1. Complete the last column of the table.

S. No.	Equation	Value	Say, whether the equation is satisfied. (Yes/No)
(i)	$x+3=0$	$x=3$	
(ii)	$x+3=0$	$x=0$	
(iii)	$x+3=0$	$x=-3$	
(iv)	$x-7=1$	$x=7$	
(v)	$x-7=1$	$x=8$	
(vi)	$5 x=25$	$x=0$	
(vii)	$5 x=25$	$x=5$	
(viii)	$5 x=25$	$x=-5$	
(ix)	(m/3) $=2$	$m=-6$	
(x)	(m/3) $=2$	$m=0$	
(xi)	$(m / 3)=2$	$m=6$	

Solution:-

(i) $x+3=0$

LHS $=x+3$
By substituting the value of $x=3$
Then,
LHS $=3+3=6$
By comparing LHS and RHS
LHS \neq RHS
\therefore No, the equation is not satisfied.
(ii) $x+3=0$

LHS $=x+3$
By substituting the value of $x=0$
Then,

LHS $=0+3=3$
By comparing LHS and RHS
LHS $=$ RHS
\therefore No, the equation is not satisfied.
(iii) $x+3=0$

LHS $=x+3$
By substituting the value of $x=-3$
Then,
LHS $=-3+3=0$
By comparing LHS and RHS
LHS = RHS
\therefore Yes, the equation is satisfied
(iv) $x-7=1$

LHS $=x-7$
By substituting the value of $x=7$
Then,
LHS = 7-7=0
By comparing LHS and RHS
LHS $=$ RHS
\therefore No, the equation is not satisfied
(v) $x-7=1$

LHS $=x-7$
By substituting the value of $x=8$
Then,
LHS = 8-7 = 1
By comparing LHS and RHS
LHS = RHS .:Yes, the equation
is satisfied.
(vi) $5 x=25$

LHS $=5 x$

By substituting the value of $x=0$
Then,
LHS $=5 \times 0=0$
By comparing LHS and RHS
LHS \neq RHS
\therefore No, the equation is not satisfied.
(vii) $5 x=25$

LHS $=5 x$
By substituting the value of $x=5$
Then,
LHS $=5 \times 5=25$
By comparing LHS and RHS
LHS = RHS .:Yes, the equation
is satisfied.
(viii) $5 x=25$

LHS $=5 x$
By substituting the value of $x=-5$
Then,
LHS $=5 \times(-5)=-25$
By comparing LHS and RHS
LHS $=$ RHS
\therefore No, the equation is not satisfied.
(ix) $m / 3=2$

LHS $=m / 3$
By substituting the value of $m=-6$
Then,
LHS $=-6 / 3=-2$
By comparing LHS and RHS
LHS \neq RHS
\therefore No, the equation is not satisfied.

NCERT Solutions for Class 7 Maths Chapter 4 Simple Equations
(x) $m / 3=2$

LHS $=m / 3$
By substituting the value of $m=0$
Then,
LHS $=0 / 3=0$
By comparing LHS and RHS
LHS \neq RHS
\therefore No, the equation is not satisfied.
(xi) $m / 3=2$

LHS $=m / 3$
By substituting the value of $m=6$
Then,
LHS $=6 / 3=2$
By comparing LHS and RHS
LHS = RHS
\therefore Yes, the equation is satisfied.

S. No.	Equation	Value	Say, whether the equation is satisfied. (Yes/No)
(i)	$x+3=0$	$x=3$	No
(ii)	$x+3=0$	$x=0$	No
(iii)	$x+3=0$	$x=-3$	Yes
(iv)	$x-7=1$	$x=7$	No
(v)	$x-7=1$	$x=8$	Yes
(vi)	$5 x=25$	$x=0$	No
(vii)	$5 x=25$	$x=5$	Yes
(viii)	$5 x=25$	$x=-5$	No
(ix)	$(m / 3)=2$	$m=-6$	No
(x)	$(m / 3)=2$	$m=0$	No
(xi)	$(m / 3)=2$	$m=6$	Yes

2. Check whether the value given in the brackets is a solution to the given equation or not:
(a) $\mathrm{n}+5=19(\mathrm{n}=1)$

Solution:- LHS
= $\mathrm{n}+5$
By substituting the value of $\mathrm{n}=1$
Then,

$$
\begin{aligned}
\text { LHS } & =n+5 \\
& =1+5 \\
& =6
\end{aligned}
$$

By comparing LHS and RHS
$6 \neq 19$
LHS \neq RHS
Hence, the value of $n=1$ is not a solution to the given equation $n+5=19$.
(b) $7 \mathrm{n}+5=19(\mathrm{n}=-2)$

Solution:-

LHS $=7 n+5$
By substituting the value of $\mathrm{n}=-2$
Then,

$$
\begin{aligned}
\text { LHS } & =7 n+5 \\
& =(7 \times(-2))+5 \\
& =-14+5 \\
& =-9
\end{aligned}
$$

By comparing LHS and RHS
$-9 \neq 19$
LHS \neq RHS
Hence, the value of $n=-2$ is not a solution to the given equation $7 n+5=19$.
(c) $7 \mathrm{n}+5=19(\mathrm{n}=2)$

Solution:- LHS
$=7 n+5$
By substituting the value of $\mathrm{n}=2$
Then,

$$
\begin{aligned}
\mathrm{LHS} & =7 n+5 \\
& =(7 \times(2))+5 \\
& =14+5 \\
& =19
\end{aligned}
$$

By comparing LHS and RHS
$19=19$
LHS = RHS
Hence, the value of $n=2$ is a solution to the given equation $7 n+5=19$.
(d) $4 p-3=13(p=1)$

Solution:- LHS
$=4 p-3$
By substituting the value of $p=1$
Then,

$$
\begin{aligned}
\mathrm{LHS} & =4 p-3 \\
& =(4 \times 1)-3 \\
& =4-3 \\
& =1
\end{aligned}
$$

By comparing LHS and RHS
$1 \neq 13$
LHS $=$ RHS
Hence, the value of $p=1$ is not a solution to the given equation $4 p-3=13$.
(e) $4 p-3=13(p=-4)$

Solution:- LHS
$=4 p-3$
By substituting the value of $p=-4$
Then,

$$
\begin{aligned}
\text { LHS } & =4 p-3 \\
& =(4 \times(-4))-3 \\
& =-16-3 \\
& =-19
\end{aligned}
$$

By comparing LHS and RHS
$-19 \neq 13$

LHS \neq RHS
Hence, the value of $p=-4$ is not a solution to the given equation $4 p-3=13$.
(f) $4 p-3=13(p=0)$

Solution:- LHS
$=4 p-3$
By substituting the value of $p=0$
Then,

$$
\begin{aligned}
\text { LHS } & =4 p-3 \\
& =(4 \times 0)-3 \\
& =0-3 \\
& =-3
\end{aligned}
$$

By comparing LHS and RHS
$-3 \neq 13$
LHS \neq RHS
Hence, the value of $p=0$ is not a solution to the given equation $4 p-3=13$.
3. Solve the following equations by trial and error method:
(i) $5 p+2=17$

Solution:-
LHS $=5 p+2$
By substituting the value of $p=0$
Then,

$$
\begin{aligned}
\mathrm{LHS} & =5 p+2 \\
& =(5 \times 0)+2 \\
& =0+2 \\
& =2
\end{aligned}
$$

By comparing LHS and RHS
$2 \neq 17$
LHS \neq RHS
Hence, the value of $p=0$ is not a solution to the given equation.

Let, $\mathrm{p}=1$
LHS $=5 p+2$
$=(5 \times 1)+2$
$=5+2$
$=7$
By comparing LHS and RHS
$7 \neq 17$
LHS \neq RHS
Hence, the value of $p=1$ is not a solution to the given equation.

$$
\begin{aligned}
& \text { Let, } p=2 \\
& \begin{aligned}
\text { LHS } & =5 p+2 \\
& =(5 \times 2)+2 \\
& =10+2 \\
& =12
\end{aligned}
\end{aligned}
$$

By comparing LHS and RHS
$12 \neq 17$
LHS $=$ RHS
Hence, the value of $p=2$ is not a solution to the given equation.

Let, $\mathrm{p}=3$
LHS $=5 p+2$

$$
=(5 \times 3)+2
$$

$$
=15+2
$$

$$
=17
$$

By comparing LHS and RHS
$17=17$
LHS = RHS
Hence, the value of $p=3$ is a solution to the given equation.
(ii) $3 m-14=4$

Solution:- LHS
$=3 m-14$
By substituting the value of $m=3$
Then,
LHS $=3 m-14$

$$
\begin{aligned}
& =(3 \times 3)-14 \\
& =9-14 \\
& =-5
\end{aligned}
$$

By comparing LHS and RHS
$-5 \neq 4$
LHS \neq RHS
Hence, the value of $m=3$ is not a solution to the given equation.

$$
\begin{aligned}
& \text { Let, } m=4 \\
& \begin{aligned}
\text { LHS } & =3 m-14 \\
& =(3 \times 4)-14 \\
& =12-14 \\
& =-2
\end{aligned}
\end{aligned}
$$

By comparing LHS and RHS
$-2 \neq 4$
LHS \neq RHS
Hence, the value of $m=4$ is not a solution to the given equation.

Let, $\mathrm{m}=5$
LHS $=3 m-14$
$=(3 \times 5)-14$
$=15-14$
=By comparing LHS and RHS
$1 \neq$
LHS \neq RHS Hence, the value of $m=5$ is not a solution to the given equation.
Let, $\mathrm{m}=$

$$
\begin{aligned}
\text { LHS } & =3 m-14 \\
& =(3 \times 6)-14 \\
& =18-14 \\
& =4
\end{aligned}
$$

By comparing LHS and RHS
$4=4$
LHS = RHS

Hence, the value of $m=6$ is a solution to the given equation.
4. Write equations for the following statements:
(i) The sum of numbers x and 4 is 9 .

Solution:-
The above statement can be written in the equation form as, $=$

$$
x+4=9
$$

(ii) 2 subtracted from y is 8 .

Solution:-
The above statement can be written in the equation form as, $=$

$$
y-2=8
$$

(iii) Ten times a is 70 .

Solution:-

The above statement can be written in the equation form as,

$$
=10 a=70
$$

(iv) The number b divided by 5 gives 6 .

Solution:-

The above statement can be written in the equation form as,

$$
=(b / 5)=6
$$

(v) Three-fourth of t is 15 .

Solution:-

The above statement can be written in the equation form as,

$$
=3 / 4 t=15
$$

(vi) Seven times mplus 7 gets you 77. Solution:-

The above statement can be written in the equation form as, Seven times m is 7 m

$$
=7 m+7=77
$$

(vii) One-fourth of a number x minus 4 gives 4 .

Solution:-

The above statement can be written in the equation form as,
One-fourth of a number x is $x / 4$

$$
=x / 4-4=4
$$

(viii) If you take away 6 from 6 times y, you get 60 .

Solution:-

The above statement can be written in the equation form as, 6 times of y is 6 y

$$
=6 y-6=60
$$

(ix) If you add 3 to one-third of z, you get 30 .

Solution:-
The above statement can be written in the equation form as, One-third of z is $z / 3$
$=3+z / 3=30$
5. Write the following equations in statement forms:
(i) $p+4=15$

Solution:-

The sum of numbers p and 4 is 15 .
(ii) $m-7=3$

Solution:-
7 subtracted from m is 3 .
(iii) $2 m=7$

Solution:-
Twice of number m is 7 .
(iv) $m / 5=3$

Solution:-
The number m divided by 5 gives 3 .
(v) $(3 \mathrm{~m}) / 5=6$

Solution:-
Three-fifth of m is 6 .
(vi) $3 p+4=25$

Solution:-

Three times p plus 4 gives you 25 .
(vii) $4 \mathrm{p}-2=18$

Solution:-
Four times p minus 2 gives you 18 .
(viii) $\mathrm{p} / 2+2=8$

Solution-

If you add half of a number p to 2 , you get 8 .

6. Set up an equation in the following cases:

(i) Irfan says that he has $\mathbf{7}$ marbles more than five times the marbles Parmit has. Irfan has 37 marbles. (Take m to be the number of Parmit's marbles.) Solution:-
From the question it is given that,
Number of Parmit's marbles $=m$
Then,
Irfan has 7 marbles more than five times the marbles Parmit has

$$
\begin{aligned}
& =5 \times \text { Number of Parmit's marbles }+7=\text { Total number of marbles Irfan having } \\
& =(5 \times \mathrm{m})+7=37 \\
& =5 \mathrm{~m}+7=37
\end{aligned}
$$

(ii) Laxmi's father is 49 years old. He is 4 years older than three times Laxmi's age. (Take Laxmi's age to be y years.)

Solution:-

From the question it is given that, Let Laxmi's age to be $=y$ years old Then,
Lakshmi's father is 4 years older than three times of her age

$$
\begin{aligned}
& =3 \times \text { Laxmi's age }+4=\text { Age of Lakshmi's father } \\
& =(3 \times y)+4=49 \\
& =3 y+4=49
\end{aligned}
$$

(iii) The teacher tells the class that the highest marks obtained by a student in her class is twice the lowest marks plus 7. The highest score is $\mathbf{8 7}$. (Take the lowest score to be l.)
Solution:-
From the question it is given that,
Highest score in the class $=87$
Let lowest score be I

$$
\begin{aligned}
& =2 \times \text { Lowest score }+7=\text { Highest score in the class } \\
& =(2 \times 1)+7=87 \\
& =21+7=87
\end{aligned}
$$

(iv) In an isosceles triangle, the vertex angle is twice either base angle. (Let the base angle be \mathbf{b} in degrees. Remember that the sum of angles of a triangle is $\mathbf{1 8 0}$ degrees).

Solution:-

From the question it is given that,
We know that, the sum of angles of a triangle is 180°
Let base angle be b
Then,
Vertex angle $=2 \times$ base angle $=2 b$

$$
\begin{aligned}
& =b+b+2 b=180^{\circ} \\
& =4 b=180^{\circ}
\end{aligned}
$$

1. Give first the step you will use to separate the variable and then solve the equation:
(a) $x-1=0$

Solution:-
We have to add 1 to both the side of given equation, Then we get,

$$
\begin{aligned}
& =x-1+1=0+1 \\
& =x=1
\end{aligned}
$$

(b) $x+1=0$

Solution:-
We have to subtract 1 to both the side of given equation, Then we get,

$$
\begin{aligned}
& =x+1-1=0-1 \\
& =x=-1
\end{aligned}
$$

(c) $x-1=5$

Solution:-
We have to add 1 to both the side of given equation, Then we get,

$$
\begin{aligned}
& =x-1+1=5+1 \\
& =x=6
\end{aligned}
$$

(d) $x+6=2$

Solution:-

We have to subtract 6 to both the side of given equation,
Then we get,

$$
=x+6-6=2-6
$$

$$
=x=-4
$$

(e) $y-4=-7$

Solution:-
We have to add 4 to both the side of given equation, Then we get,

$$
\begin{aligned}
& =y-4+4=-7+4 \\
& =y=-3
\end{aligned}
$$

(f) $y-4=4$

Solution:-
We have to add 4 to both the side of given equation, Then we get,

$$
\begin{aligned}
& =y-4+4=4+4 \\
& =y=8
\end{aligned}
$$

(g) $y+4=4$

Solution:-
We have to subtract 4 to both the side of given equation,
Then we get,

$$
\begin{aligned}
& =y+4-4=4-4 \\
& =y=0
\end{aligned}
$$

(h) $y+4=-4$

Solution:-
We have to subtract 4 to both the side of given equation, Then we get,

$$
\begin{aligned}
& =y+4-4=-4-4 \\
& =y=-8
\end{aligned}
$$

2. Give first the step you will use to separate the variable and then solve the equation:

(a) $\mathbf{3 1}=\mathbf{4 2}$ Solution:-

Now we have to divide both sides of the equation by 3,
Then we get,

$$
=31 / 3=42 / 3
$$

$$
=\mid=14
$$

(b) $b / 2=6$

Solution:-

Now we have to multiply both sides of the equation by 2,
Then we get,

$$
\begin{aligned}
& =b / 2 \times 2=6 \times 2 \\
& =b=12
\end{aligned}
$$

(c) $p / 7=4$

Solution:-
Now we have to multiply both sides of the equation by 7, Then we get,

$$
\begin{aligned}
& =p / 7 \times 7=4 \times 7 \\
& =p=28
\end{aligned}
$$

(d) $4 x=25$

Solution:-
Now we have to divide both sides of the equation by 4,
Then we get,

$$
\begin{aligned}
& =4 x / 4=25 / 4 \\
& =x=25 / 4
\end{aligned}
$$

(e) $8 y=36$

Solution:-

Now we have to divide both sides of the equation by 8,
Then we get,

$$
\begin{aligned}
& =8 y / 8=36 / 8 \\
& =x=9 / 4
\end{aligned}
$$

(f) $(z / 3)=(5 / 4)$

Solution:-
Now we have to multiply both sides of the equation by 3, Then we get,

$$
\begin{aligned}
& =(z / 3) \times 3=(5 / 4) \times 3 \\
& =x=15 / 4
\end{aligned}
$$

(g) $(a / 5)=(7 / 15)$

Solution:-

Now we have to multiply both sides of the equation by 5,
Then we get,

$$
\begin{aligned}
& =(a / 5) \times 5=(7 / 15) \times 5 \\
& =a=7 / 3
\end{aligned}
$$

(g) $20 t=-10$

Solution:-

Now we have to divide both sides of the equation by 20, Then we get,

$$
\begin{aligned}
& =20 t / 20=-10 / 20 \\
& =x=-1 / 2
\end{aligned}
$$

3. Give the steps you will use to separate the variable and then solve the equation: (a) $3 n-2=46$

Solution:-

First we have to add 2 to the both sides of the equation,
Then, we get,

$$
\begin{aligned}
& =3 n-2+2=46+2 \\
& =3 n=48
\end{aligned}
$$

Now,
We have to divide both sides of the equation by 3 ,
Then, we get,

$$
\begin{aligned}
& =3 n / 3=48 / 3 \\
& =n=16
\end{aligned}
$$

(b) $5 \mathrm{~m}+7=17$

Solution:-
First we have to subtract 7 to the both sides of the equation, Then, we get,

$$
=5 m+7-7=17-7
$$

$$
=5 \mathrm{~m}=10
$$

Now,
We have to divide both sides of the equation by 5,
Then, we get,

$$
\begin{aligned}
& =5 \mathrm{~m} / 5=10 / 5 \\
& =\mathrm{m}=2
\end{aligned}
$$

(c) $20 \mathrm{p} / 3=40$

Solution:-

First we have to multiply both sides of the equation by 3,
Then, we get,

$$
\begin{aligned}
& =(20 p / 3) \times 3=40 \times 3 \\
& =20 p=120
\end{aligned}
$$

Now,
We have to divide both sides of the equation by 20 ,
Then, we get,

$$
\begin{aligned}
& =20 p / 20=120 / 20 \\
& =p=6
\end{aligned}
$$

(d) $3 p / 10=6$

Solution:-

First we have to multiply both sides of the equation by 10 ,
Then, we get,

$$
\begin{aligned}
& =(3 p / 10) \times 10=6 \times 10 \\
& =3 p=60
\end{aligned}
$$

Now,
We have to divide both sides of the equation by 3 ,
Then, we get,

$$
\begin{aligned}
& =3 p / 3=60 / 3 \\
& =p=20
\end{aligned}
$$

4. Solve the following equations:

(a) $10 p=100$

Solution:- Now,

We have to divide both sides of the equation by 10 ,
Then, we get,

$$
\begin{aligned}
& =10 p / 10=100 / 10 \\
& =p=10
\end{aligned}
$$

(b) $10 p+10=100$

Solution:-

First we have to subtract 10 to the both sides of the equation, Then, we get,

$$
\begin{aligned}
& =10 p+10-10=100-10 \\
& =10 p=90
\end{aligned}
$$

Now,
We have to divide both sides of the equation by 10 ,
Then, we get,

$$
\begin{aligned}
& =10 p / 10=90 / 10 \\
& =p=9
\end{aligned}
$$

(c) $p / 4=5$

Solution:- Now,
We have to multiply both sides of the equation by 4 ,
Then, we get,
$=p / 4 \times 4=5 \times 4$
= $\mathrm{p}=20$
(d) $-\mathrm{p} / 3=5$

Solution:- Now,
We have to multiply both sides of the equation by - 3,
Then, we get,

$$
\begin{aligned}
& =-p / 3 \times(-3)=5 \times(-3) \\
& =p=-15
\end{aligned}
$$

(e) $3 p / 4=6$

Solution:-
First we have to multiply both sides of the equation by 4,

Then, we get,

$$
\begin{aligned}
& =(3 p / 4) \times(4)=6 \times 4 \\
& =3 p=24
\end{aligned}
$$

Now,
We have to divide both sides of the equation by 3,
Then, we get,

$$
\begin{aligned}
& =3 p / 3=24 / 3 \\
& =p=8
\end{aligned}
$$

(f) $3 \mathrm{~s}=-9$ Solution:- Now,

We have to divide both sides of the equation by 3,
Then, we get,

$$
\begin{aligned}
& =3 s / 3=-9 / 3 \\
& =s=-3
\end{aligned}
$$

(g) $3 s+12=0$

Solution:-
First we have to subtract 12 to the both sides of the equation,
Then, we get,

$$
\begin{aligned}
& =3 s+12-12=0-12 \\
& =3 s=-12
\end{aligned}
$$

Now,
We have to divide both sides of the equation by 3,
Then, we get,

$$
\begin{aligned}
& =3 s / 3=-12 / 3 \\
& =s=-4
\end{aligned}
$$

(h) $3 s=0$

Solution:- Now,
We have to divide both sides of the equation by 3,
Then, we get,

$$
\begin{aligned}
& =3 s / 3=0 / 3 \\
& =s=0
\end{aligned}
$$

(i) $2 q=6$

Solution:- Now,
We have to divide both sides of the equation by 2 ,
Then, we get,

$$
\begin{aligned}
& =2 q / 2=6 / 2 \\
& =q=3
\end{aligned}
$$

(j) $2 q-6=0$

Solution:-
First we have to add 6 to the both sides of the equation,
Then, we get,

$$
\begin{aligned}
& =2 q-6+6=0+6 \\
& =2 q=6
\end{aligned}
$$

Now,
We have to divide both sides of the equation by 2 ,
Then, we get,

$$
\begin{aligned}
& =2 q / 2=6 / 2 \\
& =q=3
\end{aligned}
$$

(k) $2 q+6=0$

Solution:-

First we have to subtract 6 to the both sides of the equation,
Then, we get,

$$
\begin{aligned}
& =2 q+6-6=0-6 \\
& =2 q=-6
\end{aligned}
$$

Now,
We have to divide both sides of the equation by 2 ,
Then, we get,

$$
\begin{aligned}
& =2 q / 2=-6 / 2 \\
& =q=-3
\end{aligned}
$$

(I) $2 q+6=12$

Solution:-

First we have to subtract 6 to the both sides of the equation,

Then, we get,

$$
\begin{aligned}
& =2 q+6-6=12-6 \\
& =2 q=6
\end{aligned}
$$

Now,
We have to divide both sides of the equation by 2 ,
Then, we get,

$$
\begin{aligned}
& =2 q / 2=6 / 2 \\
& =q=3
\end{aligned}
$$

1. Solve the following equations:

(a) $2 y+(5 / 2)=(37 / 2)$

Solution:-

By transposing (5/2) from LHS to RHS it becomes -5/2
Then,

$$
\begin{aligned}
& =2 y=(37 / 2)-(5 / 2) \\
& =2 y=(37-5) / 2 \\
& =2 y=32 / 2 \text { Now, }
\end{aligned}
$$

Divide both side by 2 ,

$$
\begin{aligned}
& =2 y / 2=(32 / 2) / 2 \\
& =y=(32 / 2) \times(1 / 2)
\end{aligned}
$$

$$
\begin{aligned}
& =y=32 / 4 \\
& =y=8
\end{aligned}
$$

(b) $5 t+28=10$

Solution:-

By transposing 28 from LHS to RHS it becomes - 28
Then,

$$
\begin{aligned}
& =5 t=10-28 \\
& =5 t=-18
\end{aligned}
$$

Now,
Divide both side by 5,

$$
\begin{aligned}
& =5 t / 5=-18 / 5 \\
& =t=-18 / 5
\end{aligned}
$$

(c) $(a / 5)+3=2$

Solution:-
By transposing 3 from LHS to RHS it becomes -3
Then,

$$
\begin{aligned}
& =a / 5=2-3 \\
& =a / 5=-1
\end{aligned}
$$

Now,
Multiply both side by 5,

$$
\begin{aligned}
& =(a / 5) \times 5=-1 \times 5 \\
& =a=-5
\end{aligned}
$$

(d) $(q / 4)+7=5$

Solution:-

By transposing 7 from LHS to RHS it becomes -7
Then,

$$
\begin{aligned}
& =q / 4=5-7 \\
& =q / 4=-2 \text { Now, }
\end{aligned}
$$

Multiply both side by 4,

$$
\begin{aligned}
& =(q / 4) \times 4=-2 \times 4 \\
& =a=-8
\end{aligned}
$$

(e) $(5 / 2) x=-5$

Solution:-

First we have to multiply both the side by 2,

$$
\begin{aligned}
& =(5 x / 2) \times 2=-5 \times 2 \\
& =5 x=-10
\end{aligned}
$$

Now,
We have to divide both the side by 5,
Then we get,

$$
\begin{aligned}
& =5 x / 5=-10 / 5 \\
& =x=-2
\end{aligned}
$$

(f) $(5 / 2) x=25 / 4$

Solution:-

First we have to multiply both the side by 2 ,

$$
\begin{aligned}
& =(5 x / 2) \times 2=(25 / 4) \times 2 \\
& =5 x=(25 / 2)
\end{aligned}
$$

Now,
We have to divide both the side by 5 ,
Then we get,

$$
\begin{aligned}
& =5 x / 5=(25 / 2) / 5 \\
& =x=(25 / 2) \times(1 / 5) \\
& =x=(5 / 2)
\end{aligned}
$$

(g) $7 m+(19 / 2)=13$

Solution:-

By transposing (19/2) from LHS to RHS it becomes -19/2
Then,

$$
\begin{aligned}
& =7 m=13-(19 / 2) \\
& =7 m=(26-19) / 2 \\
& =7 m=7 / 2 \text { Now, }
\end{aligned}
$$

Divide both side by 7 ,

$$
\begin{aligned}
& =7 \mathrm{~m} / 7=(7 / 2) / 7 \\
& =\mathrm{m}=(7 / 2) \times(1 / 7)
\end{aligned}
$$

$$
=m=1 / 2
$$

(h) $6 z+10=-2$

Solution:-

By transposing 10 from LHS to RHS it becomes - 10
Then,

$$
\begin{aligned}
& =6 z=-2-10 \\
& =6 z=-12 \text { Now, }
\end{aligned}
$$

Divide both side by 6 ,

$$
\begin{aligned}
& =6 z / 6=-12 / 6 \\
& =m=-2
\end{aligned}
$$

(i) $(3 / 2) I=2 / 3$

Solution:-

First we have to multiply both the side by 2 ,

$$
\begin{aligned}
& =(31 / 2) \times 2=(2 / 3) \times 2 \\
& =31=(4 / 3)
\end{aligned}
$$

Now,
We have to divide both the side by 3 ,
Then we get,

$$
\begin{aligned}
& =31 / 3=(4 / 3) / 3 \\
& =1=(4 / 3) \times(1 / 3) \\
& =x=(4 / 9)
\end{aligned}
$$

(j) $(2 b / 3)-5=3$

Solution:-
By transposing -5 from LHS to RHS it becomes 5
Then,

$$
\begin{aligned}
& =2 \mathrm{~b} / 3=3+5 \\
& =2 \mathrm{~b} / 3=8 \text { Now, }
\end{aligned}
$$

Multiply both side by 3 ,

$$
\begin{aligned}
& =(2 b / 3) \times 3=8 \times 3 \\
& =2 b=24 \text { And, }
\end{aligned}
$$

Divide both side by 2,

$$
\begin{aligned}
& =2 b / 2=24 / 2 \\
& =b=12
\end{aligned}
$$

2. Solve the following equations:

(a) $2(x+4)=12$

Solution:-
Let us divide both the side by 2 ,

$$
\begin{aligned}
& =(2(x+4)) / 2=12 / 2 \\
& =x+4=6
\end{aligned}
$$

By transposing 4 from LHS to RHS it becomes -4

$$
\begin{aligned}
& =x=6-4 \\
& =x=2
\end{aligned}
$$

(b) $3(n-5)=21$

Solution:-

Let us divide both the side by 3 ,

$$
\begin{aligned}
& =(3(n-5)) / 3=21 / 3 \\
& =n-5=7
\end{aligned}
$$

By transposing -5 from LHS to RHS it becomes 5

$$
\begin{aligned}
& =n=7+5 \\
& =n=12
\end{aligned}
$$

(c) $3(n-5)=-21$

Solution:-
Let us divide both the side by 3 ,

$$
\begin{aligned}
& =(3(n-5)) / 3=-21 / 3 \\
& =n-5=-7
\end{aligned}
$$

By transposing -5 from LHS to RHS it becomes 5

$$
\begin{aligned}
& =n=-7+5 \\
& =n=-2
\end{aligned}
$$

(d) $-4(2+x)=8$

Solution:-

Let us divide both the side by -4 ,

$$
\begin{aligned}
& =(-4(2+x)) /(-4)=8 /(-4) \\
& =2+x=-2
\end{aligned}
$$

By transposing 2 from LHS to RHS it becomes - 2

$$
\begin{aligned}
& =x=-2-2 \\
& =x=-4
\end{aligned}
$$

(e) $4(2-x)=8$

Solution:-

Let us divide both the side by 4,

$$
\begin{aligned}
& =(4(2-x)) / 4=8 / 4 \\
& =2-x=2
\end{aligned}
$$

By transposing 2 from LHS to RHS it becomes -2

$$
\begin{aligned}
& =-x=2-2 \\
& =-x=0 \\
& =x=0
\end{aligned}
$$

3. Solve the following equations:

(a) $4=5(p-2)$

Solution:-

Let us divide both the side by 5 ,

$$
\begin{aligned}
& =4 / 5=(5(p-2)) / 5 \\
& =4 / 5=p-2
\end{aligned}
$$

By transposing -2 from RHS to LHS it becomes 2

$$
\begin{aligned}
& =(4 / 5)+2=p \\
& =(4+10) / 5=p \\
& =p=14 / 5
\end{aligned}
$$

(b) $-4=5(p-2)$

Solution:-
Let us divide both the side by 5 ,

$$
\begin{aligned}
& =-4 / 5=(5(p-2)) / 5 \\
& =-4 / 5=p-2
\end{aligned}
$$

By transposing - 2 from RHS to LHS it becomes 2

$$
\begin{aligned}
& =-(4 / 5)+2=p \\
& =(-4+10) / 5=p \\
& =p=6 / 5
\end{aligned}
$$

(c) $16=4+3(t+2)$

Solution:-

By transposing 4 from RHS to LHS it becomes - 4

$$
\begin{aligned}
& =16-4=3(t+2) \\
& =12=3(t+2)
\end{aligned}
$$

Let us divide both the side by 3 ,

$$
\begin{aligned}
& =12 / 3=(3(t+2)) / 3 \\
& =4=t+2
\end{aligned}
$$

By transposing 2 from RHS to LHS it becomes - 2

$$
\begin{aligned}
& =4-2=\mathrm{t} \\
& =\mathrm{t}=2
\end{aligned}
$$

(d) $4+5(p-1)=34$

Solution:-

By transposing 4 from LHS to RHS it becomes -4

$$
\begin{aligned}
& =5(p-1)=34-4 \\
& =5(p-1)=30
\end{aligned}
$$

Let us divide both the side by 5 ,

$$
\begin{aligned}
& =(5(p-1)) / 5=30 / 5 \\
& =p-1=6
\end{aligned}
$$

By transposing - 1 from RHS to LHS it becomes 1

$$
\begin{aligned}
& =p=6+1 \\
& =p=7
\end{aligned}
$$

(e) $0=16+4(\mathrm{~m}-6)$

Solution:-

By transposing 16 from RHS to LHS it becomes - 16

$$
\begin{aligned}
& =0-16=4(m-6) \\
& =-16=4(m-6)
\end{aligned}
$$

Let us divide both the side by 4,

$$
\begin{aligned}
& =-16 / 4=(4(m-6)) / 4 \\
& =-4=m-6
\end{aligned}
$$

By transposing - 6 from RHS to LHS it becomes 6

$$
\begin{aligned}
& =-4+6=m \\
& =m=2
\end{aligned}
$$

4. (a) Construct 3 equations starting with $\mathrm{x}=2$

Solution:- First
equation is,
Multiply both side by 6

$$
=6 x=12 \quad \ldots \text { [equation } 1]
$$

Second equation is,
Subtracting 4 from both side,

$$
=6 x-4=12-4
$$

$$
=6 x-4=8 \quad \ldots \text { [equation 2] }
$$

Third equation is,
Divide both side by 6

$$
\begin{aligned}
& =(6 x / 6)-(4 / 6)=(8 / 6) \\
& =x-(4 / 6)=(8 / 6)
\end{aligned}
$$

(b) Construct 3 equations starting with $x=-2$

Solution:- First
equation is,
Multiply both side by 5

$$
\begin{equation*}
=5 x=-10 \tag{equation1}
\end{equation*}
$$

Second equation is,
Subtracting 3 from both side,

$$
\begin{aligned}
& =5 x-3=-10-3 \\
& =5 x-3=-13
\end{aligned}
$$

... [equation 2]

Third equation is,
Dividing both sides by 2

$$
=(5 x / 2)-(3 / 2)=(-13 / 2)
$$

... [equation 3]

1. Set up equations and solve them to find the unknown numbers in the following cases:
(a) Add 4 to eight times a number; you get 60.

Solution:-
Let us assume the required number be x
Eight times a number $=8 x$
The given above statement can be written in the equation form as, $=$

$$
8 x+4=60
$$

By transposing 4 from LHS to RHS it becomes -4

$$
\begin{aligned}
& =8 x=60-4 \\
& =8 x=56
\end{aligned}
$$

Divide both side by 8 , Then we get,

$$
\begin{aligned}
& =(8 x / 8)=56 / 8 \\
& =x=7
\end{aligned}
$$

(b) One-fifth of a number minus 4 gives 3.

Solution:-
Let us assume the required number be x
One-fifth of a number $=(1 / 5) x=x / 5$
The given above statement can be written in the equation form as, $=$

$$
(x / 5)-4=3
$$

By transposing - 4 from LHS to RHS it becomes 4

$$
\begin{aligned}
& =x / 5=3+4 \\
& =x / 5=7
\end{aligned}
$$

Multiply both side by 5 , Then we get,

$$
\begin{aligned}
& =(x / 5) \times 5=7 \times 5 \\
& =x=35
\end{aligned}
$$

(c) If I take three-fourths of a number and add 3 to it, I get 21.

Solution:-

Let us assume the required number be x
Three-fourths of a number $=(3 / 4) \mathrm{x}$
The given above statement can be written in the equation form as,

$$
=(3 / 4) x+3=21
$$

By transposing 3 from LHS to RHS it becomes -3

$$
\begin{aligned}
& =(3 / 4) x=21-3 \\
& =(3 / 4) x=18
\end{aligned}
$$

Multiply both side by 4,
Then we get,

$$
\begin{aligned}
& =(3 x / 4) \times 4=18 \times 4 \\
& =3 x=72
\end{aligned}
$$

Then,
Divide both side by 3 ,

$$
\begin{aligned}
& =(3 x / 3)=72 / 3 \\
& =x=24
\end{aligned}
$$

(d) When I subtracted 11 from twice a number, the result was 15.

Solution:-

Let us assume the required number be x
Twice a number $=2 x$
The given above statement can be written in the equation form as, $=$

$$
2 x-11=15
$$

By transposing -11 from LHS to RHS it becomes 11

$$
\begin{aligned}
& =2 x=15+11 \\
& =2 x=26
\end{aligned}
$$

Then,
Divide both side by 2 ,

$$
\begin{aligned}
& =(2 x / 2)=26 / 2 \\
& =x=13
\end{aligned}
$$

(e) Munna subtracts thrice the number of notebooks he has from 50, he finds the result to be 8.

Solution:-

Let us assume the required number be x
Thrice the number $=3 x$
The given above statement can be written in the equation form as, $=$

$$
50-3 x=8
$$

By transposing 50 from LHS to RHS it becomes - 50

$$
\begin{aligned}
& =-3 x=8-50 \\
& =-3 x=-42
\end{aligned}
$$

Then,
Divide both side by -3 ,

$$
\begin{aligned}
& =(-3 x /-3)=-42 /-3 \\
& =x=14
\end{aligned}
$$

(f) Ibenhal thinks of a number. If she adds 19 to it and divides the sum by 5, she will get 8. Solution:-
Let us assume the required number be x
The given above statement can be written in the equation form as, $=$

$$
(x+19) / 5=8
$$

Multiply both side by 5 ,

$$
\begin{aligned}
& =((x+19) / 5) \times 5=8 \times 5 \\
& =x+19=40
\end{aligned}
$$

Then,
By transposing 19 from LHS to RHS it becomes - 19

$$
\begin{aligned}
& =x=40-19 \\
& =x=21
\end{aligned}
$$

(g) Anwar thinks of a number. If he takes away 7 from 5/2 of the number, the result is 23 .

Solution:-

Let us assume the required number be x
$5 / 2$ of the number $=(5 / 2) x$

The given above statement can be written in the equation form as, $=$ (5/2) $x-7=23$
By transposing -7 from LHS to RHS it becomes 7

$$
\begin{aligned}
& =(5 / 2) x=23+7 \\
& =(5 / 2) x=30
\end{aligned}
$$

Multiply both side by 2 ,

$$
\begin{aligned}
& =((5 / 2) x) \times 2=30 \times 2 \\
& =5 x=60
\end{aligned}
$$

Then,
Divide both the side by 5

$$
\begin{aligned}
& =5 x / 5=60 / 5 \\
& =x=12
\end{aligned}
$$

2. Solve the following:

(a) The teacher tells the class that the highest marks obtained by a student in her class is twice the lowest marks plus 7 . The highest score is 87 . What is the lowest score?

Solution:-

Let us assume the lowest score be x
From the question it is given that,
The highest score is $=87$
Highest marks obtained by a student in her class is twice the lowest marks plus $7=2 x+7$ $5 / 2$ of the number $=(5 / 2) x$
The given above statement can be written in the equation form as, Then,
$=2 \mathrm{x}+7$ = Highest score
$=2 x+7=87$
By transposing 7 from LHS to RHS it becomes -7

$$
\begin{aligned}
& =2 x=87-7 \\
& =2 x=80
\end{aligned}
$$

Now,
Divide both the side by 2

$$
\begin{aligned}
& =2 x / 2=80 / 2 \\
& =x=40
\end{aligned}
$$

Hence, the lowest score is 40
(b) In an isosceles triangle, the base angles are equal. The vertex angle is 40°. What are the base angles of the triangle? (Remember, the sum of three angles of a triangle is 180°).

Solution:-

From the question it is given that,
We know that, the sum of angles of a triangle is 180°
Let base angle be b
Then,

$$
\begin{aligned}
& =b+b+40^{\circ}=180^{\circ} \\
& =2 b+40=180^{\circ}
\end{aligned}
$$

By transposing 40 from LHS to RHS it becomes -40

$$
\begin{aligned}
& =2 b=180-40 \\
& =2 b=140
\end{aligned}
$$

Now,
Divide both the side by 2

$$
\begin{aligned}
& =2 b / 2=140 / 2 \\
& =b=70^{\circ}
\end{aligned}
$$

Hence, 70° is the base angle of an isosceles triangle.
(c) Sachin scored twice as many runs as Rahul. Together, their runs fell two short of a double century. How many runs did each one score?

Solution:-

Let us assume Rahul's score be x
Then,
Sachin scored twice as many runs as Rahul is 2 x
Together, their runs fell two short of a double century,

$$
\begin{aligned}
& =\text { Rahul's score }+ \text { Sachin's score }=200-2 \\
& =x+2 x=198 \\
& =3 x=198
\end{aligned}
$$

Divide both the side by 3 ,

$$
\begin{aligned}
& =3 x / 3=198 / 3 \\
& =x=66
\end{aligned}
$$

So, Rahul's score is 66
And Sachin's score is $2 x=2 \times 66=132$

3. Solve the following:

(i) Irfan says that he has 7 marbles more than five times the marbles Parmit has. Irfan has 37 marbles. How many marbles does Parmit have?

Solution:-

Let us assume number of Parmit's marbles $=\mathrm{m}$
From the question it is given that,
Then,
Irfan has 7 marbles more than five times the marbles Parmit has

$$
\begin{aligned}
& =5 \times \text { Number of Parmit's marbles }+7=\text { Total number of marbles Irfan having } \\
& =(5 \times \mathrm{m})+7=37 \\
& =5 \mathrm{~m}+7=37
\end{aligned}
$$

By transposing 7 from LHS to RHS it becomes -7

$$
\begin{aligned}
& =5 \mathrm{~m}=37-7 \\
& =5 \mathrm{~m}=30
\end{aligned}
$$

Divide both the side by 5

$$
\begin{aligned}
& =5 \mathrm{~m} / 5=30 / 5 \\
& =\mathrm{m}=6
\end{aligned}
$$

So, Permit has 6 marbles
(ii) Laxmi's father is 49 years old. He is 4 years older than three times Laxmi's age. What is Laxmi's age?

Solution:-

Let Laxmi's age to be $=y$ years old
From the question it is given that,
Lakshmi's father is 4 years older than three times of her age

$$
\begin{aligned}
& =3 \times \text { Laxmi's age }+4=\text { Age of Lakshmi's father } \\
& =(3 \times y)+4=49 \\
& =3 y+4=49
\end{aligned}
$$

By transposing 4 from LHS to RHS it becomes -4

$$
\begin{aligned}
& =3 y=49-4 \\
& =3 y=45
\end{aligned}
$$

Divide both the side by 3

$$
=3 y / 3=45 / 3
$$

$$
=y=15
$$

So, Lakshmi's age is 15 years.
(iii) People of Sundargram planted trees in the village garden. Some of the trees were fruit trees. The number of non-fruit trees were two more than three times the number of fruit trees. What was the number of fruit trees planted if the number of non-fruit trees planted was 77?

Solution:-

Let the number of fruit tress be f.
From the question it is given that,
$3 \times$ number of fruit trees $+2=$ number of non-fruit trees $=$

$$
3 f+2=77
$$

By transposing 2 from LHS to RHS it becomes -2

$$
\begin{aligned}
& =3 f=77-2 \\
& =3 f=75
\end{aligned}
$$

Divide both the side by 3

$$
\begin{aligned}
& =3 f / 3=75 / 3 \\
& =f=25
\end{aligned}
$$

So, number of fruit tree was 25.
4. Solve the following riddle:

I am a number,

Tell my identity!

Take me seven times over

And add a fifty!

To reach a triple century

You still need forty!

Solution:-

Let us assume the number be x.
Take me seven times over and add a fifty $=7 x+50$
To reach a triple century you still need forty $=(7 x+50)+40=300$

$$
\begin{aligned}
& =7 x+50+40=300 \\
& =7 x+90=300
\end{aligned}
$$

By transposing 90 from LHS to RHS it becomes -90

Simple Equations

$$
\begin{aligned}
& =7 x=300-90 \\
& =7 x=210
\end{aligned}
$$

Divide both side by 7

$$
\begin{aligned}
& =7 x / 7=210 / 7 \\
& =x=30
\end{aligned}
$$

Hence the number is 30 .

