

CBSE Class 12 Chemistry Question Paper 2020 Solution Set 1

CHEMISTRY STANDARD SOLVED

SET 1 (CODE: 30/5/1) SERIES: JBB/5

Q. NO	SOLUTION	TOTAL MARKS
	SECTION – A	
1.	Organic compounds with $-NH_2$ and COOH group are known as amino acids	7
2.	Due to the formation of zwitter ion	1
3.	Acidic amino acids have more -COOH groups and basic amino acids have more NH ₂ groups	1
4.	These are not synthesized by body to be supplied in diet.	1
5.	Peptide linkage	1
6.	Leaching	1
7.	Zinc	1
8.	Linkage and ionisation isomerism	1
9.	Desorption	1
10.	Order is two	1
11.	(D) 2.0 M	1
12.	(A) reduced form is more stable compared to hydrogen gas.	1
13.	(D) 5	1
14.	(A) They are chemically reactive	1
15.	(C) 2-Methyl bhutan-2-ol	1
16.	(i) Both assertion (A) and reason (R) are correct statements, and reason (R) is the correct explanation of the assertion (A).	1

17.	(i) Both assertion (A) and reason (R) are correct statements, and reason (R) is the correct explanation of	1
	the assertion (A).	
18.	(iii) Assertion (A) is correct, but reason (R) is incorrect statement.	1
19.	(iii) Assertion (A) is correct, but reason (R) is incorrect statement.	1
20.	(i) Both assertion (A) and reason (R) are correct statements, and reason (R) is the correct explanation of	1
	the assertion (A).	
	SECTION – B	
21.	Tranquilizers reduces the mental stress and acts as a part of anti depressants	2
-1.	Eg: Barbituaric acid derivatives	-
	Analgesics: These are pain killers	
	Eg: Aspirin	
	b) Antiseptics reduces bacterial growth on animate object	
	Disinfectants controls bacterial growth or non animate objects	
	OR	
	In cationic detergents cation acts an detergent	1
	Eg: Cetyl trimethyl ammonium bromide.	
	In Anionic detergents, anion acts as detergent	ą
	Eg: Sodium lauryl sulphate	1
22.	a) Due to intermolecular H-bonding in alcohol	2
	b) Due to resonance C = O is attained in phenol	
23.	a) $2MnO_4^- + H_2O + I^- \longrightarrow 2MnO_2 + 2OH^- + IO_3^-$	1
	b) $2MnO_4^- + 16H^+ + 10I^- \longrightarrow 2Mn^{+2} + 8H_2O + 5I_2$	1
24.	The curves obtained by plotting fraction of gas adsorbed Verses pressure at constant	2
	temperature is known as adsorption isotherm	₩ .
	$\frac{x}{m} = k \cdot p^{\frac{1}{n}}$	
	m	

	$x \rightarrow \text{mass of adsorbate}$	
	$m \rightarrow$ mass of adsorbant	
	OR	
	Shape selective catalysis Catalyst activity depends upon shape & size of pores present in the catalyst. ZSM5 is used to convert ethanol to gasoline.	
25.	Rate $\propto [A]^1$; rate $\propto [B]^1$ Average rate is measured in average interval of time and instantaneous rate is measured in an instant of time.	2
26.	$Mg \mid Mg^{+2} \parallel Ag^{+} \mid Ag$ $E = E_{0} - \frac{0.059}{2} \log \frac{\left[Mg^{+2}\right]}{\left[Ag^{+}\right]}$	2
27.	a) Solute dissociates b) solute associates	2
s 69	SECTION - C	
28.	a) Teflon $CF_2 = CF_2$ b) glyptal	1
	CH_2OH CH_2OH O	1
	Ethylene glycol c) Nylon – 6 caprolactum	1
	OR	

	СООН	
	i) $NH_2 - (CH_2)_6 - NH_2$ hexamethylene diamine, CH_2 Adipic acid CH_2	
	ii) $CH_2 = CH - CH = CH_2$	
	CH = CH ₂	
	1,3 – butadiene Styrene	
	iii) $CH_2 = C - CH = CH_2$	
	Cl	
	2-chloro-1,3-butadiene	
29.	a) Due to +R effecting NH ₂ group ion electrons are not localized	3
	b) Since aniline form a salt with lewis and AlCl ₃	
	c) Since Aryl halide are less reactive towards nucleophilic substitution reaction	
30.	a) 2-bromo-2-methyl propane > 2-bromo butane > 1-bromobutane	3
	b) 1-bromo butane > 2-bromo butane > 2-bromo-2-methyl propane	
31.	a) Potassium hexa cyanido manganate (II)	3
	$Mn^{+2}is[Ar]3d^{5}$	
	$t_2g^5eg^0$	
	b) Stability of complexes increases due to presence of bidentate ligands	
	eg:[Co(en)3] ⁺³	
	[OR]	
	i) $\left[Fe(CN)_{6}\right]^{-4}$	
	d^2sp^3 – diamagnetic	
	ii) $[CO F_6]^{-3}$	
	sp^3d^2 – Paramagnetic	
		l

÷ -	iii) $\left[Ni(CO)_4\right]$	
	sp^3 – diamagnetic	
32.	$Al_2O_3 + 2NaOH + 3H_2O \longrightarrow 2NaAl(OH)_4$	3
	$2NaAl(OH)_4+CO_2 \longrightarrow Al_2O_3.X H_2O$	
	$Al_2O_3.XH_2O \longrightarrow Al_2O_3+XH_2O$	
33.	$\Lambda_m = \frac{K \times 1000}{C_4}$	3
	The state of the s	
	$= \frac{8 \times 10^{-5} \times 10^{3}}{2 \times 10^{-3}} = 40 \text{ s cm}^{2} \text{mol}^{-1} \text{ degree of dissociation} = 40/404 = 0.099$	
	2×10	
34.	$\Delta T_f = \frac{K_f \times \omega \times 1000}{GM \omega \times \omega}$	3
	$=\frac{1.86\times31\times1000}{62\times600}$	
	$=\frac{18.6}{12}=1.55$	
	12	
	Freezing point = $273 - 1.55$	
	= 271. 45 K	
	SECTION – D	
35.	a) i) Zero order	1
	ii) Rate constant iii) mol L ⁻¹ s ⁻¹	1
		1
	b) $K = \frac{2.303}{25} \log_{10} \frac{100}{75}$	1
	$K = \frac{2.303}{25} \times (\log 4 - \log 3)$	1
	$K = \frac{2.303 \times 0.1249}{25} = \frac{0.2976}{25} = 1.15 \times 10^{-2} \text{mol}^{-1}$	
	25 - 25 - 1.13×10 mor	

		·
	$=\frac{0.693}{K}$	
	$=\frac{0.693}{0.0115}$	
	$=60.2 \mathrm{min}$	
	[OR]	
	a) $t_{1/2} = \frac{0.693}{K} = \frac{0.691}{60} = 0.0115$	
	0.0115 0.0115 0.0115	
	$1 - \frac{1}{2} - \frac{1}{4} - \frac{1}{8} - \frac{1}{16}$	
	$=4 \times t_{1/2}$	
	$=4\times0.0115$	
	$=0.046 s^{-1}$	
	b) i) concentration of reactants	
	ii) temperature	
	c) i) greater than or equal to threshold energy	
	ii) lesser activation emerge barriers	
36.	a) A \rightarrow Sulphur	1
		1
		1
	\sqrt{5}	1
	B v CO	1
	$B \to SO_2$ $C \to SO_3$	
	$D \to H_2S_2O_7$	
	$E \rightarrow H_2SO_4$	
	$F \rightarrow CuSO_4$	

(ii)

(HVZ reaction 2 – bromo propanoic acid) CHO CH₂CI CH2OH aq.KOH **PCC** ii) c) i) Benzaldehyde does not give iodoform reaction while Acetaldehyde responds to iodoform (OR) (i) ÇH₃ CH2 CH3 CH₃ СН3СОСН3 OH $+CHI_3 \leftarrow -CH_3 - C = CHCOCH_3$ 1 $CH_3 - C = CHCOONa$ 1 CH_3

- iii) 4-hydroxy-4-methyl-2-pentanone
- b) i) Ethanol does not give reaction with NaHSO3 while propanone give PPT with NaHCO3
- ii) Benzoic acid give violet colour with FeCl₃ 1