

EXERCISE 5.1

PAGE: 101

1. Find the complement of each of the following angles:

(i)

Solution:-

Two angles are said to be complementary if the sum of their measures is 90°.

The given angle is 20°

Let the measure of its complement be x°.

Then,

 $= x + 20^{\circ} = 90^{\circ}$ $= x = 90^{\circ} - 20^{\circ}$ $= x = 70^{\circ}$

Hence, the complement of the given angle measures 70°.

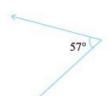
(ii)

Solution:-

Two angles are said to be complementary if the sum of their measures is 90°.

The given angle is 63°

63°


Let the measure of its complement be x°.

Then,

Hence, the complement of the given angle measures 27°.

(iii)

Solution:-

Two angles are said to be complementary if the sum of their measures is 90°.

The given angle is 57°

Let the measure of its complement be x°.

Then,

```
= x + 57^{\circ} = 90^{\circ}
= x = 90^{\circ} - 57^{\circ}
= x = 33^{\circ}
```

Hence, the complement of the given angle measures 33°.

2. Find the supplement of each of the following angles:

Solution:-

Two angles are said to be supplementary if the sum of their measures is 180°.

The given angle is 105°

Let the measure of its supplement be x°.

Then,

```
= x + 105° = 180°
= x = 180° - 105°
= x = 75°
```

Hence, the supplement of the given angle measures 75°.

(ii)

Solution:-

Two angles are said to be supplementary if the sum of their measures is 180°.

The given angle is 87°

Let the measure of its supplement be x°.

Then,

```
= x + 87^{\circ} = 180^{\circ}
= x = 180^{\circ} - 87^{\circ}
= x = 93^{\circ}
```

154°

Hence, the supplement of the given angle measures 93°.

Solution:-

Two angles are said to be supplementary if the sum of their measures is 180°.

The given angle is 154°

Let the measure of its supplement be x°.

Then,

```
= x + 154^{\circ} = 180^{\circ}
= x = 180^{\circ} - 154^{\circ}
= x = 26^{\circ}
```

Hence, the supplement of the given angle measures 93°.

3. Identify which of the following pairs of angles are complementary and which are supplementary.

(i) 65°, 115°

Solution:-

We have to find the sum of given angles to identify whether the angles are complementary or supplementary.

Then,

= 65° + 115°

= 180°

If the sum of two angle measures is 180°, then the two angles are said to be supplementary.

...These angles are supplementary angles.

(ii) 63°, 27°

Solution:-

We have to find the sum of given angles to identify whether the angles are complementary or supplementary.

Then,

= 63° + 27°

= 90°

If the sum of two angle measures is 90°, then the two angles are said to be complementary.

...These angles are complementary angles.

(iii) 112°, 68°

Solution:-

We have to find the sum of given angles to identify whether the angles are complementary or supplementary.

Then,

```
= 112° + 68°
```

= 180°

If the sum of two angle measures is 180°, then the two angles are said to be supplementary.

...These angles are supplementary angles.

(iv) 130°, 50°

Solution:-

We have to find the sum of given angles to identify whether the angles are complementary or supplementary.

Then,

 $= 130^{\circ} + 50^{\circ}$

= 180°

If the sum of two angle measures is 180°, then the two angles are said to be supplementary.

...These angles are supplementary angles.

(v) 45°, 45°

Solution:-

We have to find the sum of given angles to identify whether the angles are complementary or supplementary.

Then,

```
= 45^{\circ} + 45^{\circ}
```

= 90°

If the sum of two angle measures is 90°, then the two angles are said to be complementary.

∴These angles are complementary angles.

(vi) 80°, 10°

Solution:-

We have to find the sum of given angles to identify whether the angles are complementary or supplementary.

Then,

```
= 80° + 10°
= 90°
```

If the sum of two angle measures is 90°, then the two angles are said to be complementary.

∴These angles are complementary angles.

4. Find the angles which is equal to its complement.

Solution:-

Let the measure of the required angle be x°.

We know that, sum of measures of complementary angle pair is 90°.

Then,

 $= x + x = 90^{\circ}$ = 2x = 90^{\circ} = x = 90/2

= x = 45°

Hence, the required angle measures is 45°.

5. Find the angles which is equal to its supplement.

Solution:-

Let the measure of the required angle be x°.

We know that, sum of measures of supplementary angle pair is 180°. Then,

= x + x = 180° = 2x = 180° = x = 180/2

Hence, the required angle measures is 90°.

6. In the given figure, $\angle 1$ and $\angle 2$ are supplementary angles. If $\angle 1$ is decreased, what changes should take place in $\angle 2$ so that both angles still remain supplementary.

Solution:-

From the question, it is given that, $\angle 1$

and $\angle 2$ are supplementary angles.

If $\angle 1$ is decreased, then $\angle 2$ must be increased by the same value. Hence, this angle pair remains supplementary.

7. Can two angles be supplementary if both of them are:

(i). Acute?

Solution:-

No. If two angles are acute, means less than 90°, the two angles cannot be supplementary. Because, their sum will be always less than 90°.

(ii). Obtuse? Solution:-

No. If two angles are obtuse, means more than 90°, the two angles cannot be supplementary. Because, their sum will be always more than 180°.

(iii). Right?

Solution:-

Yes. If two angles are right, means both measures 90°, then two angles can form a supplementary pair.

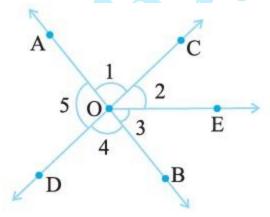
 $:.90^{\circ} + 90^{\circ} = 180$

8. An angle is greater than 45°. Is its complementary angle greater than 45° or equal to 45° or less than 45°?

Solution:-

Let us assume the complementary angles be p and q,

We know that, sum of measures of complementary angle pair is 90°. Then,


$$= p + q = 90^{\circ}$$

It is given in the question that p > 45° Adding q on both the sides,

```
= p + q > 45^{\circ} + q
= 90° > 45° + q
= 90° - 45° > q
= q < 45°
```

Hence, its complementary angle is less than 45°.

9. In the adjoining figure:

(i) Is $\angle 1$ adjacent to $\angle 2$?

Solution:-

By observing the figure we came to conclude that, Yes, as ∠1 and ∠2 having a common vertex i.e. O and a common arm OC. Their non-common arms OA and OE are on both the side of common arm.

(ii) Is $\angle AOC$ adjacent to $\angle AOE$?

Solution:-

By observing the figure, we came to conclude that,

No, since they are having a common vertex O and common arm OA.

But, they have no non-common arms on both the side of the common arm.

(iii) Do ∠COE and ∠EOD form a linear pair? Solution:-

By observing the figure, we came to conclude that, A

Yes, as \angle COE and \angle EOD having a common vertex i.e. O and a common arm OE. Their non-common arms OC and OD are on both the side of common arm.

(iv) Are∠BOD and ∠DOA supplementary?

Solution:-

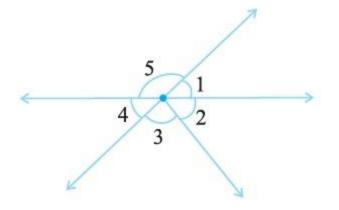
By observing the figure, we came to conclude that,

Yes, as ∠BOD and ∠DOA having a common vertex i.e. O and a common arm OE. Their non-common arms OA and OB are opposite to each other.

(v) Is $\angle 1$ vertically opposite to $\angle 4$?

Solution:-

Yes, $\angle 1$ and $\angle 2$ are formed by the intersection of two straight lines AB and CD.


(vi) What is the vertically opposite angle of $\angle 5$?

Solution:-

∠COB is the vertically opposite angle of ∠5. Because these two angles are formed by the intersection of two straight lines AB and CD.

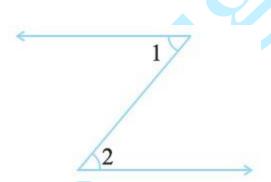
10. Indicate which pairs of angles are:

(i) Vertically opposite angles.

Solution:-

By observing the figure we can say that,

 $\angle 1$ and $\angle 4$, $\angle 5$ and $\angle 2 + \angle 3$ are vertically opposite angles. Because these two angles are formed by the intersection of two straight lines.

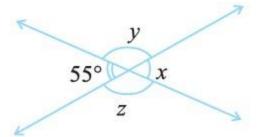

(ii) Linear pairs.

Solution:-

By observing the figure we can say that,

 $\angle 1$ and $\angle 5$, $\angle 5$ and $\angle 4$ as these are having a common vertex and also having non common arms opposite to each other.

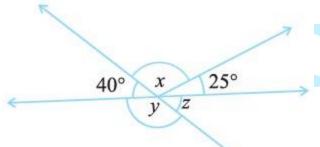
11. In the following figure, is ≥ 1 adjacent to ≥ 2 ? Give reasons.


Solution:-

 $\angle 1$ and $\angle 2$ are not adjacent angles. Because, they are not lie on the same vertex.

12. Find the values of the angles x, y, and z in each of the following:

(i)


Solution:-

 $\angle x = 55^{\circ}$, because vertically opposite angles. $\angle x + \angle y = 180^{\circ}$... [: linear pair]

 $\angle x + \angle y = 180^{\circ}$ $= 55^{\circ} + \angle y = 180^{\circ}$ $= \angle y = 180^{\circ} - 55^{\circ}$ $= \angle y = 125^{\circ}$ Then, $\angle y = \angle z$ $\therefore \angle z = 125^{\circ}$

... [: vertically opposite angles]

(ii)

Solution:-

 $\angle z = 40^\circ$, because vertically opposite angles.

 $\angle y + \angle z = 180^{\circ} \qquad \dots [\because \text{ linear pair}]$ $= \angle y + 40^{\circ} = 180^{\circ} \qquad \dots [\because \text{ linear pair}]$ $= \angle y = 180^{\circ} - 40^{\circ}$ $= \angle y = 140^{\circ} \qquad \dots [\because \text{ angles on straight line}]$ $65 + \angle x = 180^{\circ}$ $\angle x = 180^{\circ} - 65$ $\therefore \angle x = 115^{\circ}$

13. Fill in the blanks:

(i) If two angles are complementary, then the sum of their measures is ______ Solution:-

If two angles are complementary, then the sum of their measures is 90° .

(ii) If two angles are supplementary, then the sum of their measures is

Solution:-

If two angles are supplementary, then the sum of their measures is <u>180°</u>.

(iii) Two angles forming a linear pair are _

Solution:-

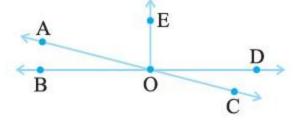
Two angles forming a linear pair are Supplementary.

(iv) If two adjacent angles are supplementary, they form a _____

Solution:-

If two adjacent angles are supplementary, they form a linear pair.

(v) If two lines intersect at a point, then the vertically opposite angles are always ______. Solution:-


If two lines intersect at a point, then the vertically opposite angles are always equal.

(vi) If two lines intersect at a point, and if one pair of vertically opposite angles are acute angles, then the other pair of vertically opposite angles are _____.

Solution:-

If two lines intersect at a point, and if one pair of vertically opposite angles are acute angles, then the other pair of vertically opposite angles are <u>Obtuse angles</u>.

14. In the adjoining figure, name the following pairs of angles.

(i) Obtuse vertically opposite angles

Solution:-

 \angle AOD and \angle BOC are obtuse vertically opposite angles in the given figure.

(ii) Adjacent complementary angles

Solution:-

 \angle EOA and \angle AOB are adjacent complementary angles in the given figure.

(iii) Equal supplementary angles

Solution:-

 \angle EOB and EOD are the equal supplementary angles in the given figure.

(iv) Unequal supplementary angles

Solution:-

 \angle EOA and \angle EOC are the unequal supplementary angles in the given figure.

(v) Adjacent angles that do not form a linear pair

Solution:-

 \angle AOB and \angle AOE, \angle AOE and \angle EOD, \angle EOD and \angle COD are the adjacent angles that do not form a linear pair in the given figure.

PAGE: 110

1. State the property that is used in each of the following statements?

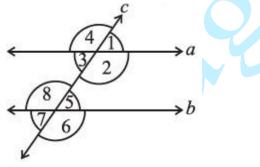
(i) If a \parallel b, then $\angle 1 = \angle 5$.

Solution:-

Corresponding angles property is used in the above statement.

(ii) If $\angle 4 = \angle 6$, then a || b.

Solution:-


Alternate interior angles property is used in the above statement.

(iii) If $\angle 4 + \angle 5 = 180^\circ$, then a || b.

Solution:-

Interior angles on the same side of transversal are supplementary.

2. In the adjoining figure, identify

(i) The pairs of corresponding angles.

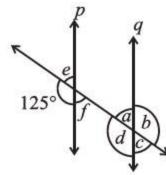
Solution:-

By observing the figure, the pairs of corresponding angle are, $\angle 1$ and $\angle 5$, $\angle 4$ and $\angle 8$, $\angle 2$ and $\angle 6$, $\angle 3$ and $\angle 7$

(ii) The pairs of alternate interior angles.

Solution:-

By observing the figure, the pairs of alternate interior angle are, $\angle 2$ and $\angle 8$, $\angle 3$ and $\angle 5$


(iii) The pairs of interior angles on the same side of the transversal. Solution:-

By observing the figure, the pairs of interior angles on the same side of the transversal are $\angle 2$ and $\angle 5$, $\angle 3$ and $\angle 8$

(iv) The vertically opposite angles. Solution:-

By observing the figure, the vertically opposite angles are, $\angle 1$ and $\angle 3$, $\angle 5$ and $\angle 7$, $\angle 2$ and $\angle 4$, $\angle 6$ and $\angle 8$

3. In the adjoining figure, $p \parallel q$. Find the unknown angles.

Solution:-

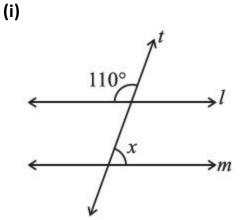
By observing the figure,

∠d = ∠125°

... [: corresponding angles]

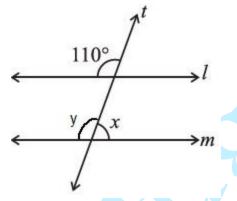
We know that, Linear pair is the sum of adjacent angles is 180° Then,

= ∠e + $125^{\circ} = 180^{\circ}$... [Linear pair] = ∠e = $180^{\circ} - 125^{\circ}$ = ∠e = 55°


From the rule of vertically opposite angles,

 $\angle f = \angle e = 55^{\circ}$ $\angle b = \angle d = 125^{\circ}$

By the property of corresponding angles,


$$\angle c = \angle f = 55^{\circ}$$

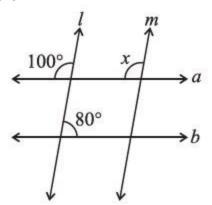
 $\angle a = \angle e = 55^{\circ}$

4. Find the value of x in each of the following figures if I \parallel m.

Solution:-

Let us assume other angle on the line m be $\angle y$,

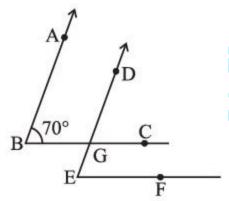
Then,


By the property of corresponding angles,

∠y = 110°

We know that Linear pair is the sum of adjacent angles is 180° Then,

 $= \angle x + \angle y = 180^{\circ}$ $= \angle x + 110^{\circ} = 180^{\circ}$ $= \angle x = 180^{\circ} - 110^{\circ}$ $= \angle x = 70^{\circ}$


(ii)

Solution:-

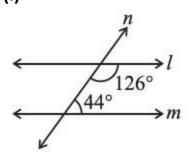
By the property of corresponding angles, $\angle x = 100^{\circ}$

5. In the given figure, the arms of two angles are parallel.

If ∠ABC = 70°, then find (i) ∠DGC (ii) ∠DEF

Solution:-

(i) Let us consider that AB || DG


BC is the transversal line intersecting AB and DG

By the property of corresponding angles,

 \angle DGC = \angle ABC Then, \angle DGC = 70°

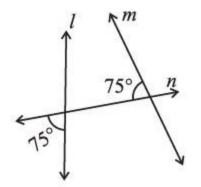
(ii) Let us consider that BC || EF DE is the transversal line intersecting BC and EF By the property of corresponding angles, \angle DEF = \angle DGC Then, \angle DEF = 70°

6. In the given figures below, decide whether I is parallel to m. (i)

Solution:-

Let us consider the two lines I and m, n is

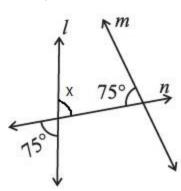
the transversal line intersecting I and m.


We know that the sum of interior angles on the same side of transversal is 180°. Then,

= 126° + 44° = 170°

But, the sum of interior angles on the same side of transversal is not equal to 180°. So, line I is not parallel to line m.

(ii)



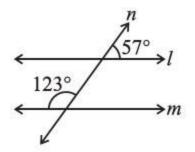
Solution:-

Let us assume $\angle x$ be the vertically opposite angle formed due to the intersection of the straight line I and transversal n,

Then, $\angle x = 75^{\circ}$

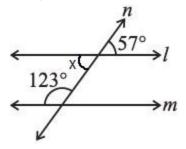
Let us consider the two lines I and m, n is the transversal line intersecting I and m.

We know that the sum of interior angles on the same side of transversal is 180°. Then,


= 75° + 75°

= 150°

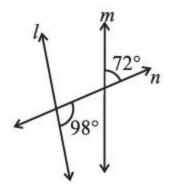
But, the sum of interior angles on the same side of transversal is not equal to 180°. So, line I is not parallel to line m.


(iii)

Solution:-

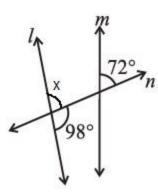
Let us assume $\angle x$ be the vertically opposite angle formed due to the intersection of the Straight line I and transversal line n,

Let us consider the two lines I and m,


n is the transversal line intersecting I and m.

We know that the sum of interior angles on the same side of transversal is 180°. Then,

 $= 123^{\circ} + \angle x \\= 123^{\circ} + 57^{\circ} \\= 180^{\circ}$


∴The sum of interior angles on the same side of transversal is equal to 180°. So, line I is parallel to line m.

(iv)

Solution:-

Let us assume $\angle x$ be the angle formed due to the intersection of the Straight line I and transversal line n,

We know that Linear pair is the sum of adjacent angles is equal to 180°.

 $= ∠x + 98^{\circ} = 180^{\circ} =$ $∠x = 180^{\circ} - 98^{\circ} =$ $∠x = 82^{\circ}$

Now, we consider $\angle x$ and 72° are the corresponding angles.

For I and m to be parallel to each other, corresponding angles should be equal. But, in the given figure corresponding angles measures 82° and 72° respectively. ∴Line I is not parallel to line m.