x+3)$

$(iii)6x^2+5x-6$ Solution:

Using the splitting the middle term method,

We have to find a number whose sum=5 and product= $6 \times -6 = -36$

We get -4 and 9 as the numbers

$$[-4+9=5 \text{ and } -4 \times 9=-36]$$

Page: 44

$$6x^{2}+5x-6=6x^{2}+9x-4x-6$$

$$=3x (2x + 3) - 2 (2x + 3)$$

$$= (2x + 3) (3x - 2)$$

(iv) $3x^2 - x - 4$

Solution:

Using the splitting the middle term method,

We have to find a number whose sum=-1 and product= $3 \times -4 = -12$

We get -4 and 3 as the numbers

$$[-4+3=-1 \text{ and } -4\times 3=-12]$$

$$3x^{2} - x - 4 = 3x^{2} - x - 4$$

$$= 3x^{2} - 4x + 3x - 4$$

$$= x(3x - 4) + 1(3x - 4)$$

$$= (3x - 4)(x + 1)$$

5. Factorize:

(i) x^3-2x^2-x+2 Solution:

Let
$$p(x)=x^3-2x^2-x+2$$

Factors of 2 are ± 1 and ± 2 By

trial method, we find that p(1)

=0

So, (x+1) is factor of p(x)

Now, $p(x) = x^3 - 2x^2 - x + 2$

$$p(-1)=(-1)^3-2(-1)^2-(-1)+2$$
=-1-1+1+2

Therefore, (x+1) is the factor of p(x)

Exercise 2.4 Page: 44

Now, Dividend = Divisor \times Quotient + Remainder

$$(x+1)(x^2-3x+2) = (x+1)(x^2-x-2x+2) = (x+1)(x(x-1)-2(x-1))$$

= $(x+1)(x-1)(x-2)$

(ii) x^3-3x^2-9x-5 Solution:

Let
$$p(x) = x^3-3x^2-9x-5$$

Factors of 5 are ± 1 and ± 5 By trial method, we find that $p(5) = 0$

So,
$$(x-5)$$
 is factor of $p(x)$

Now,

$$p(x) = x^3-3x^2-9x-5$$

$$p(5) = (5)^3-3(5)^2-9(5)-5$$

$$=125-75-45-5$$

$$=0$$

Therefore, (x-5) is the factor of p(x)

Exercise 2.4

Page: 44

Now, Dividend = Divisor \times Quotient + Remainder

$$(x-5)(x^2+2x+1) = (x-5)(x^2+x+x+1)$$
$$= (x-5)(x(x+1)+1(x+1)) = (x-5)(x+1)(x+1)$$

$(iii)x^3+13x^2+32x+20$ Solution:

Let
$$p(x) = x^3 + 13x^2 + 32x + 20$$

Factors of 20 are ± 1 , ± 2 , ± 4 , ± 5 , ± 10 and ± 20

By trial method, we find that p(-1)

=0

So, (x+1) is factor of p(x) Now,

$$p(x) = x^3 + 13x^2 + 32x + 20$$

$$p(-1) = (-1)^3 + 13(-1)^2 + 32(-1) + 20$$

=0

Therefore, (x+1) is the factor of p(x)

Exercise 2.4 Page: 44

Now, Dividend = Divisor \times Quotient + Remainder

$$(x+1)(x^2+12x+20) = (x+1)(x^2+2x+10x+20)$$

$$= (x+1)x(x+2)+10(x+2)$$

$$= (x+1)(x+2)(x+10)$$

(iv) $2y^3+y^2-2y-1$ Solution:

Let $p(y) = 2y^3+y^2-2y-1$ Factors = $2\times(-1)=-2$ are ± 1 and ± 2 By trial method, we find that p(1)=0 So, (y-1) is factor of p(y) Now,

$$p(y) = 2y^3+y^2-2y-1$$

$$p(1) = 2(1)^3+(1)^2-2(1)-1$$

$$=2+1-2$$

$$=0$$

Therefore, (y-1) is the factor of p(y)

Exercise 2.4 Page: 44

Now, Dividend = Divisor \times Quotient + Remainder

Exercise 2.4 Page: 44

Exercise 2.5 Page: 48

1. Use suitable identities to find the following products:

(i) (x + 4) (x + 10) Solution:

Using the identity, $(x + a)(x + b) = x^2 + (a + b)x + ab$ [Here, a=4 and b=10]

We get,

$$(x+4)(x+10) = x^2 + (4+10)x + (4\times10)$$

= $x^2 + 14x + 40$

(ii)
$$(x + 8) (x - 10)$$

Solution:

Using the identity, $(x + a)(x + b) = x^2 + (a + b)x + ab$ [Here, a=8 and b= -10]

We get,

$$(x+8)(x-10) = x^2 + (8+(-10))x + (8\times(-10)) = x^2 + (8-10)x - 80$$

= $x^2 - 2x - 80$

$$(iii)(3x + 4)(3x - 5)$$

Solution:

Using the identity, $(x + a)(x + b) = x^2 + (a + b)x + ab$ [Here, x=3x, a=4 and b= -5]

We get,

$$(3x+4)(3x-5) = (3x)^2+4+(-5)3x+4\times(-5)$$
$$=9x^2+3x(4-5)-20$$
$$=9x^2-3x-20$$

$$(iv)(y^2+\frac{3}{2})(y^2-\frac{3}{2})$$

Solution:

Using the identity, $(x + y)(x - y) = x^2 - y^2$

[Here,
$$x=y^2$$
 and $y=\frac{3}{2}$]

We get,

$$(y^2 + \frac{3}{2})(y^2 - \frac{3}{2}) = (y^2)^2 - (\frac{3}{2})^2$$

= $y^4 - \frac{9}{4}$

2. Evaluate the following products without multiplying directly:

(i) 103 × 107 Solution:

$$103 \times 107 = (100 + 3) \times (100 + 7)$$

Using identity,
$$[(x+a)(x+b)=x2+(a+b)x+ab]$$

Exercise 2.5 Page: 48

```
Here, x=100

a=3

b=7

We get, 103\times107=(100+3)\times(100+7)

=(100)^2+(3+7)100+(3\times7))

=10000+1000+21

=11021
```

(ii) 95×96

Solution:

95×96=(100-5)×(100-4)
Using identity,
$$[(x-a)(x-b)=x^2+(a+b)x+ab]$$

Here, $x=100$
 $a=-5$
 $b=-4$
We get, $95\times96=(100-5)\times(100-4)$
 $=(100)^2+100(-5+(-4))+(-5\times-4)$
 $=10000-900+20$
 $=9120$

(iii) 104×96 Solution:

104×96=(100+4)×(100-4)
Using identity,
$$[(a+b)(a-b)= a^2-b^2]$$

Here, $a=100$
 $b=4$
We get, $104\times96=(100+4)\times(100-4)$
 $=(100)^2-(4)^2$
 $=10000-16$
 $=9984$

3. Factorize the following using appropriate identities:

(i)
$$9x^2+6xy+y^2$$

$$9x^2+6xy+y^2=(3x)^2+(2\times 3x\times y)+y^2$$

Using identity, $x^2+2xy+y^2=(x+y)^2$
Here, $x=3x$
 $y=y$

Exercise 2.5 Page: 48

$$9x^{2}+6xy+y^{2}=(3x)^{2}+(2\times 3x\times y)+y^{2}$$

$$=(3x+y)^{2}$$

$$=(3x+y)(3x+y)$$

(ii) 4y²-4y+1 Solution:

$$4y^{2}-4y+1=(2y)^{2}-(2\times 2y\times 1)+12$$
 Using identity, $x^{2}-2xy+y^{2}=(x-y)^{2}$ Here, $x=2y$ $y=1$
$$4y^{2}-4y+1=(2y)^{2}-(2\times 2y\times 1)+1^{2}$$

$$=(2y-1)^{2}$$

$$=(2y-1)(2y-1)$$

(iii)
$$x^2 - \frac{y^2}{100}$$

Solution:

$$x^{2} - \frac{y^{2}}{100} = x^{2} - (\frac{y}{10})^{2}$$
Using identity, $x^{2} - y^{2} = (x - y)(x y)$
Here, $x = x$

$$y = \frac{y}{10}$$

$$x^{2} - \frac{y^{2}}{100} = x^{2} - (\frac{y}{10})^{2}$$

$$= (x - \frac{y}{10})(x + \frac{y}{10})$$

4. Expand each of the following, using suitable identities:

(i)
$$(x+2y+4z)^2$$

(ii)
$$(2x-y+z)^2$$

$$(iii)(-2x+3y+2z)^2$$

(iv)
$$(3a - 7b - c)^2$$

Exercise 2.5 Page: 48

Exercise 2.5 Page: 49

(i) $(x+2y+4z)^2$

Solution:

Using identity,
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

Here, x=x y=2y

z=4z

$$(x+2y+4z)^2 = x^2+(2y)^2+(4z)^2+(2\times x\times 2y)+(2\times 2y\times 4z)+(2\times 4z\times x)$$

= $x^2+4y^2+16z^2+4xy+16yz+8xz$

(ii) $(2x-y+z)^2$ Solution:

Using identity,
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

Here, x=2x

$$y=-y z=z$$

$$(2x-y+z)^2 = (2x)^2 + (-y)^2 + z^2 + (2 \times 2x \times -y) + (2 \times -y \times z) + (2 \times z \times 2x)$$
$$= 4x^2 + y^2 + z^2 - 4xy - 2yz + 4xz$$

(iii) $(-2x+3y+2z)^2$ Solution:

Using identity,
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

Here, x = -2x

$$y=3y z=2z$$

$$(-2x+3y+2z)^2 = (-2x)^2 + (3y)^2 + (2z)^2 + (2x-2x\times3y) + (2\times3y\times2z) + (2\times2z\times-2x)$$
$$= 4x^2 + 9y^2 + 4z^2 - 12xy + 12yz - 8xz$$

(iv) $(3a-7b-c)^2$ Solution:

Using identity,
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

Here, x = 3a y =

$$-7bz=$$

-c

$$(3a - 7b - c)^{2} = (3a)^{2} + (-7b)^{2} + (-c)^{2} + (2 \times 3a \times -7b) + (2 \times -7b \times -c) + (2 \times -c \times 3a)$$
$$= 9a^{2} + 49b^{2} + c^{2} - 42ab + 14bc - 6ca$$

(v) $(-2x + 5y - 3z)^2$

Using identity,
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

Exercise 2.5 Page: 49

Here,
$$x = -2x$$
 y=
$$5y z = -3z$$

$$(-2x+5y-3z)^2 = (-2x)^2 + (5y)^2 + (-3z)^2 + (2x-2x \times 5y) + (2x \times 5y \times -3z) + (2x-3z \times -2x)$$

$$= 4x^2 + 25y^2 + 9z^2 - 20xy - 30yz + 12zx$$

(vi)
$$(\frac{1}{4}a - \frac{1}{2}b + 1)^2$$

Solution:

Using identity,
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

Here,
$$x = \frac{1}{4}a y =$$

$$-\frac{1}{2}b$$

$$z = 1$$

$$\begin{aligned} &(\frac{1}{4}a - \frac{1}{2}b + 1)^2 &= (\frac{1}{4}a)^2 + (-\frac{1}{2}b)^2 + (1)^2 + (2 \times \frac{1}{4}a \times -\frac{1}{2}b) + (2 \times -\frac{1}{2}b \times 1) + (2 \times 1 \times \frac{1}{4}a) \\ &= \frac{1}{16}a^2 + \frac{1}{4}b^2 + 1^2 - \frac{2}{8}ab - \frac{2}{2}b + \frac{2}{4a} \\ &= \frac{1}{16}a^2 + \frac{1}{4}b^2 + 1 - \frac{1}{4}ab - b + \frac{1}{2}a \end{aligned}$$

5. Factorize:

- (i) $4x^2+9y^2+16z^2+12xy-24yz-16xz$
- (ii) $2x^2+y^2+8z^2-2\sqrt{2}xy+4\sqrt{2}yz-8xz$ Solutions:
- (i) $4x^2+9y^2+16z^2+12xy-24yz-16xz$

Solution:

Using identity,
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

We can say that,
$$x^2 + y^2 + z^2 + 2xy + 2yz + 2zx = (x + y + z)^2$$

$$4x^{2}+9y^{2}+16z^{2}+12xy-24yz-16xz = (2x)^{2}+(3y)^{2}+(-4z)^{2}+(2\times2x\times3y)+(2\times3y\times-4z)+(2\times-4z\times2x)$$
$$=(2x+3y-4z)^{2}$$
$$=(2x+3y-4z)(2x+3y-4z)$$

(ii)
$$2x^2+y^2+8z^2-2\sqrt{2}xy+4\sqrt{2}yz-8xz$$

Using identity,
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

We can say that,
$$x^2 + y^2 + z^2 + 2xy + 2yz + 2zx = (x + y + z)^2$$

Exercise 2.5 Page: 49

$$\begin{aligned} 2x^2 + y^2 + 8z^2 - 2\sqrt{2}xy + 4\sqrt{2}yz - 8xz \\ &= (-\sqrt{2}x)^2 + (y)^2 + (2\sqrt{2}z)^2 + (2\times -\sqrt{2}x\times y) + (2\times y\times 2\sqrt{2}z) + (2\times 2\sqrt{2}z\times -\sqrt{2}x) \\ &= (-\sqrt{2}x + y + 2\sqrt{2}z)^2 \\ &= (-\sqrt{2}x + y + 2\sqrt{2}z)(-\sqrt{2}x + y + 2\sqrt{2}z) \end{aligned}$$

6. Write the following cubes in expanded form:

(i)
$$(2x+1)^3$$

(ii) $(23$ a-3b)
(iii) $(-x+1)^3$
(iv) $(x-\frac{2}{3}y)^3$

Solutions:

(i)
$$(2x+1)^3$$

Solution:

Using identity,
$$(x + y)^3 = x^3 + y^3 + 3xy (x + y)$$

 $(2x+1)^3 = (2x)^3 + 1^3 + (3 \times 2x \times 1)(2x+1)$
 $= 8x^3 + 1 + 6x(2x+1)$
 $= 8x^3 + 12x^2 + 6x + 1$

(ii) $(2a-3b)^3$

Solution:

Using identity,
$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

 $(2a-3b)^3 = (2a)^3 - (3b)^3 - (3 \times 2a \times 3b)(2a-3b)$
 $= 8a^3 - 27b^3 - 18ab(2a-3b)$
 $= 8a^3 - 27b^3 - 36a^2b + 54ab^2$

$$(iii)(\frac{3}{2}x+1)^3$$

Using identity,
$$(x + y)^3 = x^3 + y^3 + 3xy (x + y)$$

 $(\frac{3}{2}x+1)^3 = (\frac{3}{2}x)^3 + 1^3 + (3 \times \frac{3}{2}x \times 1)(\frac{3}{2}x + 1) = \frac{27}{8}x^3 + 1 + \frac{9}{2}x(\frac{3}{2}x + 1) = \frac{27}{8}x^3 + 1 + \frac{27}{4}x^2 + \frac{9}{2}x = \frac{27}{8}x^3 + \frac{27}{4}x^2 + \frac{9}{2}x + 1$

Page: 49

Exercise 2.5

(iv)
$$(x-\frac{2}{3}y)^3$$

Solution:

Using identity,
$$(x - y)^3 = x^3 - y^3 - 3xy(x - y)$$

 $(x - \frac{2}{3}y)^3 = (x)^3 - (\frac{2}{3}y)^3 - (3 \times x \times \frac{2}{3}y)(x - \frac{2}{3}y)$
 $= (x)^3 - \frac{8}{27}y^3 - 2xy(x - \frac{2}{3}y)$
 $= (x)^3 - \frac{8}{27}y^3 - 2x^2y + \frac{4}{3}xy^2$

7. Evaluate the following using suitable identities:

- (i) $(99)^3$
- (ii) $(102)^3$
- $(iii)(998)^3$

Solutions: (i)

 $(99)^{3}$

Solution:

We can write 99 as
$$100-1$$

Using identity, $(x-y)^3 = x^3 - y^3 - 3xy(x-y)$
 $(99)^3 = (100-1)^3$
 $= (100)^3 - 1^3 - (3 \times 100 \times 1)(100-1)$
 $= 1000000 - 1 - 300(100 - 1)$
 $= 1000000 - 1 - 30000 + 300$
 $= 970299$

(ii) (102)³ Solution:

We can write 102 as 100+2

Using identity,
$$(x + y)^3 = x^3 + y^3 + 3xy (x + y)$$

 $(100+2)^3 = (100)^3 + 2^3 + (3 \times 100 \times 2)(100+2)$
 $= 1000000 + 8 + 600(100 + 2)$
 $= 1061208$

(iii)(998)³ Solution:

We can write 99 as 1000-2

Using identity,
$$(x-y)^3 = x^3 - y^3 - 3xy(x-y)$$

 $(998)^3 = (1000-2)^3$
 $= (1000)^3 - 2^3 - (3 \times 1000 \times 2)(1000-2)$
 $= 1000000000 - 8 - 6000(1000 - 2)$
 $= 10000000000 - 8 - 60000000 + 12000$

Page: 49

= 994011992

Exercise 2.5

8. Factorise each of the following:

- (i) $8a^3+b^3+12a^2b+6ab^2$
- (ii) $8a^3-b^3-12a^2b+6ab^2$

(iii)
$$27 - 125a^3 - 135a + 225a^2$$
 (iv) $64a^3 - 27b^3 - 144a^2b + 108ab^2$ (v) $27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p$ Solutions:

(i) $8a^3+b^3+12a^2b+6ab^2$ Solution:

The expression,
$$8a^3+b^3+12a^2b+6ab^2$$
 can be written as $(2a)^3+b^3+3(2a)^2b+3(2a)(b)^2$
 $8a^3+b^3+12a^2b+6ab^2 = (2a)^3+b^3+3(2a)^2b+3(2a)(b)^2$
 $=(2a+b)^3$
 $=(2a+b)(2a+b)(2a+b)$

Here, the identity, $(x + y)^3 = x^3 + y^3 + 3xy (x + y)$ is used.

(ii) $8a^3-b^3-12a^2b+6ab^2$ Solution:

The expression,
$$8a^3-b^3-12a^2b+6ab^2$$
 can be written as $(2a)^3-b^3-3(2a)^2b+3(2a)(b)^2$
 $8a^3-b^3-12a^2b+6ab^2 = (2a)^3-b^3-3(2a)^2b+3(2a)(b)^2$
 $=(2a-b)^3$
 $=(2a-b)(2a-b)(2a-b)$

Here, the identity, $(x-y)^3 = x^3 - y^3 - 3xy(x-y)$ is used.

(iii)
$$27 - 125a^3 - 135a + 225a^2$$

Solution:

The expression,
$$27 - 125a^3 - 135a + 225a^2$$
 can be written as $3^3 - (5a)^3 - 3(3)^2(5a) + 3(3)(5a)^2$ $27 - 125a^3 - 135a + 225a^2 = 3^3 - (5a)^3 - 3(3)^2(5a) + 3(3)(5a)^2$ $= (3-5a)^3$ $= (3-5a)(3-5a)(3-5a)$

Here, the identity, $(x-y)^3 = x^3 - y^3 - 3xy(x-y)$ is used.

(iv) 64a3-27b3-144a²b+108ab²

Solution:

The expression,
$$64a^3 - 27b^3 - 144a^2b + 108ab^2$$
 can be written as $(4a)^3 - (3b)^3 - 3(4a)^2(3b) + 3(4a)(3b)^2$ $64a^3 - 27b^3 - 144a^2b + 108ab^2 = (4a)^3 - (3b)^3 - 3(4a)^2(3b) + 3(4a)(3b)^2$

$$=(4a-3b)^3$$

= $(4a-3b)(4a-3b)(4a-3b)$

Here, the identity, $(x-y)^3 = x^3 - y^3 - 3xy(x-y)$ is used.

Page: 49

Exercise 2.5

(v)
$$27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}$$

p Solution:

The expression,
$$27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4p}$$
 can be written as $(3p)^3 - (\frac{1}{6})^3 - 3(3p)^2(\frac{1}{6}) + 3(3p)(\frac{1}{6})^2$
 $27p^3 - \frac{1}{216} - \frac{9}{2}p^2 + \frac{1}{4}p = (3p)^3 - (\frac{1}{6})^3 - 3(3p)^2(\frac{1}{6}) + 3(3p)(\frac{1}{6})^2$
 $= (3p - \frac{1}{6})^3$
 $= (3p - \frac{1}{6})(3p - \frac{1}{6})(3p - \frac{1}{6})$

9. Verify:

(i)
$$x^3+y^3=(x+y)(x^2-xy+y^2)$$

(ii)
$$x^3-y^3=(x-y)(x^2+xy+y^2)$$

Solutions:

(i)
$$x^3+y^3=(x+y)(x^2-xy+y^2)$$

We know that, $(x+y)^3 = x^3+y^3+3xy(x+y)$
 $\Rightarrow x^3+y^3=(x+y)^3-3xy(x+y)$
 $\Rightarrow x^3+y^3=(x+y)[(x+y)^2-3xy]$
Taking(x+y) common $\Rightarrow x^3+y^3=(x+y)[(x^2+y^2+2xy)-3xy]$
 $\Rightarrow x^3+y^3=(x+y)(x^2+y^2-xy)$

(ii)
$$x^3-y^3=(x-y)(x^2+xy+y^2)$$

We know that, $(x-y)^3 = x^3-y^3-3xy(x-y)$
 $\Rightarrow x^3-y^3=(x-y)^3+3xy(x-y)$
 $\Rightarrow x^3-y^3=(x-y)[(x-y)^2+3xy]$
Taking $(x+y)$ common $\Rightarrow x^3-y^3=(x-y)[(x^2+y^2-2xy)+3xy]$
 $\Rightarrow x^3+y^3=(x-y)(x^2+y^2+xy)$

10. Factorize each of the following:

- (i) $27y^3 + 125z^3$
- (ii) $64m^3 343n^3$

Solutions:

(i) $27y^3 + 125z^3$

Page: 49

We know that, $x^3-y^3=(x-y)(x^2+xy+y^2)$

Exercise 2.5

3 3 3

Page: 49

11. Factorise : $27x^3+y^3+z^3-9xyz$

Solution:

The expression
$$27x^3+y^3+z^3-9xyz$$
 can be written as $(3x)^3+y^3+z^3-3(3x)(y)(z)$
 $27x^3+y^3+z^3-9xyz = (3x)^3+y^3+z^3-3(3x)(y)(z)$

We know that,
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$$

12. Verify that:

$$x^{3}+y^{3}+z^{3}-3xyz=\frac{1}{2}(x+y+z)[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}]$$

Solution: We

know that,

$$x^{3}+y^{3}+z^{3}-3xyz = (x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-xz)$$

$$\Rightarrow x^{3}+y^{3}+z^{3}-3xyz = \frac{1}{2} \times (x+y+z)[2(x^{2}+y^{2}+z^{2}-xy-yz-xz)]$$

$$= \frac{1}{2} (x+y+z)(2x^{2}+2y^{2}+2z^{2}-2xy-2yz-2xz)$$

$$= \frac{1}{2} (x+y+z)[(x^{2}+y^{2}-2xy)+(y^{2}+z^{2}-2yz)+(x^{2}+z^{2}-2xz)]$$

$$= \frac{1}{2} (x+y+z)[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}]$$

13. If x + y + z = 0, show that $x^3 + y^3 + z^3 = 3xyz$.

We know that,
$$x^3+y^3+z^3=3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - xz)$$
 Now, according to the question, let $(x + y + z) = 0$, then, $x - \frac{3+y^3+z^3=3xyz}{3} = (0)(x^2+y^2+z^2 - xy-yz-xz)$ $\Rightarrow x + y + z - 3xyz = 0$ $\Rightarrow x^3+y^3+z^3=3xyz$

Hence Proved

14. Without actually calculating the cubes, find the value of each of the following: (i)

$$(-12)^3+(7)^3+(5)^3$$

(ii)
$$(28)^3 + (-15)^3 + (-13)^3$$

Exercise 2.5

(i) $(-12)^3 + (7)^3 + (5)^3$ Solution:

$$(-12)^3+(7)^3+(5)^3$$

Let
$$a=-12$$

$$b=7$$

$$c=5$$

We know that if x + y + z = 0, then $x^3+y^3+z^3=3xyz$.

Here,
$$-12+7+5=0$$

$$\therefore (-12)^3 + (7)^3 + (5)^3 = 3xyz$$

$$= 3x - 12x7x5$$

$$= -1260$$

(ii)
$$(28)^3 + (-15)^3 + (-13)^3$$

Solution:

$$(28)^3 + (-15)^3 + (-13)^3$$

Let
$$a=28 b=$$

$$-15 c = -13$$

We know that if x + y + z = 0, then $x^3+y^3+z^3=3xyz$.

Here,
$$x + y + z = 28 - 15 - 13 = 0$$

$$\therefore (28)^3 + (-15)^3 + (-13)^3 = 3xyz$$

$$= 0 + 3(28)(-15)(-13)$$

$$= 16380$$

15. Give possible expressions for the length and breadth of each of the following rectangles, in which their areas are given:

(i) Area: $25a^2-35a+12$

(ii) Area:
$$35y^2+13y-12$$

Page: 49

Solution:

(i) Area: $25a^2-35a+12$

Using the splitting the middle term method,

We have to find a number whose sum= -35 and product= $25 \times 12 = 300$

We get -15 and -20 as the numbers $[-15+-20=-35 \text{ and } -3\times-4=300]$

Exercise 2.5 Page: 50

$$25a^2-35a+12 = 25a^2-15a-20a+12$$

= $5a(5a-3)-4(5a-3)$
= $(5a-4)(5a-3)$

Possible expression for length = 5a - 4Possible expression for breadth = 5a - 3

(ii) Area: $35y^2+13y-12$

Using the splitting the middle term method,

We have to find a number whose sum= 13 and product= $35 \times -12 = 420$

We get -15 and 28 as the numbers

 $[-15+28=-35 \text{ and } -15 \times 28=420]$

$$35y^2+13y-12 = 35y^2-15y+28y-12 = 5y(7y-3)+4(7y-3)$$

=(5y+4)(7y-3)

Possible expression for length = (5y + 4)

Possible expression for breadth = (7y - 3)

16. What are the possible expressions for the dimensions of the cuboids whose volumes are given below?

(i) Volume: $3x^2-12x$

(ii) Volume: $12ky^2+8ky-20k$

Solution:

(i) Volume : $3x^2 - 12x$

 $3x^2-12x$ can be written as 3x(x-4) by taking 3x out of both the terms.

Possible expression for length = 3

Possible expression for breadth = x

Possible expression for height = (x - 4)

(ii) Volume $: 12ky^2 + 8ky - 20k$

 $12ky^2+8ky-20k$ can be written as $4k(3y^2+2y-5)$ by taking 4k out of both the terms. $12ky^2+8ky-20k=4k(3y^2+2y-5)$

[Here, $3y^2+2y-5$ can be written as $3y^2+5y-3y-5$ using splitting the middle term method.] = $4k(3y^2+5y-3y-5)$ =4k[y(3y+5)-1(3y+5)]=4k(3y+5)(y-1)

Possible expression for length = 4kPossible expression for breadth = (3y + 5)

Possible expression for height = (y - 1)