Exercise 4.4

1. Find the nature of the roots of the following quadratic equations. If the real roots exist, find them;
(i) $2 x^{2}-3 x+5=0$
(ii) $3 x^{2}-4 \sqrt{ } 3 x+4=0$
(iii) $2 x^{2}-6 x+3=0$

Solutions:
(i) Given,
$2 x^{2}-3 x+5=0$
Comparing the equation with $a x^{2}+b x+c=0$, we get a
$=2, b=-3$ and $c=5$
We know, Discriminant $=b^{2}-4 a c$
$=(-3)^{2}-4(2)(5)=9-40$
$=-31$
As you can see, $\mathrm{b}^{2}-4 \mathrm{ac}<0$
Therefore, no real root is possible for the given equation, $2 x^{2}-3 x+5=0$.
(ii) $3 x^{2}-4 \sqrt{3} x+4=0$

Comparing the equation with $a x^{2}+b x+c=0$, we get
$a=3, b=-4 \sqrt{ } 3$ and $c=4 \mathrm{We}$ know, Discriminant $=$
$b^{2}-4 a c$
$=(-4 \sqrt{ } 3)^{2}-4(3)(4)$
$=48-48=0$

As $b^{2}-4 a c=0$,
Real roots exist for the given equation and they are equal to each other. Hence the roots will be $-b / 2 a$ and $-b / 2 a$.
$-b / 2 a=-(-4 \sqrt{ } 3) / 2 \times 3=4 \sqrt{ } 3 / 6=2 \sqrt{ } 3 / 3=2 / \sqrt{ } 3$ Therefore, the roots are $2 / \sqrt{ } 3$ and $2 / \sqrt{ } 3$.
(iii) $2 x^{2}-6 x+3=0$

Comparing the equation with $a x^{2}+b x+c=0$, we get a $=2, b=-6, c=3$
As we know, Discriminant $=b^{2}-4 a c$
$=(-6)^{2}-4(2)(3)$
$=36-24=12$

NCERT Solutions For Class 10 Maths Chapter 4 Quadratic Equations

As $b^{2}-4 a c>0$,
Therefore, there are distinct real roots exist for this equation, $2 x^{2}-6 x+3=0$.
$x=-b \pm \frac{\sqrt{b^{2}-4 a c}}{2 \mathrm{a}}$
$=-(-6) \pm \frac{\sqrt{-6^{2}-4(2)(3)}}{2(2)}$
$=\frac{6 \pm 2 \sqrt{3}}{4}$
$=\frac{3 \pm \sqrt{3}}{2}$
Therefore the roots for the given equation are $\frac{3+\sqrt{3}}{2}$ and $\frac{3-\sqrt{3}}{2}$.
2. Find the values of \boldsymbol{k} for each of the following quadratic equations, so that they have two equal roots.
(i) $2 x^{2}+k x+3=0$
(ii) $k x(x-2)+6=0$

Solutions:

(i) $2 x^{2}+k x+3=0$

Comparing the given equation with $a x^{2}+b x+c=0$, we get, a
$=2, b=\mathrm{k}$ and $c=3$
As we know, Discriminant $=b^{2}-4 a c$
$=(k)^{2}-4(2)(3)$
$=k^{2}-24$
For equal roots, we know,
Discriminant $=0 k^{2}-24=$
$0 k^{2}=24 \mathrm{k}= \pm \sqrt{ } 24=$ $\pm 2 \sqrt{6}$
(ii) $k x(x-2)+6=0$ or $k x^{2}-2 k x+6=0$

Comparing the given equation with $a x^{2}+b x+c=0$, we get a
$=k, b=-2 k$ and $c=6$
We know, Discriminant $=b^{2}-4 a c$
$=(-2 k)^{2}-4(k)(6)$
$=4 k^{2}-24 k$

EDUGRロSS

NCERT Solutions For Class 10 Maths Chapter 4 Quadratic Equations

For equal roots, we know,
$b 2-4 a c=04 k^{2}-24 k=0$
$4 k(k-6)=0$
Either $4 k=0$ or $k=6=0$
$k=0$ or $k=6$
However, if $k=0$, then the equation will not have the terms ' x^{2} ' and ' x '.
Therefore, if this equation has two equal roots, k should be 6 only.
3. Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is $\mathbf{8 0 0} \mathrm{m}^{2}$? If so, find its length and breadth.

Solutions: Let the breadth of mango grove be l. Length
of mango grove will be $2 l$.
Area of mango grove $=(2 l)(l)=2 l^{2}$
$2 l^{2}=800 l^{2}=$
$800 / 2=400 l^{2}-$
$400=0$
Comparing the given equation with $a x^{2}+b x+c=0$, we get a
$=1, b=0, c=400$
As we know, Discriminant $=b^{2}-4 a c$
$\Rightarrow(0)^{2}-4 \times(1) \times(-400)=1600$
Here, $b^{2}-4 a c>0$
Thus, the equation will have real roots. And hence, the desired rectangular mango grove can be designed. $l= \pm 20$
As we know, the value of length cannot be negative.
Therefore, breadth of mango grove $=20 \mathrm{~m}$
Length of mango grove $=2 \times 20=40 \mathrm{~m}$
4. Is the following situation possible? If so, determine their present ages. The sum of the ages of two friends is $\mathbf{2 0}$ years. Four years ago, the product of their ages in years was 48.

Solution: Let's say, the age of one friend be x years.
Then, the age of the other friend will be $(20-x)$ years.
Four years ago,
Age of First friend $=(x-4)$ years
Age of Second friend $=(20-x-4)=(16-x)$ years
As per the given question, we can write,
$(x-4)(16-x)=48$
$16 x-x^{2}-64+4 x=48$
$-x^{2}+20 x-112=0$
$x^{2}-20 x+112=0$

NCERT Solutions For Class 10 Maths Chapter 4 Quadratic Equations

Comparing the equation with $a x^{2}+b x+c=0$, we get a $=1, b=-20$ and $c=112$

Discriminant $=b^{2}-4 a c$
$=>(-20)^{2}-4 \times 112$
$\Rightarrow 400-448=-48$
$b^{2}-4 a c<0$
Therefore, there will be no real solution possible for the equations. Hence, condition doesn't exist.
5. Is it possible to design a rectangular park of perimeter 80 and area 400 m 2 ? If so find its length and breadth.

Solution: Let the length and breadth of the park be l and b .
Perimeter of the rectangular park $=2(l+b)=80$
So, $l+b=40$
Or, $b=40-l$
Area of the rectangular park $=l \times b=l(40-l)=40 l-l^{2} 40 l-l^{2}=400 l^{2}$
$-40 l+400=0$, which is a quadratic equation.
Comparing the equation with $a x^{2}+b x+c=0$, we get a
$=1, b=-40, c=400$
Since, Discriminant $=b^{2}-4 a c$
$=>(-40)^{2}-4 \times 400$
=> $1600-1600=0$
Thus, $b^{2}-4 a c=0$
Therefore, this equation has equal real roots. Hence, the situation is possible.
Root of the equation, l
$=-b / 2 a$
$l=(40) / 2(1)=40 / 2=20$
Therefore, length of rectangular park, $l=20 \mathrm{~m}$ And breadth of the park, $b=40-l=40-20=20 \mathrm{~m}$.

