Exercise 7.1

Which of the following numbers are not perfect cubes?
(i) 216

Solution:
By resolving 216 into prime factor,

2	216
2	108
2	54
3	27
3	9
3	3
	1

$216=2 \times 2 \times 2 \times 3 \times 3 \times 3$
By grouping the factors in triplets of equal factors, $216=(2 \times 2 \times 2) \times(3 \times 3 \times 3)$
Here, 216 can be grouped into triplets of equal factors,
$\therefore 216=(2 \times 3)=6$

Hence, 216 is cube of 6 .
(ii) 128

Solution:
By resolving 128 into prime factor,

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

$128=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
By grouping the factors in triplets of equal factors, $128=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times 2$
Here, 128 cannot be grouped into triplets of equal factors, we are left of with one factors 2 .
$\therefore 128$ is not a perfect cube.
1000
Solution:(iii) By resolving 1000 into prime factor,

2	1000
2	500
2	250
5	125
5	25
5	5
	1

$1000=2 \times 2 \times 2 \times 5 \times 5 \times 5$
By grouping the factors in triplets of equal factors,
Here, 1000 can be grouped into triplets of equal factors,
$\therefore 1000=(2 \times 5)=10$
Hence, 1000 is cube of 10 .
$1000=$
$(2 \times 2 \times 2) \times(5 \times 5 \times 5)$

100
Solution:(iv) By resolving 100 into prime factor,

2	100
2	50
5	25
5	5
	1

$100=2 \times 2 \times 5 \times 5$
Here, 100 cannot be grouped into triplets of equal factors.
$\therefore 100$ is not a perfect cube.

46656
(v)

Solution: By resolving 46656 into prime factor,

2	46656
2	23328
2	11664
2	5832
2	2916
2	1458
3	729
3	243
3	81
3	27
3	9
3	3
	1

$46656=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$
By grouping the factors in triplets of equal factors,
$46656=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(3 \times 3 \times 3) \times(3 \times 3 \times 3)$
Here, 46656 can be grouped into triplets of equal factors,
$\therefore 46656=(2 \times 2 \times 3 \times 3)=36$
Hence, 46656 is cube of 36 .

Find the smallest number by which each of the following numbers must be multiplietb obtain a perfect cube.
(i) 243

Solution:

3	243
3	81
3	27
3	9
3	3
	1

$243=3 \times 3 \times 3 \times 3 \times 3$
By grouping the factors in triplets of equal factors,
$243=(3 \times 3 \times 3) \times 3 \times 3$
Here, 3 cannot be grouped into triplets of equal factors.
\therefore We will multiply 243 by 3 to get perfect square.

256
(ii)

Solution: By resolving 256 into prime factor,

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

$$
256=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2
$$

By grouping the factors in triplets of equal factors,
$256=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times 2 \times 2$
Here, 2 cannot be grouped into triplets of equal factors.
\therefore We will multiply 256 by 2 to get perfect square.

72
Solution:
By resolving 72 into prime factor,

2	72
2	36
2	18
3	9
3	3
	1

$72=2 \times 2 \times 2 \times 3 \times 3$
By grouping the factors in triplets of equal factors,
$72=(2 \times 2 \times 2) \times 3 \times 3$
Here, 3 cannot be grouped into triplets of equal factors.
\therefore We will multiply 72 by 3 to get perfect square.
(iv) 675

Solution:
By resolving 675 into prime factor,

3	675
3	225
3	75
5	25
5	5
	1

$675=3 \times 3 \times 3 \times 5 \times 5$
By grouping the factors in triplets of equal factors,
$675=(3 \times 3 \times 3) \times 5 \times 5$
Here, 5 cannot be grouped into triplets of equal factors.
\therefore Wewill multiply 675 by 5 to get perfect square.
(v) 100

Solution:
By resolving 100 into prime factor,

2	100
2	50
5	25
5	5
	1

$100=2 \times 2 \times 5 \times 5$
Here, 2 and 5 cannot be grouped into triplets of equal factors.
\therefore We will multiply 100 by $(2 \times 5) 10$ to get perfect square.
Find the
perfect cube. smallest number by which each of the following numbers must be divided to obtain a (i)

Solution: 81
3.

3	81
3	27
3	9
3	3
	1

$81=3 \times 3 \times 3 \times 3$
By grouping the factors in triplets of equal factors,
$81=(3 \times 3 \times 3) \times 3$
Here, 3 cannot be grouped into triplets of equal factors.
\therefore We will divide 81 by 3 to get perfect square.
(ii) 128

Solution:
By resolving 128 into prime factor,

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

$128=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
By grouping the factors in triplets of equal factors, $128=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times 2$
Here, 2 cannot be grouped into triplets of equal factors.
\therefore We will divide 128 by 2 to get perfect square.
135
Solution:
By resolving 135 into prime factor,

3	135
3	45
3	15
5	5
	1

$135=3 \times 3 \times 3 \times 5$
By grouping the factors in triplets of equal factors, $135=(3 \times 3 \times 3) \times 5$
Here, 5 cannot be grouped into triplets of equal factors.
\therefore We will divide 135 by 5 to get perfect square.

192
Solution:
By resolving 192 into prime factor,
(iv)

2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

$192=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$
By grouping the factors in triplets of equal factors, $192=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times 3$
Here, 3 cannot be grouped into triplets of equal factors.
\therefore We will divide 192 by 3 to get perfect square.

704
Solution:
By resolving 704 into prime factor,
(v)

2	704
2	352
2	176
2	88
2	44
2	22
11	11
	1

$704=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 11$
By grouping the factors in triplets of equal factors,
$704=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times 11$
Here, 11 cannot be grouped into triplets of equal factors.
\therefore We will divide 704 by 11 to get perfect square.
Parikshit makes a cuboid of plasticine of sides $5 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$. How many such cuboids will he need to form a cube?
Solution:

Given, side of cube is $5 \mathrm{~cm}, 2 \mathrm{~cm}$ and 5 cm .
4.
\therefore Volume of cube $=5 \times 2 \times 5=50$

2	50
5	25
5	5
	1

$50=2 \times 5 \times 5$
Here, 2,5 and 5 cannot be grouped into triplets of equal factors.
\therefore We will multiply 50 by $(2 \times 2 \times 5) 20$ to get perfect square.
Hence, 20 cuboid is needed.

1. Find the cube root of each of the following numbers by prime factorisation method.
(i) 64
Solution:

NCERT Solution For Class 8 Maths Chapter 7- Cubes and Cube roots

$$
64=2 \times 2 \times 2 \times 2 \times 2 \times 2
$$

By grouping the factors in triplets of equal factors,
$64=(2 \times 2 \times 2) \times(2 \times 2 \times 2)$
Here, 64 can be grouped into triplets of equal factors,
$\therefore 64=2 \times 2=4$
Hence, 4 is cube root of 64 .
(ii) $\mathbf{5 1 2}$

Solution:

$$
512=2 \times 2 \times 2
$$

$$
512=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(2 \times 2 \times 2)
$$

f equal factors,Here, 512 can be grouped into triplets o
$\therefore 512=2 \times 2 \times 2=8$
Hence, 8 is cube root of 512 .
(iii) $\mathbf{1 0 6 4 8}$

Solution: By grouping the factors in triplets of equal factors,

$$
10648=2 \times 2 \times 2 \times 11 \times 11 \times 11
$$

Here, 10648 can be grouped into triplets of equal factors,
$10648=(2 \times 2 \times 2) \times(11 \times 11 \times 11)$
Hence, 22 is cube root of 10648 .
$\therefore 10648=2 \times 11=22$
(iv) 27000

Solution: By grouping the factors in triplets of equal factors,

$$
27000=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5
$$

Here, 27000 can be grouped into triplets of equal factors,

$$
27000=(2 \times 2 \times 2) \times(3 \times 3 \times 3) \times(5 \times 5 \times 5)
$$

Hence, 30 is cube root of 27000 .

$$
\therefore 27000=(2 \times 3 \times 5)=30
$$

(v)

15625

Solution: By grouping the factors in triplets of equal factors,

$$
15625=5 \times 5 \times 5 \times 5 \times 5 \times 5
$$

Here, 15625 can be grouped into triplets of equal factors,

$$
15625=(5 \times 5 \times 5) \times(5 \times 5 \times 5)
$$

Hence, 25 is cube root

$$
\therefore 15625=(5 \times 5)=25
$$

$$
\text { of } 15625 .
$$

(vi) $\mathbf{1 3 8 2 4}$

NCERT Solution For Class 8 Maths Chapter 7- Cubes and Cube roots

Solution:

$$
13824=2 \times 2 \times 3 \times 3 \times 3
$$

By grouping the factors in triplets of equal factors, $13824=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(3 \times 3 \times 3)$
Here, 13824 can be grouped into triplets of equal factors,
$\therefore 13824=(2 \times 2 \times 2 \times 3)=24$
Hence, 24 is cube root of 13824 .
(vii) $\mathbf{1 1 0 5 9 2}$

NCERT Solution For Class 8 Maths Chapter 7- Cubes and Cube roots

Solution: By grouping the factors in triplets of equal factors,
(viii)

46656
Here, 110592 can be grouped into triplets of equal factors, Hence, 48 is cube root of 110592 .

Solution: By grouping the factors in triplets of equal factors,
(ix) 175616

Here, 46656 can be grouped into triplets of equal factors, Hence, 36 is cube root of 46656 .

Solution: By grouping the factors in triplets of equal factors,
Here, 175616 can be grouped into triplets of equal
Hence, 56 is cube root of 175616 .

$$
\begin{aligned}
& 110592=2 \times 2 \times 3 \times 3 \times 3 \\
& 110592=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(3 \times 3 \times 3) \\
& \therefore 110592=(2 \times 2 \times 2 \times 2 \times 3)=48
\end{aligned}
$$

$46656=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$
$46656=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(3 \times 3 \times 3) \times(3 \times 3 \times 3)$
$\therefore 46656=(2 \times 2 \times 3 \times 3)=36$

$$
\begin{aligned}
& 175616=2 \times 2 \times 7 \times 7 \times 7 \\
& 175616=(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(2 \times 2 \times 2) \times(7 \times 7 \times 7) \\
& \therefore 175616=(2 \times 2 \times 2 \times 7)=56 \quad \text { factors, }
\end{aligned}
$$

EDUGRロSS

(x) 91125

Solution: By grouping the factors in triplets of equal factors,

$$
91125=3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5
$$

Here, 91125 can be grouped into triplets of equal fact

$$
91125=(3 \times 3 \times 3) \times(3 \times 3 \times 3) \times(5 \times 5 \times 5)
$$

Hence, 45 is cube root of 91125 .
2. State true or false.
(i) Cube of any odd number is even.

Solution:
False
(ii) A perfect cube does not end with two zeros.

Solution:
True
(iii) If square of a number ends with 5, then its cube ends with 25.

Solution:
False
(iv) There is no perfect cube which ends with 8 .

Solution:
False
(v) The cube of a two digit number may be a three digit number.

Solution:
False
(vi) The cube of a two digit number may have seven or more digits. Solution:

False
(vii) The cube of a single digit number may be a single digit number. Solution:

True
3. You are told that $\mathbf{1 , 3 3 1}$ is a perfect cube. Can you guess without factorisation what is its cube root? Similarly, guess the cube roots of $4913,12167,32768$. Solution:
$>$ By grouping the digits, we get 1 and 331

EDUGRロSS

NCERT Solution For Class 8 Maths Chapter 7- Cubes and Cube roots

We know that, since, the unit digit of cube is 1 , the unit digit of cube root is 1 .
\therefore We get 1 as unit digit of the cube root of 1331 .
The cube of 1 matches with the number of second group.
\therefore The ten's digit of our cube root is taken as the unit place of smallest number.
We know that, the unit's digit of the cube of a number having digit as unit's place 1 is 1 .

$$
\therefore \sqrt[3]{1331}=11
$$

By grouping the digits, we get 4 and 913
We know that, since, the unit digit of cube is 3 , the unit digit of cube root is 7 .
\therefore we get 7 as unit digit of the cube root of 4913 .
We know $1^{3}=1$ and $2^{3}=8,1>4>8$.
Thus, 1 is taken as ten digit of cube root.

$$
\therefore \sqrt[3]{4913}=17
$$

By grouping the digits, we get 12 and 167 .
We know that, since, the unit digit of cube is 7 , the unit digit of cube root is $3 . \therefore 3$ is the unit digit of the cube root of 12167 We know $2^{3}=8$ and $3^{3}=27,8>12>27$.
Thus, 2 is taken as ten digit of cube root.

$$
\therefore \sqrt[3]{12167}=23
$$

$>$ By grouping the digits, we get 32 and 768 .
We know that, since, the unit digit of cube is 8 , the unit digit of cube root is 2 .
$\therefore 2$ is the unit digit of the cube root of 32768 .
We know $3^{3}=27$ and $4^{3}=64,27>32>64$. Thus,
3 is taken as ten digit of cube root.
$\therefore \sqrt[3]{32768}=32$

