## Exercise 4.1

1. Construct the following quadrilaterals.Quadrilateral ABCD
(i)

$$
\begin{aligned}
& \mathrm{AB}=4.5 \mathrm{~cm} \\
& \mathrm{BC}=5.5 \mathrm{~cm} \\
& \mathrm{CD}=4 \mathrm{~cm} \\
& \mathrm{AD}=6 \mathrm{~cm} \\
& \mathrm{AC}=7 \mathrm{~cm}
\end{aligned}
$$

Solution:
The rough sketch of the quadrilateral $A B C D$ can be drawn as follows.

(1) $\triangle \mathrm{ABC}$ can be constructed by using the given measurements as follows.


Vertex D is 6 cm away from vertex A. Therefore, while taking A as centre, draw an arc of (2) radius 6 cm .


Taking $C$ as centre, draw an arc of radius 4 cm , cutting the previous arc at point D. Joint D
(3) to A and C.
(ii)


ABCD is the required quadrilateral.
Quadrilateral JUMP
$\mathrm{JU}=3.5 \mathrm{~cm}$
$\mathrm{UM}=4 \mathrm{~cm}$
$\mathrm{MP}=5 \mathrm{~cm}$
$\mathrm{PJ}=4.5 \mathrm{~cm}$
$\mathrm{PU}=6.5 \mathrm{~cm}$
Solution:
The rou gh sketch of the quadrilateral JUMP can be drawn as follows.

$\Delta$ JUP can be constructed by using the given measurements as follows.
(1)


Vertex $M$ is 5 cm away from vertex $P$ and 4 cm away from vertex $U$. Taking $P$ and $U$ as
(2) centres, draw arcs of radii 5 cm and 4 cm respectively. Let the point of intersection be M.

(3) Join M to P and U.


JUMP is the required quadrilateral.

## Parallelogram MORE

(iii)
$\mathrm{OR}=6 \mathrm{~cm}$
$\mathrm{RE}=4.5 \mathrm{~cm}$
$\mathrm{EO}=7.5 \mathrm{~cm}$
Solution:

We know that opposite sides of a parallelogram are equal in length and also these are parallel to each other. i.e., $\mathrm{ME}=\mathrm{OR}, \mathrm{MO}=\mathrm{ER}$

The rough sketch of the parallelogram MORE can be drawn as follows.

(1) $\Delta$ EOR can be constructed by using the given measurements as follows.

(2) Vertex $M$ is 4.5 cm away from vertex $O$ and 6 cm away from vertex $E$. Therefore, while taking $O$ and $E$ as centres, draw arcs of 4.5 cm radius and 6 cm radius respectively. These will intersect each other at point $M$.

(3) Join M to O and E .


MORE is the required parallelogram.
(iv)Rhombus BEST

$$
\begin{aligned}
\mathrm{BE} & =4.5 \mathrm{~cm} \\
\mathrm{ET} & =6 \mathrm{~cm}
\end{aligned}
$$

Solution:

We know that all sides of a rhombus are of the same measure. Hence, $\mathrm{BE}=\mathrm{ES}=\mathrm{ST}$ $=\mathrm{TB}$ The rough sketch of the rhombus BEST can be drawn as follows.

(1) $\Delta$ BET can be constructed by using the given measurements as follows.

(2) Vertex S is 4.5 cm away from vertex E and also from vertex T . Therefore, while taking E and T as centres, draw arcs of 4.5 cm radius, which will be intersecting each other at point $S$.

(3) Join S to E and T.


BEST is the required rhombus.

## Exercise 4.2

1. Construct the following quadrilaterals.
(i) Quadrilateral LIFT

$$
\begin{aligned}
& \mathrm{LI}=4 \mathrm{~cm} \\
& \mathrm{IF}=3 \mathrm{~cm} \\
& \mathrm{TL}=2.5 \mathrm{~cm} \\
& \mathrm{LF}=4.5 \mathrm{~cm} \\
& \mathrm{IT}=4 \mathrm{~cm}
\end{aligned}
$$

Solution:A rough sketch of the quadrilateral LIFT can be drawn as follows.

(1) $\Delta$ ITL can be constructed by using the given measurements as follows.

(2) Vertex F is 4.5 cm away from vertex L and 3 cm away from vertex $\mathrm{I} . \therefore$, while taking L and $I$ as centres, draw arcs of 4.5 cm radius and 3 cm radius respectively, which will be intersecting each other at point $F$.

(3) Join F to T and F to I.


LIFT is the required quadrilateral.
Quadrilateral GOLD
(ii)
$\mathrm{OL}=7.5 \mathrm{~cm}$
$\mathrm{GL}=6 \mathrm{~cm}$
$\mathrm{GD}=6 \mathrm{~cm}$
$\mathrm{LD}=5 \mathrm{~cm}$
$0 \mathrm{D}=10 \mathrm{~cm}$
Solution: The rough sketch of the quadrilateral GOLD can be drawn as follows.

(1) $\Delta$ GDL can be constructed by using the given measurements as follows.

(2) Vertex 0 is 10 cm away from vertex D and 7.5 cm away from vertex L . Therefore, while taking D and L as centres, draw arcs of 10 cm radius and 7.5 cm radius respectively. These will intersect each other at point 0 .

(3) Join O to G and L .


GOLD is the required quadrilateral.
(iii) Rhombus BEND
$\mathrm{BN}=5.6 \mathrm{~cm}$

$$
\mathrm{DE}=6.5 \mathrm{~cm}
$$

Solution:
We know that the diagonals of a rhombus always bisect each other at $90^{\circ}$.
Let us assume that these are intersecting each other at point O in this rhombus.
Hence, EO = OD $=3.25 \mathrm{~cm}$
The rough sketch of the rhombus BEND can be drawn as follows.

(1) Draw a line segment BN of 5.6 cm and also draw its perpendicular bisector. Let it intersect the line segment $B N$ at point $O$.

(2) Taking $O$ as centre, draw arcs of 3.25 cm radius to intersect the perpendicular bisector at point D and E .

(3) Join points D and E to points B and $N$.


BEND is the required quadrilateral.

Construct the following quadrilaterals.
Quadrilateral MORE
$\mathrm{MO}=6 \mathrm{~cm}$
$\mathrm{OR}=4.5 \mathrm{~cm}$
$\angle \mathrm{M}=60^{\circ}$
$\angle O=105^{\circ}$
$\angle \mathrm{R}=105^{\circ}$
Solution:
Rough Figure:
1.
(i)


Draw a line segment MO of 6 cm and an angle of $105^{\circ}$ at point 0 . As vertex $R$ is 4.5 cm (1) away from the vertex 0 , cut a line segment $O R$ of 4.5 cm from this ray.

(2) Again, draw an angle of 1050 at point $R$.


Draw an angle of $60^{\circ}$ at point $M$. Let this ray meet the previously drawn ray from $R$ at (3) point E.


MORE is the required quadrilateral.
Quadrilateral PLAN
$\mathrm{PL}=4 \mathrm{~cm}$
$\mathrm{LA}=6.5 \mathrm{~cm}$
$\angle \mathrm{P}=90^{\circ}$
$\angle A=110^{\circ}$
(ii) $\angle \mathrm{N}=85^{\circ}$

The sum of the angles of a quadrilateral is $360^{\circ}$.
In quadrilateral PLAN,
Solution:

$$
\begin{aligned}
& \angle \mathrm{P}+\angle \mathrm{L}+\angle \mathrm{A}+\angle \mathrm{N}=360^{\circ} \\
& 90^{\circ}+\angle \mathrm{L}+110^{\circ}+85^{\circ}=360^{\circ} \\
& 285^{\circ}+\angle \mathrm{L}=360^{\circ} \\
& \angle \mathrm{L}=360^{\circ}-285^{\circ}=75^{\circ}
\end{aligned}
$$

Rough Figure:

(1) Draw a line segment PL of 4 cm and draw an angle of $755^{\circ}$ at point L . As vertex A is 6.5 cm away from vertex L , cut a line segment LA of 6.5 cm from this ray.

(2) Again draw an angle of $110^{\circ}$ at point A .

(3) Draw an angle of $90^{\circ}$ at point P . This ray will meet the previously drawn ray from A at point N .


PLAN is the required quadrilateral.

> Parallelogram HEAR
> $\mathrm{HE}=5 \mathrm{~cm}$
> $\mathrm{EA}=6 \mathrm{~cm}$
> $\angle \mathrm{R}=85^{\circ}$

Solution: (iii) Rough Figure:


Draw a line segment HE of 5 cm and an angle of $855^{\circ}$ at point E . As vertex A is 6 cm away from vertex $E$, cut a line segment $E A$ of 6 cm from this ray.


Vertex $R$ is 6 cm and 5 cm away from vertex $H$ and A respectively. By taking radius as 6 cm and 5 cm , draw arcs from point H and A respectively. These will be intersecting each
(2) other at point $R$.

(3) Join R to H and A.


HEAR is the required quadrilateral.
(iv) Rectangle OKAY
$\mathrm{OK}=7 \mathrm{~cm}$
$K A=5 \mathrm{~cm}$
Solution:
Rough Figure:

(1) Draw a line segment $O K$ of 7 cm and an angle of $90^{\circ}$ at point $K$. As vertex $A$ is 5 cm away from vertex $K$, cut a line segment KA of 5 cm from this ray.

(2) Vertex $Y$ is 5 cm and 7 cm away from vertex O and A respectively. By taking

## NCERT Solution For Class 8 Maths Chapter 4- Practical Geometry



5 cm and 7 cm , draw arcs from and $A$ respectively. These will be intersecting each other at point $Y$.
(3) Join Y to A and O.


OKAY is the required quadrilateral.

## Exercise 4.4

Construct the following quadrilaterals,
Quadrilateral DEAR
$\mathrm{DE}=4 \mathrm{~cm}$
$\mathrm{EA}=5 \mathrm{~cm}$ AR
$=4.5 \mathrm{~cm}$
$\angle \mathrm{E}=60^{\circ}$
$\angle A=90^{\circ}$
Rough Figure:
1.

Solution:
(i)


Draw a line segment DE of 4 cm and an angle of $60^{\circ}$ at point E . As vertex A is 5 cm away
(1) from vertex $E$, cut a line segment $E A$ of 5 cm from this ray.


Again draw an angle of $90^{\circ}$ at point A. As vertex R is 4.5 cm away from vertex A, (2) cut a line segment RA of 4.5 cm from this ray.

(3) Join D to R.


DEAR is the required quadrilateral.
(ii) Quadrilateral TRUE
$\mathrm{TR}=3.5 \mathrm{~cm}$
$\mathrm{RU}=3 \mathrm{~cm}$
$\mathrm{UE}=4 \mathrm{~cm}$
$\angle \mathrm{R}=75^{\circ}$
$\angle \mathrm{U}=120^{\circ}$

Rough Figure:

(1) Draw a line segment $R U$ of 3 cm and an angle of $120^{\circ}$ at point $U$. As vertex $E$ is 4 cm away from vertex $U$, cut a line segment $U E$ of 4 cm from this ray.

(2) Next, draw an angle of $75{ }^{\circ}$ at point R. As vertex $T$ is 3.5 cm away from vertex $R$, cut a line segment RT of 3.5 cm from this ray.

(3) Join T to E.


TRUE is the required quadrilateral.

Draw the following:

1. The square READ with $\mathrm{RE}=5.1 \mathrm{~cm}$

Solution:
All the sides of a square are of the same measure and also all the interior angles of a square are of $90^{\circ}$ measure. Therefore, the given square READ can be drawn as follows.
Rough Figure:

(1) Draw a line segment $R E$ of 5.1 cm and an angle of $90^{\circ}$ at point $R$ and $E$.

(2) As vertex A and $D$ are 5.1 cm away from vertex $E$ and $R$ respectively, cut line segments EA and RD, each of 5.1 cm from these rays.

(3) Join D to A.


READ is the required square.
2. A rhombus whose diagonals are 5.2 cm and 6.4 cm long. Solution:

In a rhombus, diagonals bisect each other at $90^{\circ} . \therefore$, the given rhombus ABCD can be drawn as follows.

Rough Figure:

(1) Draw a line segment $A C$ of 5.2 cm and draw its perpendicular bisector. Let it intersect the line segment $A C$ at point $O$.

(2) Draw arcs of $\frac{6.4}{2}=3.2$ on both sides of this perpendicular bisector. Let the arcs intersect the perpendicular bisector at point $B$ and $D$.

(3) Join points $B$ and $D$ with points $A$ and $C$.

$A B C D$ is the required rhombus.
3. A rectangle with adjacent sides of length 5 cm and 4 cm . Solution:

Opposite sides of a rectangle have their lengths of same measure and also, all the interior angles of a rectangle are of $90^{\circ}$ measure. The given rectangle ABCD may be drawn as follows.
Rough figure:

(1) Draw a line segment $A B$ of 5 cm and an angle of $90^{\circ}$ at point $A$ and $B$.

(2) As vertex $C$ and $D$ are 4 cm away from vertex $B$ and $A$ respectively, cut line segments $A D$ and $B C$, each of 4 cm , from these rays.

(3) Join D to C.

$A B C D$ is the required rectangle.
4. A parallelogram OKAY where $\mathrm{OK}=5.5 \mathrm{~cm}$ and $\mathrm{KA}=4.2 \mathrm{~cm}$. Solution:

Opposite sides of a parallelogram are equal and parallel to each other. The given parallelogram OKAY can be drawn as follows.
Rough Figure:

(1) Draw a line segment OK of 5.5 cm and a ray at point K at a convenient angle.

(2) Draw a ray at point $O$ parallel to the ray at K . As the vertices, A and Y , are 4.2 cm away from the vertices K and $O$ respectively, cut line segments KA and OY, each of 4.2 cm , from these rays.

(3) Join $Y$ to $A$.


OKAY is the required rectangle.

