

## **CBSE Class 12 Physics Question Paper Solution 2017**

SET 55/1

## MARKING SCHEME

| Q. No. | Expected Answer/ Value Points                                                     | Marks | Total<br>Marks |
|--------|-----------------------------------------------------------------------------------|-------|----------------|
|        | Section A                                                                         |       |                |
| Q1     | i. Nichrome                                                                       | 1/2   |                |
|        | ii. $R_{Ni} > R_{Cu}$ (or Resistivity <sub>Ni</sub> > Resistivity <sub>Cu</sub> ) | 1/2   | 1              |
| Q2     | Yes                                                                               | 1     |                |
| Q3     | i. Decreases                                                                      | 1/2   | 1              |
| Q3     |                                                                                   | 72    | ,              |
|        | ii. $n_{\text{Violet}} > n_{\text{Red}}$                                          | 1/2   |                |
|        | (Also accept if the student writes $\lambda_V < \lambda_R$ )                      | 9     | 1              |
| Q4     | Photoelectric Effect (/Raman Effect/ Compton Effect)                              | 1     |                |
|        |                                                                                   |       | 1              |
| Q5     | A is positive and                                                                 | 1/2   | -              |
|        | B is negative                                                                     | 1/2   | 1              |
|        | (Also accept: A is negative and B is positive)                                    |       |                |
|        | SECTION B                                                                         |       |                |
| Q6     |                                                                                   |       |                |
|        | Interference pattern ½                                                            |       |                |
|        | Diffraction pattern ½                                                             |       |                |
|        | Two Differences $\frac{1}{2} + \frac{1}{2}$                                       |       |                |
|        | Two Differences $\frac{1}{2} + \frac{1}{2}$                                       |       |                |
|        | I<br>Imax<br>3λ 2λ 1λ 0 1λ 2λ 3λ<br>→ Path Difference                             | 1/2   |                |

Page 1 of 22 Final Draft March 22, 2017



| -  | ·                                                                                      | XX.    | 2 |
|----|----------------------------------------------------------------------------------------|--------|---|
| Q7 | (a) Identification $\frac{1}{2} + \frac{1}{2}$                                         |        |   |
|    | (b) Uses $\frac{1}{2} + \frac{1}{2}$                                                   |        |   |
|    | (a) X – rays                                                                           | 1/2    |   |
|    | Used for medical purposes.                                                             | 72     |   |
|    | (Also accept UV rays and gamma rays and                                                | 1/2    |   |
|    | Any one use of the e.m. wave named)                                                    |        |   |
|    |                                                                                        | 1/2    |   |
|    | (b) Microwaves                                                                         | connec |   |
|    | Used in radar systems                                                                  | 1/2    |   |
|    | (Also accept short radio waves and Any one use of the e.m. wave named)                 |        |   |
| Q8 | Any one use of the e.m. wave named)                                                    |        | 2 |
| Qu | Condition                                                                              |        |   |
|    | i. For directions of $\vec{E}$ , $\vec{B}$ , $\vec{v}$                                 |        |   |
|    | ii. For magnitudes of $\vec{E}$ , $\vec{B}$ , $\vec{v}$                                |        |   |
|    |                                                                                        |        |   |
|    | (i) The velocity $\vec{v}$ , of the charged particles, and the $\vec{E}$ and $\vec{B}$ | 17     |   |
|    | vectors, should be mutually perpendicular.                                             | 1/2    |   |
|    | Also the forces on $q$ , due to $\vec{E}$ and $\vec{B}$ , must be                      | 1/2    |   |
|    | oppositely directed.  (Also accept if the student draws a diagram to show the          |        |   |
|    | directions.)                                                                           |        |   |
|    | Ay                                                                                     |        |   |
|    |                                                                                        |        |   |
|    | ↑ ↑ E                                                                                  |        |   |
|    | P <sub>B</sub> \                                                                       |        |   |
|    | /                                                                                      |        |   |
|    | B                                                                                      |        |   |
|    | F3                                                                                     |        |   |
|    |                                                                                        |        |   |
|    | (ii) $qE = qvB$<br>or $v = \frac{E}{B}$                                                | 1/2    |   |
|    | $or v = \frac{E}{r}$                                                                   | 1/2    |   |
|    | В                                                                                      |        |   |
|    | [Alternatively, The student may write:                                                 |        |   |
|    | Force due to electric field = $q\vec{E}$                                               | 1/2    |   |
|    | Force due to magnetic field = $q(\overrightarrow{v} \times \overrightarrow{B})$        | 1/2    |   |
|    | The required condition is                                                              |        |   |
|    | $a\vec{F} = -a(\vec{v} \times \vec{R})$                                                | 1/2    |   |
|    | $[or \vec{E} = -(\vec{v} \times \vec{B}) = (\vec{B} \times \vec{v})]$                  | 1/2    |   |
|    | (Note: Award 1 mark only if the student just writes:                                   |        |   |
|    | "The forces, on the charged particle, due to the electric and                          |        |   |
|    | magnetic fields, must be equal and opposite to each other")]                           |        | 2 |

| 00  |                                                                                                                                |           |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------|-----------|---|
| Q9  | i. Writing                                                                                                                     |           |   |
|     | $E_n \propto \frac{1}{n^2}$                                                                                                    |           |   |
|     | ii. Identifying the level to which the $\frac{1}{2}$                                                                           |           |   |
|     | electron is emitted.                                                                                                           |           |   |
|     | iii. Calculating the wavelengths and $\frac{1}{2} + \frac{1}{2}$                                                               |           |   |
|     | identifying the series of atleast one of the                                                                                   |           |   |
|     | three possible lines, that can be emitted.                                                                                     |           |   |
|     | three possible lines, that can be efficied.                                                                                    |           |   |
|     |                                                                                                                                |           |   |
|     | i. We have $E_n \propto \frac{1}{n^2}$                                                                                         | 1/2       |   |
|     |                                                                                                                                |           |   |
|     | ii. ∴ The energy levels are                                                                                                    | 1/2       |   |
|     | -13.6 eV; -3.4 eV; -1.5 eV<br>∴ The 12.5 eV electron beam can excite the electron up                                           |           |   |
|     | to n=3 level only.                                                                                                             |           |   |
|     |                                                                                                                                |           |   |
|     | iii. Energy values, of the emitted photons, of the three                                                                       |           |   |
|     | possible lines are                                                                                                             |           |   |
|     | $3 \rightarrow 1 : (-1.5 + 13.6) \text{eV} = 12.1 \text{ eV}$<br>$2 \rightarrow 1 : (-3.4 + 13.6) \text{eV} = 10.2 \text{ eV}$ |           |   |
|     | $3 \rightarrow 2 : (-1.5 + 3.4)eV = 10.2 eV$                                                                                   |           |   |
|     | 3 12 1 ( 1.5   5.1.)                                                                                                           |           |   |
|     | The corresponding wavelengths are: 102 nm, 122 nm and                                                                          | 1/2 + 1/2 |   |
|     | 653 nm                                                                                                                         | 72 . 72   |   |
|     | $\left(\lambda = \frac{hc}{F}\right)$                                                                                          |           |   |
|     | (E)                                                                                                                            |           |   |
|     | (Award this 1 mark if the student draws the energy level diagram                                                               |           |   |
|     | and shows (and names the series) the three lines that can be                                                                   |           |   |
|     | emitted) / (Award these ( $\frac{1}{2} + \frac{1}{2}$ ) marks if the student                                                   |           |   |
|     | calculates the energies of the three photons that can be emitted                                                               |           |   |
|     | and names their series also.)                                                                                                  |           |   |
|     |                                                                                                                                |           |   |
|     |                                                                                                                                |           | 2 |
| Q10 |                                                                                                                                |           |   |
|     | a) Two properties for making permanent $\frac{1}{2} + \frac{1}{2}$                                                             |           |   |
|     | magnet                                                                                                                         |           |   |
|     | b) Two properties for making an $\frac{1}{2} + \frac{1}{2}$                                                                    |           |   |
|     | electromagnet                                                                                                                  |           |   |
|     |                                                                                                                                |           |   |
|     |                                                                                                                                | 3         |   |
|     |                                                                                                                                |           |   |

|                                                                                                                                                                   | -         | 46 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|
| a) For making permanent magnet:                                                                                                                                   |           |    |
| (i) High retentivity                                                                                                                                              | 1/2 + 1/2 |    |
| (ii) High coercitivity                                                                                                                                            | 72 1 72   |    |
| (iii) High permeability                                                                                                                                           |           |    |
| (Any two)                                                                                                                                                         |           |    |
| b) For making electromagnet:                                                                                                                                      |           |    |
| (i) High permeability                                                                                                                                             | 1/2 + 1/2 |    |
| (ii) Low retentivity                                                                                                                                              |           |    |
| (iii) Low coercivity                                                                                                                                              |           |    |
| (Any two)                                                                                                                                                         |           | 2  |
| SECTION C                                                                                                                                                         | 1         |    |
| a) The factor by which the potential difference changes b) Voltmeter reading Ammeter Reading                                                                      |           |    |
| a) $H=\frac{V^2}{R}$                                                                                                                                              | 1/2       |    |
| $\therefore V \text{ increases by a factor of } \sqrt{9} = 3$                                                                                                     | 1/2       |    |
| b) Ammeter Reading $I = \frac{V}{R+r}$                                                                                                                            | 1/2       |    |
| $=\frac{12}{4+2}A=2A$                                                                                                                                             | 1/2       |    |
| Voltmeter Reading $V = E - Ir$                                                                                                                                    | 1/2       |    |
| $= [12 - (2 \times 2)] V = 8V$ (Alternatively, $V = iR = 2 \times 4V = 8V$ )                                                                                      | 1/2       | 3  |
| Q12 a) Achieving amplitude Modulation 1                                                                                                                           |           |    |
| b) Stating the formulae 1/2                                                                                                                                       |           |    |
| Calculation of $v_c$ and $v_m$ $\frac{1}{2} + \frac{1}{2}$                                                                                                        |           |    |
| Calculation of bandwidth ½                                                                                                                                        |           |    |
| a) Amplitude modulation can be achieved by applying the message signal, and the carrier wave, to a non linear (square law device) followed by a band pass filter. |           |    |



| cycle and coreverse bia other half copasses through it. flows in the (Note: If the | The diode D <sub>1</sub> is forward biased during one half current flows through the resistor, but diode D <sub>2</sub> is sed and no current flows through it. During the of the signal, D <sub>1</sub> gets reverse biased and no current rugh it, D <sub>2</sub> gets forward biased and current flows. In both half cycles current, through the resistor, as same direction.  The student just draws the following graphs (but raw the circuit diagram), award ½ mark only. | 1   |   |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | 3 |
| Photon pictor equation Two feature                                                 | ure plus Einstein's photoelectric es $\frac{1/2 + 11/2}{1/2 + 1/2}$                                                                                                                                                                                                                                                                                                                                                                                                             |     |   |
|                                                                                    | picture, energy of the light is assumed to be in the as, each carrying an energy hv.                                                                                                                                                                                                                                                                                                                                                                                            | 1/2 |   |
|                                                                                    | ned that photoelectric emission occurs because of a of a photon with a free electron.                                                                                                                                                                                                                                                                                                                                                                                           | 1/2 |   |
| The energy of                                                                      | the photon is used to                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   |
| [Fo<br>fun<br>And                                                                  | e the electrons from the metal.  r this, a minimum energy, called the work ction (=W) is needed].  vide kinetic energy to the emitted electrons.                                                                                                                                                                                                                                                                                                                                | 1/2 |   |

|     | State                                                                                                                                                    | T-        |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|
|     | Hence $(K. E.)_{max} = h\upsilon - W$                                                                                                                    |           |   |
|     | $/\left(\frac{1}{2}mv_{max}^2 = hv - W\right)$ This is Einstein's photoelectric equation                                                                 | 1/2       |   |
|     | Two features (which cannot be explained by wave theory):  i) 'Instantaneous' emission of photoelectrons                                                  |           |   |
|     | ii) Existence of a threshold frequency iii) 'Maximum kinetic energy' of the emitted photoelectrons, is independent of the intensity of incident light    | 1/2 + 1/2 |   |
|     | (Any two)                                                                                                                                                |           | 3 |
| Q15 | <ul> <li>a. Calculation of wavelength, frequency and speed</li> <li>b. Lens Maker's Formula</li> <li>Calculation of R</li> <li>1/2</li> <li>1</li> </ul> |           |   |
| 8   | a) $\lambda = \frac{589 \text{ nm}}{1.33} = 442.8 \text{nm}$                                                                                             | 1/2       |   |
|     | Frequency $v = \frac{3 \times 10^8 \text{ ms}^{-1}}{589 \text{ nm}} = 5.09 \times 10^{12} \text{Hz}$                                                     | 1/2       |   |
|     | Speed $v = \frac{3 \times 10^8}{1.33}$ m/s = $2.25 \times 10^8$ m/s                                                                                      | 1/2       |   |
|     | b) $\frac{1}{f} = \left[\frac{\mu_2}{\mu_1} - 1\right] \left[\frac{1}{R_1} - \frac{1}{R_2}\right]$                                                       | 1/2       |   |
| K   | $\frac{1}{20} = \left[ \frac{1.55}{1} - 1 \right] \frac{2}{R}$                                                                                           | 1/2       |   |
|     | $R = (20 \times 1.10) \text{cm} = 22 \text{ cm}$                                                                                                         | 1/2       | 3 |
| Q16 | Definition of mutual inductance 1 Derivation of mutual inductance for two long solenoids 2                                                               |           |   |

(i) Mutual inductance is numerically equal to the induced emf in the secondary coil when the current in the primary coil changes by unity.

> Alternatively: Mutual inductance is numerically equal to the magnetic flux linked with one coil/secondary coil when unit current flows through the other coil/primary coil.

1

(ii)



1/2

Let a current,  $i_2$ , flow in the secondary coil

$$\therefore B_2 = \frac{\mu_0 N_2 i_2}{l}$$

1/2

: Flux linked with the primary coil

$$= N_1 A_1 B_2 = \frac{\mu_0 N_2 N_1 A_1 i_2}{l} = M_{12} i_2$$

1/2

Hence, 
$$M_{12} = \frac{\mu_0 N_2 N_1 A_2}{l} = \mu_0 n_2 n_1 A_1 l \left( n_1 = \frac{N_1}{l}; n_2 = \frac{N_2}{l} \right)$$

1/2

3

OR

| Definition of self inductance | 1 |
|-------------------------------|---|
| Expression for energy stored  | 2 |

Page 9 of 22 Final Draft March 22, 2017

| (i) | Self inductance, of a coil, is numerically equal to the                                        |     |   |
|-----|------------------------------------------------------------------------------------------------|-----|---|
|     | emf induced in that coil when the current in it changes                                        | 1   |   |
|     | at a unit rate.                                                                                |     |   |
|     | (Alternatively: The self inductance of a coil equals the                                       |     |   |
|     | flux linked with it when a unit current flows through                                          |     |   |
|     | it.)                                                                                           |     |   |
| (ii | i) The work done against back /induced emf is stored as                                        |     |   |
|     | magnetic potential energy.                                                                     | 1/2 |   |
|     | The rate of work done, when a current $i$ is passing                                           | 72  |   |
|     | through the coil, is                                                                           |     |   |
|     | $\frac{dW}{dt} =  \varepsilon i = \left(L\frac{di}{dt}\right)i$                                | 72  |   |
|     | . W. Cam, Class                                                                                | 1/2 |   |
|     | $\therefore W = \int dW = \int_0^I Lidi$                                                       | 1/2 |   |
|     | $=\frac{1}{2}Li^2$                                                                             |     | 3 |
| Q17 |                                                                                                |     |   |
| 3   | a) Principle of meter bridge 1                                                                 |     |   |
|     | b) Relation between $l_1, l_2$ , and $S$                                                       |     |   |
|     | a) The principle of working of a meter bridge is same as that of a balanced Wheatstone bridge. |     |   |
|     | (Alternatively:                                                                                |     |   |
|     |                                                                                                |     |   |
|     |                                                                                                | 1   |   |
|     | R S ()                                                                                         |     |   |
|     | When $i_g=0$ , then $\frac{P}{Q}=\frac{R}{S}$ )                                                |     |   |

|     | b) $\frac{R}{S} = \frac{l_1}{100 - l_1}$                                                                   | 1/2 |   |
|-----|------------------------------------------------------------------------------------------------------------|-----|---|
|     | When $X$ is connected in parallel:                                                                         | 72  |   |
|     | $\frac{R}{\left(\frac{XS}{X+S}\right)} = \frac{l_2}{100 - l_2}$                                            | 1/2 |   |
|     | On solving, we get $X = \frac{l_1 S(100 - l_2)}{100(l_2 - l_1)}$                                           | 1   | 3 |
| Q18 | Diagram of generalized communication system 1½  Function of (a) transmitter (b) channel (c) receiver ½+½+½ | 5   |   |
|     | formation Message Transmitter Signal Channel Signal Received Signal Received Signal Noise                  |     |   |
|     | [Also accept the following diagram  Information Communication Channel Receiver of Information Information  | 1 ½ |   |
|     | (a) Transmitter: A transmitter processes the incoming message                                              | 1/2 |   |
|     | signal so as to make it suitable for transmission through a                                                |     |   |
| 0   | channel and subsequent reception.  (b) Channel: It carries the message signal from a transmitter to a      | 1/2 |   |
|     | receiver.                                                                                                  | 12  |   |
|     | (c) Receiver: A receiver extracts the desired message signals                                              | 1/2 |   |
|     | from the received signals at the channel output.                                                           |     |   |
|     |                                                                                                            |     | 3 |

|     |                                                                                                                                          | Î.  |   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| Q19 | <ul> <li>a) Function of each of the three segments 1/2 + 1/2 + 1/2</li> <li>b) Diagram of output wave form 1  Truth table 1/2</li> </ul> |     |   |
|     | <ul> <li>a) Emitter: Supplies a large number of majority charge<br/>carriers.</li> </ul>                                                 | 1/2 |   |
|     | Base: Controls the flow of majority carriers from the                                                                                    | 1/2 |   |
|     | emitter to the collector.                                                                                                                |     |   |
|     | Collector: It collects the majority carriers from the base / majority of those emitted by the emitter.                                   | 1/2 |   |
|     | b)                                                                                                                                       | ) ' |   |
|     | t1 t2 t3 t4 t5 t6 t7 t8                                                                                                                  | 1   |   |
|     | t1 t2 t3 t4 t5 t6 t7 t8  Truth Table                                                                                                     |     |   |
|     | A B Y 0 0 0 0 1 0 1 0 0 1 1 1 1                                                                                                          | 1/2 | 3 |
| Q20 | (a) Ray diagram for astronomical telescope in                                                                                            |     |   |
| 0   | normal adjustment 1 ½                                                                                                                    |     |   |
|     | (b) Identification of lenses for objective and eyepiece 1                                                                                |     |   |
|     | Reason ½                                                                                                                                 |     |   |
|     |                                                                                                                                          |     |   |
|     |                                                                                                                                          |     |   |
|     |                                                                                                                                          |     |   |
| 5   |                                                                                                                                          | 42: | 6 |

|     | (a) Ray diagram of astronomical telescope                                                                                                                                                                         | 01    |     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
|     |                                                                                                                                                                                                                   |       |     |
|     |                                                                                                                                                                                                                   |       |     |
|     | Objective fo                                                                                                                                                                                                      |       |     |
|     | Eyepiece                                                                                                                                                                                                          |       |     |
|     |                                                                                                                                                                                                                   |       |     |
|     | or O B' E                                                                                                                                                                                                         | 1.17  |     |
|     | h B                                                                                                                                                                                                               | 1 1/2 |     |
|     | A'                                                                                                                                                                                                                |       |     |
|     |                                                                                                                                                                                                                   |       |     |
|     |                                                                                                                                                                                                                   |       | , , |
|     | (Note: Deduct ½ mark if the 'arrows' are not marked)                                                                                                                                                              |       |     |
|     | (b) Objective Lens: Lens L <sub>1</sub>                                                                                                                                                                           | 1/2   |     |
|     | (b) Sojective Lens. Lens Li                                                                                                                                                                                       | 1/2   |     |
|     | Eyepiece Lens: Lens L <sub>2</sub>                                                                                                                                                                                |       |     |
|     |                                                                                                                                                                                                                   |       |     |
|     | Reason:                                                                                                                                                                                                           | **    |     |
|     | The objective should have large aperture and large focal                                                                                                                                                          | 1/2   |     |
|     | length while the eyepiece should have small aperture and small focal length.                                                                                                                                      |       |     |
|     | Shall to the local solution                                                                                                                                                                                       |       | 3   |
| Q21 | (a) Statement of Biot Savart law 1                                                                                                                                                                                |       |     |
|     |                                                                                                                                                                                                                   |       |     |
|     | Expression in vector form ½                                                                                                                                                                                       |       |     |
|     | (b) Magnitude of magnetic field at centre 1                                                                                                                                                                       |       |     |
|     | Direction of magnetic field 1/2                                                                                                                                                                                   |       |     |
|     |                                                                                                                                                                                                                   |       |     |
|     | (a) It states that magnetic field strength, $d\vec{B}$ , due to a current                                                                                                                                         |       |     |
|     | element, $Id\vec{l}$ , at a point, having a position vector $\vec{r}$ relative to                                                                                                                                 | 1     |     |
|     | the current element, is found to depend (i) directly on the                                                                                                                                                       |       |     |
|     | current element, (ii) inversely on the square of the distance                                                                                                                                                     |       |     |
|     | r , (iii) directly on the sine of angle between the current                                                                                                                                                       |       |     |
| N N | element and the position vector <b>r</b> .                                                                                                                                                                        |       |     |
|     | In vector notation,                                                                                                                                                                                               | 530   |     |
|     |                                                                                                                                                                                                                   | 1/2   |     |
|     | $\overrightarrow{d}\overrightarrow{\boldsymbol{B}} = \frac{\mu_0}{4\pi}  \frac{I \overrightarrow{d} \overrightarrow{\boldsymbol{l}} \times \overrightarrow{\boldsymbol{r}}}{ \overrightarrow{\boldsymbol{r}} ^3}$ |       |     |
|     | Alternatively,                                                                                                                                                                                                    |       |     |
|     | Alternatively, $\left(d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \vec{d} \vec{l} \times \hat{r}}{ \vec{r} ^2}\right)$                                                                                                  |       |     |
|     | $\left( u\mathbf{B} - \frac{1}{4\pi} \frac{ \vec{r} ^2}{ \vec{r} ^2} \right)$                                                                                                                                     | N .   |     |
|     |                                                                                                                                                                                                                   |       |     |

|     | r.                                                                                                                                        |     |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | (b) $B_p = \frac{\mu_0 \times 1}{2R} = \frac{\mu_0}{2R}$ (along z – direction)                                                            | 1/2 |   |
|     | $B_Q = \frac{\mu_0 \times \sqrt{3}}{2R} = \frac{\mu_0 \sqrt{3}}{2R}$ (along x – direction)                                                |     |   |
|     | $\therefore B = \sqrt{{B_p}^2 + {B_Q}^2} = \frac{\mu_0}{R}$                                                                               | 1/2 |   |
|     | This net magnetic field $B$ , is inclined to the field $B_p$ , at an angle $\Theta$ , where                                               |     |   |
|     | $\tan \theta = \sqrt{3}$ $(/\theta = \tan^{-1} \sqrt{3} = 60^{\circ})$                                                                    | 1/2 |   |
|     | (in XZ plane)                                                                                                                             |     | 3 |
| Q22 | Formula for energy stored Energy stored before 1 Energy stored after 1 Ratio 1/2                                                          |     |   |
|     | Energy stored = $\frac{1}{2} CV^2 \left( = \frac{1}{2} \frac{Q^2}{C} \right)$                                                             | 1/2 |   |
|     | Net capacitance with switch S closed = $C + C = 2C$                                                                                       | 1/2 |   |
|     | $\therefore \text{ Energy stored} = \frac{1}{2} \times 2C \times V^2 = CV^2$                                                              | 1/2 |   |
|     | After the switch S is opened, capacitance of each capacitor= $KC$<br>$\therefore \text{ Energy stored in capacitor A} = \frac{1}{2}KCV^2$ |     |   |
|     | For capacitor B,                                                                                                                          |     |   |
|     | Energy stored = $\frac{1}{2} \frac{Q^2}{KC} = \frac{1}{2} \frac{C^2 V^2}{KC} = \frac{1}{2} \frac{CV^2}{K}$                                | 1/2 |   |
|     | $\therefore \text{ Total Energy stored} = \frac{1}{2}KCV^2 + \frac{1}{2}\frac{CV^2}{K} = \frac{1}{2}CV^2\left(K + \frac{1}{K}\right)$     |     |   |
|     | $=\frac{1}{2}CV^2\left(\frac{K^2+1}{K}\right)$                                                                                            | 1/2 |   |
|     |                                                                                                                                           | 1   |   |

|     | $\therefore \text{ Required ratio} = \frac{2CV^2.K}{CV^2(K^2+1)} = \frac{2K}{(K^2+1)}$                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2               | 3 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|
|     | SECTION D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | 0 |
| Q23 | a) Name of the installation, the cause of disaster ½ + ½ b) Energy release process 1 c) Values shown by Asha and mother 1+1 a) (i) Nuclear Power Plant:/'Set-up' for releasing Nuclear Energy/Energy Plant (Also accept any other such term) (ii) Leakage in the cooling unit/ Some defect in the set up. b) Nuclear Fission/Nuclear Energy Break up (/ Fission) of Uranium nucleus into fragments c) Asha: Helpful, Considerate, Keen to Learn, Modest Mother: Curious, Sensitive, Eager to Learn, Has no airs | 1½<br>1<br>1<br>1 |   |
|     | (Any one such value in each case)  SECTION E                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | 4 |
| Q24 | (a) Derivation of E along the axial line of dipole (b) Graph between E vs r (c) (i) Diagrams for stable and unstable equilibrium of dipole (ii) Torque on the dipole in the two cases  (a)  E+q  E-q  P                                                                                                                                                                                                                                                                                                         |                   |   |
| 0   | Electric field at P due to charge $(+q) = E_1 = \frac{1}{4\pi\epsilon_0} \frac{q}{(r-a)^2}$<br>Electric field at P due to charge $(-q) = E_2 = \frac{1}{4\pi\epsilon_0} \frac{q}{(r+a)^2}$                                                                                                                                                                                                                                                                                                                      | ½<br>½            |   |
|     | Net electric Field at P= $E_1$ – $E_2$ = $\frac{1}{4\pi\varepsilon_0} \frac{q}{(r-a)^2}$ – $\frac{1}{4\pi\varepsilon_0} \frac{q}{(r+a)^2}$ = $\frac{1}{4\pi\varepsilon_0} \frac{2pr}{(r^2-a^2)^2}$ ( $p=q.2a$ )                                                                                                                                                                                                                                                                                                 | 1/2               |   |
|     | Its direction is parallel to $\vec{p}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2               |   |

(b) E 1 (Note: Award ½ mark if the student just writes: For short Dipole =  $\frac{1}{4\pi\epsilon_0} \frac{2p}{r^3}$  without drawing the graph) (c) -q 1/2 Stable equilibrium 1/2  $\rightarrow \vec{E}$ Unstable equilibrium (Note: Award 1/2 mark only if the student does not draw the diagrams but just writes: For stable Equilibrium:  $\vec{p}$  is parallel to  $\vec{E}$ . (i) For unstable equilibrium:  $\vec{p}$  is antiparallel to  $\vec{E}$ ) (ii) Torque = 0 for (i) as well as case (ii). (Also accept,  $\vec{\tau} = \vec{p} \times \vec{E}$  /  $\tau = pE \sin \theta$ )  $\frac{1}{2} + \frac{1}{2}$ 5 OR a) Using Gauss's theorem to find E due to an infinite plane sheet of charge 3 b) Expression for the work done to bring charge q from infinity to r2



| 025 | a) Identification ½                                                                                          |     |   |
|-----|--------------------------------------------------------------------------------------------------------------|-----|---|
| Q25 | b) Identifying the curves 1                                                                                  |     |   |
|     | Justification ½                                                                                              |     |   |
|     | c) Variation of Impedance                                                                                    |     |   |
|     | with frequency ½                                                                                             |     |   |
|     | Graph ½                                                                                                      |     |   |
|     | d) Expression for current 1½                                                                                 |     |   |
|     | Phase relation ½                                                                                             |     |   |
|     | a) The device X is a capacitor                                                                               | 1/2 |   |
|     |                                                                                                              |     |   |
|     | b) Curve B voltage                                                                                           |     | 1 |
|     | Curve C → current                                                                                            | 1/2 |   |
|     | Curve A power                                                                                                | 1/2 |   |
|     |                                                                                                              |     |   |
|     | Reason: The current leads the voltage in phase, by $\pi/2$ ,                                                 | 1/2 |   |
|     | for a capacitor.                                                                                             |     |   |
|     |                                                                                                              |     |   |
|     | c) $X_c = \frac{1}{\omega c} \left( / X_c \propto \frac{1}{\omega} \right)$                                  | 1/2 |   |
|     |                                                                                                              | 1   |   |
|     |                                                                                                              |     |   |
|     |                                                                                                              |     |   |
|     | X <sub>c</sub> $\Delta$                                                                                      | 1/2 |   |
|     |                                                                                                              | 72  |   |
|     |                                                                                                              |     |   |
|     |                                                                                                              |     |   |
|     | ω                                                                                                            |     |   |
|     | d) $V = V$ dip set                                                                                           |     |   |
| -   | d) $V = V_0 \sin \omega t$                                                                                   |     |   |
|     | $Q = CV = CV_0 \sin \omega t$                                                                                | 1/2 |   |
|     | da                                                                                                           |     |   |
|     | $I = \frac{dq}{dt} = \omega c V_o \cos \omega t$                                                             | 1/2 |   |
|     | $= I_0 \sin(\omega t + \frac{\pi}{2})$ V=V_sinwt                                                             |     |   |
| 1   | $-I_0 \sin(\omega t + I_2)$ V=V <sub>o</sub> sinwt                                                           | 1/2 |   |
|     | Current leads the voltage, in phase , by $\pi/2$                                                             | 1/2 |   |
|     | (Note: If the student identifies the device V as an                                                          |     |   |
|     | (Note: If the student identifies the device X as an Inductor but writes correct answers to parts (c) and (d) |     |   |
|     | Inductor but writes correct answers to parts (c) and (d)                                                     |     |   |
|     | (in terms of an inductor), the student be given full marks                                                   |     | 5 |

for (only) these two parts )



| OR                                                                                                                                     |     |   |
|----------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| a) Labelled diagram of ac generator 1 Expression for emf 2 b) Formula for emf ½ Substitution ½ Calculation of emf 1                    |     |   |
| Slip rings Alternating emf                                                                                                             | 1   |   |
| Let $\omega$ be the angular speed of rotation of the coil. We then have $\phi(t) = NBA\cos\omega t$ $\therefore E = -\frac{d\phi}{dt}$ | 1/2 |   |
| $= NBA\omega \sin \omega t$ $= E_0 \sin \omega t \qquad (E_0 = NBAw)$                                                                  | 1/2 |   |
| b) Induced emf = $BlV$                                                                                                                 | 1/2 |   |
| $\therefore E = 0.3 \times 10^{-4} \times 10 \times 5 \text{ volt}$                                                                    | 1/2 |   |
| $E = 1.5 \times 10^{-3} \text{V} \ (= 1.5 \text{mV})$                                                                                  | 1   | 5 |

Q26

a) Definition of wavefront ½
Verifying laws of refraction by Huygen's 3
principle
b) Polarisation by scattering ½

Calculation of Brewster's angle

a) The wavefront is the common locus of all points which are in phase(/surface of constant phase)

1/2

1



1

Let a plane wavefront be incident on a surface separating two media as shown. Let  $v_1$  and  $v_2$  be the velocities of light in the rarer medium and denser medium respectively. From the diagram

$$BC = v_1 t$$
 and  $AD = v_2 t$ 

$$\sin i = \frac{BC}{AC}$$
 and  $\sin r = \frac{AD}{AC}$ 

$$\therefore \frac{\sin i}{\sin r} = \frac{BC}{AD} = \frac{v_1 t}{v_2 t}$$

$$=\frac{v_1}{v_2} = a \ constant$$

This proves Snell's law of refraction.



| Let the final image be at I. We then have                                                           |     |   |
|-----------------------------------------------------------------------------------------------------|-----|---|
| $\frac{1}{f_1} = \frac{1}{v_1} - \frac{1}{u}$ $\frac{1}{f_2} = \frac{1}{v} - \frac{1}{v_1}$         | 1/2 |   |
| Adding, we get $\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{v} - \frac{1}{u} = \frac{1}{f}$            | 1/2 |   |
| $\therefore \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$                                            |     |   |
| $P = P_1 + P_2$ b) At minimum deviation $r = \frac{A}{2} = 30^{\circ}$                              | 1/2 |   |
| We are given that $i = \frac{3}{4}A = 45^{\circ}$                                                   | 1/2 |   |
| $\therefore \mu = \frac{\sin 45^{\circ}}{\sin 30^{\circ}} = \sqrt{2}$                               | 1/2 |   |
| ∴ Speed of light in the prism = $\frac{c}{\sqrt{2}}$<br>(≅ 2.1 × 10 <sup>8</sup> ms <sup>-1</sup> ) | 1/2 |   |
| [Award ½ mark if the student writes the formula:<br>$\mu = \frac{\sin(A + D_m)/2}{\sin(A/2)}$       |     |   |
| but does not do any calculations.]                                                                  |     |   |
|                                                                                                     |     | 5 |

## MARKING SCHEME

| Q. No. | Expected Answer/ Value Points                                                                                                                                                                                                                                                                                                                                                                                                | Marks   | Total<br>Marks |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|
|        | Section A                                                                                                                                                                                                                                                                                                                                                                                                                    |         | 68             |
| Q1     | Q to P through ammeter and D to C through ammeter (Alternatively: Anticlockwise as seen from left in coil PQ clockwise as seen from left in coil CD)                                                                                                                                                                                                                                                                         | 1/2 1/2 | 1              |
| Q2     | Speed of electromagnetic wave, $c = \frac{E_0}{B_0}$ .                                                                                                                                                                                                                                                                                                                                                                       |         | 1              |
| Q3     | i. Nichrome<br>ii. $R_{Ni} > R_{Cu}$ (or Resistivity <sub>Ni</sub> > Resistivity <sub>Cu</sub> )                                                                                                                                                                                                                                                                                                                             | 1/2     | 1              |
| Q4     | i. Decreases ii. $n_{\text{Violet}} > n_{\text{Red}}$ (Also accept if the student writes $\lambda_V < \lambda_R$ )                                                                                                                                                                                                                                                                                                           | 1/2     | 1              |
| Q5     | Photoelectric Effect (/Raman Effect/ Compton Effect)                                                                                                                                                                                                                                                                                                                                                                         | 1       | 1              |
|        | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                |
| Q6     | Condition i. For directions of $\vec{E}$ , $\vec{B}$ , $\vec{v}$ 1 ii. For magnitudes of $\vec{E}$ , $\vec{B}$ , $\vec{v}$ 1  i. The velocity $\vec{v}$ , of the charged particles, and the $\vec{E}$ and $\vec{B}$ vectors, should be mutually perpendicular.  Also the forces on $q$ , due to $\vec{E}$ and $\vec{B}$ , must be oppositely directed.  (Also accept if the student draws a diagram to show the directions.) | 1/2 1/2 |                |

| -       |                                                                                                                    |     |   |
|---------|--------------------------------------------------------------------------------------------------------------------|-----|---|
|         | ii. $qE = qvB$<br>$or v = \frac{E}{R}$                                                                             | 1/2 |   |
|         | $or v = \frac{E}{C}$                                                                                               | 1/2 |   |
|         | B                                                                                                                  |     |   |
|         | [Alternatively, The student may write:                                                                             | 1/2 |   |
|         |                                                                                                                    | 1/2 |   |
|         | Force due to electric field = $q\vec{E}$                                                                           | '2  |   |
|         | Force due to magnetic field = $q(\vec{v} \times \vec{B})$<br>The required condition is                             |     |   |
|         | $q\vec{E} = -q \ (\vec{v} \times \vec{B})$                                                                         | 1/2 |   |
|         | $[or \vec{E} = -(\vec{v} \times \vec{B})]$                                                                         | 1/2 |   |
|         |                                                                                                                    |     |   |
|         | (Note: Award 1 mark only if the student just writes: "The forces, on the charged particle, due to the electric and |     |   |
|         | magnetic fields, must be equal and opposite to each other")]                                                       |     | 2 |
| Q7      | magnetic fictus, must be equal and opposite to each other )                                                        |     |   |
|         | (a) Identification $\frac{1}{2} + \frac{1}{2}$                                                                     |     |   |
|         | (b) One use each $\frac{1}{2} + \frac{1}{2}$                                                                       |     |   |
|         |                                                                                                                    |     |   |
|         | a) X-rays/ Gamma rays                                                                                              | 1/2 |   |
|         | One use of the name given                                                                                          | 1/2 |   |
|         | b) Infrared/Visible/Microwave One use of the name given                                                            | 1/2 |   |
|         | (Note: Award ½ mark for each correct use (relevant to                                                              | /2  |   |
|         | the name chosen) even if the names chosen are                                                                      |     |   |
|         | incorrect.)                                                                                                        |     |   |
| -       |                                                                                                                    |     | 2 |
| 00      | Interference pattern ½                                                                                             |     |   |
| Q8      |                                                                                                                    |     |   |
|         | Diffraction pattern ½                                                                                              |     |   |
|         | Try Difference                                                                                                     |     |   |
|         | Two Differences 1/2 + 1/2                                                                                          |     |   |
|         |                                                                                                                    |     |   |
|         | Tr.                                                                                                                |     |   |
|         |                                                                                                                    |     |   |
|         |                                                                                                                    | 17  |   |
| (       | Imax                                                                                                               | 1/2 |   |
|         | $\wedge \wedge \wedge \wedge \wedge \wedge \wedge$                                                                 |     |   |
|         | 1.V.V.VIV.V.V                                                                                                      |     |   |
|         | 3λ 2λ 1λ Ο 1λ 2λ 3λ                                                                                                |     |   |
|         | → Path Difference                                                                                                  |     |   |
|         | P I dui Dilicicile                                                                                                 |     |   |
|         |                                                                                                                    |     |   |
|         |                                                                                                                    |     |   |
|         |                                                                                                                    |     |   |
| <u></u> | <u> </u>                                                                                                           | 40  |   |





| Q9  | Formula ½                                                                                   |           |  |
|-----|---------------------------------------------------------------------------------------------|-----------|--|
|     | Calculation 1½                                                                              |           |  |
|     | $\frac{1}{\lambda} = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$                       | 1/2       |  |
|     | $\therefore \text{ For Balmer Series: } (\lambda_B)_{short} = \frac{4}{R}$                  | 1/2       |  |
|     | and For Lyman Series: $(\lambda_L)_{short} = \frac{1}{R}$                                   | 1/2       |  |
|     | $\therefore \lambda_B = 913.4 \times 4  A^0 = 3653.6  A^0$                                  | 1/2       |  |
| Q10 | a) Two properties for making permanent $\frac{1}{2} + \frac{1}{2}$                          |           |  |
|     | magnet b) Two properties for making an electromagnet                                        |           |  |
|     | a) For making permanent magnet:                                                             |           |  |
|     | (i) High retentivity                                                                        | 1/2 + 1/2 |  |
|     | (ii) High coercitivity (iii) High permeability                                              |           |  |
|     | (Any two)                                                                                   |           |  |
|     | b) For making electromagnet:                                                                |           |  |
|     | (i) High permeability                                                                       | 1/2 + 1/2 |  |
|     | (ii) Low retentivity                                                                        |           |  |
|     | (iii) Low coercivity                                                                        |           |  |
|     | (Any two)                                                                                   |           |  |
|     |                                                                                             | 2         |  |
| K   | SECTION C                                                                                   |           |  |
| Q11 | a. Calculation of wavelength, frequency and speed $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ |           |  |
|     | b. Lens Maker's Formula ½                                                                   |           |  |
|     | Calculation of R 1                                                                          |           |  |
|     |                                                                                             |           |  |
|     |                                                                                             |           |  |

| 90  |                                                                                                                                                                                                                                   |             | 9 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|
|     | a) $\lambda = \frac{589 \text{ nm}}{1.33} = 442.8 \text{nm}$                                                                                                                                                                      | 1/2         |   |
|     | Frequency $v = \frac{3 \times 10^8 \text{ ms}^{-1}}{589 \text{ nm}} = 5.09 \times 10^{12} \text{Hz}$                                                                                                                              | 1/2         |   |
|     | Speed $v = \frac{3 \times 10^8}{1.33}$ m/s = $2.25 \times 10^8$ m/s                                                                                                                                                               | 1/2         |   |
|     | b) $\frac{1}{f} = \left[\frac{\mu_2}{\mu_1} - 1\right] \left[\frac{1}{R_1} - \frac{1}{R_2}\right]$                                                                                                                                | 1/2         |   |
|     | $\therefore \ \frac{1}{20} = \left[ \frac{1.55}{1} - 1 \right] \frac{2}{R}$                                                                                                                                                       | 1/2         |   |
|     | $\therefore R = (20 \times 1.10) \text{cm} = 22 \text{ cm}$                                                                                                                                                                       | 1/2         | 3 |
| Q12 | (a) Ray Diagram for reflecting Telescope (b) Two advantages of it over refracting type of ½ + ½ telescope  (a) Ray Diagram Arrow marking Labelling  Secondary mirror  Eyepiece  (b) Advantages                                    | 1<br>½<br>½ |   |
|     | <ul> <li>(i) Spherical aberration is absent</li> <li>(ii) Chromatic aberration is absent</li> <li>(iii) Mounting is easier</li> <li>(iv) Polishing is done on only one side</li> <li>(v) Light gathering power is more</li> </ul> |             |   |
|     | (Any two)                                                                                                                                                                                                                         | 1/2 + 1/2   | 3 |

|     |                                                                                                  | 7   |    |
|-----|--------------------------------------------------------------------------------------------------|-----|----|
| Q13 | a) Principle of meter bridge 1                                                                   |     |    |
| 24  | b) Relation between $l_1, l_2$ , and $S$                                                         |     |    |
|     | a) The principle of working of a meter bridge is same as that of a balanced Wheatstone bridge.   |     |    |
|     | (Alternatively:                                                                                  |     |    |
|     | P LL Q  R  ()                                                                                    | 1   |    |
|     | When $i_g=0$ , then $\frac{P}{Q}=\frac{R}{S}$ )                                                  | 1/2 |    |
|     | b) $\frac{R}{S} = \frac{l_1}{100 - l_1}$                                                         | /1  |    |
|     | When X is connected in parallel: $\frac{R}{\left(\frac{XS}{X+S}\right)} = \frac{l_2}{100 - l_2}$ | 1/2 |    |
|     | On solving, we get $X = \frac{l_1 S(100 - l_2)}{100(l_2 - l_1)}$                                 | 1   |    |
|     |                                                                                                  |     | 3  |
| Q14 | Definition of mutual inductance 1 Derivation of mutual inductance for two long solenoids 2       |     |    |
|     | (i) Mutual inductance is numerically equal to the induced                                        |     |    |
|     | emf in the secondary coil when the current in the primary                                        |     |    |
|     | coil changes by unity.                                                                           |     |    |
|     | Alternatively: Mutual inductance is numerically equal to                                         |     |    |
|     | the magnetic flux linked with one coil/secondary coil                                            |     | J. |
|     |                                                                                                  |     |    |



|     | ip.                                                                                    | V   |     |
|-----|----------------------------------------------------------------------------------------|-----|-----|
|     | (ii) The work done against back /induced emf is stored as                              |     |     |
|     | magnetic potential energy.                                                             |     |     |
|     | The rate of work done, when a current $i$ is passing                                   | 1/2 |     |
|     | through the coil, is                                                                   |     |     |
|     | $\frac{dW}{dt} =  \varepsilon i = \left(L\frac{di}{dt}\right)i$                        | 1/2 |     |
|     | $dt = (E_{t}t - (E_{t}dt))^{t}$                                                        |     |     |
|     | 7                                                                                      |     |     |
|     | $\therefore W = \int dW = \int_0^I Lidi$                                               | 1/2 |     |
|     | $=\frac{1}{2}Li^2$                                                                     | 1/2 | ,   |
|     |                                                                                        |     | 3   |
|     |                                                                                        | 1   |     |
| Q15 | (a) Variation of photocurrent with intensity 1 of radiation                            |     |     |
|     | (b) Stopping potential versus frequency for 1                                          |     |     |
|     | different materials                                                                    |     |     |
|     | (c) Independence of maximum kinetic energy 1                                           |     |     |
|     | of the emitted photoelectrons                                                          |     |     |
|     |                                                                                        |     |     |
|     | (a) The collision of a photon can cause emission of a                                  |     |     |
|     | photoelectron( above the threshold frequency). As                                      | 1   |     |
|     | intensity increases, number of photons increases. Hence                                |     |     |
|     | the current increases.                                                                 |     |     |
|     | (b) We have, $eV_s = h(v - v_0)$                                                       |     |     |
|     | $v_s = \frac{h}{\rho}(v) + \left(-\frac{hv_0}{\rho}\right)$                            | 1/2 |     |
|     | : Graph of $v_s$ with $v$ is a straight line and slope $\left(=\frac{h}{e}\right)$     | 17. |     |
|     | is a constant.                                                                         | 1/2 |     |
|     |                                                                                        |     |     |
|     | (c) Maximum for different surfaces K. $E = h(v - v_0)$                                 | 1/2 |     |
|     | Hence, it depends on the frequency and not on the intensity of the incident radiation. | 1/2 |     |
|     |                                                                                        |     | 3   |
|     |                                                                                        |     | 540 |
|     |                                                                                        |     |     |

| (c) Generation: Incident light generates electron-hole pairs.  Separation: Electric field of the depletion layer separates the electrons and holes.  Collection: Electrons and holes are collected at the n and p side contacts.  (a) Identification of the bulb and reason 1/2 + 1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/2   1/ | (b) Diagram of solar cell (c) Names of the processes  (a) Bulb B <sub>1</sub> glows Diode D <sub>1</sub> is forward biased. | 1/2         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------|
| (c) Names of the processes  (a) Bulb B <sub>1</sub> glows Diode D <sub>1</sub> is forward biased.  (b) Diagram  (c) Generation: Incident light generates electron-hole pairs.  Separation: Electric field of the depletion layer separates the electrons and holes.  Collection: Electrons and holes are collected at the n and p side contacts.  Q17  Formula for energy stored Energy stored before Energy stored before Energy stored defere Energy stored after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (a) Bulb B <sub>1</sub> glows Diode D <sub>1</sub> is forward biased.                                                       | 1/2         |
| (a) Bulb B <sub>1</sub> glows Diode D <sub>1</sub> is forward biased.  (b) Diagram  (c) Generation: Incident light generates electron-hole pairs.  Separation: Electric field of the depletion layer separates the electrons and holes.  Collection: Electrons and holes are collected at the n and p side contacts.  3  Formula for energy stored Energy stored before Energy stored defere Energy stored after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (a) Bulb B <sub>1</sub> glows Diode D <sub>1</sub> is forward biased.                                                       | 1/2         |
| (a) Bulb B <sub>1</sub> glows Diode D <sub>1</sub> is forward biased.  (b) Diagram  (c) Generation: Incident light generates electron-hole pairs.  Separation: Electric field of the depletion layer separates the electrons and holes.  Collection: Electrons and holes are collected at the n and p side contacts.  24  Pormula for energy stored Energy stored before 1 Energy stored before 1 Energy stored after 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Diode D <sub>1</sub> is forward biased.                                                                                     |             |
| (c) Generation: Incident light generates electron-hole pairs.  Separation: Electric field of the depletion layer separates the electrons and holes.  Collection: Electrons and holes are collected at the n and p side contacts.  72  Formula for energy stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tracks of                                                                                                                   | 1/2         |
| (c) Generation: Incident light generates electron-hole pairs.  Separation: Electric field of the depletion layer separates the electrons and holes.  Collection: Electrons and holes are collected at the n and p side contacts.  72  Formula for energy stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) Diagram                                                                                                                 |             |
| Separation: Electric field of the depletion layer separates the electrons and holes.  Collection: Electrons and holes are collected at the n and p side contacts.  72  1/2  1/2  1/2  2  2  3  Q17  Formula for energy stored 1/2  Energy stored before 1  Energy stored after 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | p n  Depletion                                                                                                              | 1/2         |
| the electrons and holes.  Collection: Electrons and holes are collected at the n and p side contacts.  Q17  Formula for energy stored Energy stored before Energy stored after  1  Energy stored after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (c) Generation: Incident light generates electron-hole                                                                      | pairs. ½    |
| p side contacts.  Pormula for energy stored Energy stored before Energy stored after  p side contacts.  3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             | parates 1/2 |
| Pormula for energy stored Energy stored before Energy stored after  Formula for energy stored  1  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             | e n and ½   |
| Energy stored before 1 Energy stored after 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             | 3           |
| Energy stored before 1 Energy stored after 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Formula for energy stored                                                                                                   | 1/2         |
| Energy stored after 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 017                                                                                                                         | 1.          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             | 1           |
| Katio ½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             | E010        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Katio                                                                                                                       | 72          |

| Energy stored = $\frac{1}{2} CV^2 \left( = \frac{1}{2} \frac{Q^2}{C} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2    |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---|
| Energy stored = $\frac{1}{2}CV^{-1} (= \frac{1}{2}C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000071 |   |
| Net capacitance with switch S closed = $C + C = 2C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2    |   |
| $\therefore \text{ Energy stored} = \frac{1}{2} \times 2C \times V^2 = CV^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2    |   |
| After the switch S is opened, capacitance of each capacitor= $KC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |   |
| $\therefore \text{ Energy stored in capacitor A} = \frac{1}{2}KCV^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5      |   |
| For capacitor B,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 7 |
| Energy stored = $\frac{1}{2} \frac{Q^2}{KC} = \frac{1}{2} \frac{C^2 V^2}{KC} = \frac{1}{2} \frac{CV^2}{K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2    |   |
| $\therefore \text{ Total Energy stored} = \frac{1}{2}KCV^2 + \frac{1}{2}\frac{CV^2}{K} = \frac{1}{2}CV^2\left(K + \frac{1}{K}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |   |
| $=\frac{1}{2}CV^2\left(\frac{K^2+1}{K}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2    |   |
| $\therefore \text{ Required ratio} = \frac{2CV^2.K}{CV^2(K^2+1)} = \frac{2K}{(K^2+1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2    | 3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 /    | 3 |
| Q18 a) Achieving amplitude Modulation 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |   |
| b) Stating the formulae ½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |   |
| Calculation of $v_c$ and $v_m$ $\frac{1}{2} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
| Calculation of bandwidth ½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
| A suplifyed and dulation can be achieved by analysis a the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |   |
| a) Amplitude modulation can be achieved by applying the message signal, and the carrier wave, to a non linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |   |
| (square law device) followed by a band pass filter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |   |
| (Alternatively, The student may just draw the block diagram.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |   |
| BANDPASS AM Wave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |   |
| $ \begin{array}{c c} \hline  & m(t) & x(t) & SQUARE & y(t) & FILTER \\ \hline  & A_m \sin \omega_n t & \uparrow & CENTRED \\ \hline  & (Modulating & Bx(t)+Cx(t)^3 & AT \omega_n \end{array} $ $ \begin{array}{c c} \hline  & AT \omega_n & AT \omega_n & AT \omega_n $ $ A_n \sin \omega_n t & A_n \cos \omega_$ |        |   |
| (carrier)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |   |

|     | (Alternatively, Amplitude modulation is achieved by                                                                                                                                                                                           | 1   | <u>.</u> |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
|     | superposing a message signal on a carrier wave in a way that causes the amplitude of the carrier wave to change in accordance with the message signal.)                                                                                       |     |          |
|     | b) Frequencies of side bands are: $ (\upsilon_c + \upsilon_m) \text{ and } (\upsilon_c - \upsilon_m) $                                                                                                                                        | 1/2 |          |
|     | $ :: v_c + v_m = 660 \text{ kHz} $                                                                                                                                                                                                            |     |          |
|     | and $v_c - v_m = 640 \text{ kHz}$                                                                                                                                                                                                             |     |          |
|     | $  \cdot \upsilon_{\rm c} = 650 \ \rm kHz $                                                                                                                                                                                                   | 1/2 | ,        |
|     |                                                                                                                                                                                                                                               | 1/2 |          |
|     | Bandwidth = $(660 - 640) \text{ kHz} = 20 \text{ kHz}$                                                                                                                                                                                        | 1/2 | 3        |
| Q19 | a) Circuit diagram Input characteristics Output characteristics 1/2 b) Output pulse wave form 1/2 Truth table/Logic symbol 1/2                                                                                                                |     |          |
|     | $\begin{array}{c c} I_{C} \\ \hline MA \\ \hline V_{EB} \end{array} \begin{array}{c} I_{B} \\ \hline V_{BE} \end{array} \begin{array}{c} I_{C} \\ \hline MA \\ \hline V_{CE} \end{array} \begin{array}{c} R_{1} \\ \hline V_{CE} \end{array}$ | 1   |          |
|     |                                                                                                                                                                                                                                               |     |          |





|     | Field at the centre of a circular coil = $\frac{\mu_0 I}{2R}$                                                                                                                                                                                                                                | 1/2 | 2 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | Field due to coil $P = \frac{\mu_0 \times 3}{2 \times 5 \times 10^{-2}}$ tesla                                                                                                                                                                                                               |     |   |
|     | (한 27 전) 전(2007년)                                                                                                                                                                                                                                                                            |     |   |
|     | $=12\pi \times 10^{-6}$ tesla                                                                                                                                                                                                                                                                | 1/2 |   |
|     | Field due to coil $Q = \frac{\mu_0 \times 4}{2 \times 5 \times 10^{-2}}$ tesla                                                                                                                                                                                                               |     |   |
|     | $=16\pi \times 10^{-6}$ tesla                                                                                                                                                                                                                                                                | 1/2 |   |
|     | ∴ Resultant Field = $(\pi\sqrt{12^2 + 16^2})\mu$ T                                                                                                                                                                                                                                           |     |   |
|     | $= (20 \pi) \mu T$                                                                                                                                                                                                                                                                           | 1   |   |
|     | Let the field make an angle $\theta$ with the vertical                                                                                                                                                                                                                                       |     |   |
|     | $\tan \theta = \frac{12\pi \times 10^{-6}}{16\pi \times 10^{-6}} = \frac{3}{4}$                                                                                                                                                                                                              |     |   |
|     | $\theta = \tan^{-1}\frac{3}{4}$                                                                                                                                                                                                                                                              | 1/2 | 3 |
|     | (Alternatively: $\theta' = \tan^{-1}\frac{4}{3}$ , $\theta' = \text{angle with the horizontal}$ )                                                                                                                                                                                            |     |   |
|     | [Note1: Award 2 marks if the student directly calculates $B$ without calculating $B_P$ and $B_Q$ separately.]                                                                                                                                                                                |     |   |
|     | [Note 2: Some students may calculate the field $B_Q$ and state that it also represents the resultant magnetic field (as coil P has been shown 'broken' and , therefore, cannot produce a magnetic field); They may be given 2 $\frac{1}{2}$ marks for their (correct) calculation of $B_Q$ ] |     |   |
| Q21 | Diagram of generalized communication system 1½                                                                                                                                                                                                                                               |     |   |
|     | Function of (a) transmitter (b) channel (c) receiver \(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}                                                                                                                                                                                 |     |   |
|     |                                                                                                                                                                                                                                                                                              |     |   |
|     |                                                                                                                                                                                                                                                                                              |     |   |
|     |                                                                                                                                                                                                                                                                                              |     |   |
|     |                                                                                                                                                                                                                                                                                              |     |   |



|     | SECTION D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · · |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Q23 | a) Name of the installation, the cause of disaster ½ + ½ b) Energy release process 1 c) Values shown by Asha and mother 1+1 a) (i) Nuclear Power Plant:/'Set-up' for releasing Nuclear Energy/Energy Plant (Also accept any other such term) (ii) Leakage in the cooling unit/ Some defect in the set up. b) Nuclear Fission/Nuclear Energy Break up (/ Fission) of Uranium nucleus into fragments c) Asha: Helpful, Considerate, Keen to Learn, Modest Mother: Curious, Sensitive, Eager to Learn, Has no airs | 1½<br>½<br>1                          |
|     | (Any one such value in each case)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                     |
| Q24 | a) Definition of wavefront Verifying laws of refraction by Huygen's 3 principle b) Polarisation by scattering Calculation of Brewster's angle  a) The wavefront is the common locus of all points which are in phase(/surface of constant phase)                                                                                                                                                                                                                                                                | 1/2                                   |
|     | Medium 2  Negret P  Medium 2  Refracted wavefront  Let a plane wavefront be incident on a surface separating two media as shown. Let $v_1$ and $v_2$ be the velocities of light in the rarer medium and denser medium respectively. From the                                                                                                                                                                                                                                                                    | 1                                     |
|     | diagram $BC = v_1 t \text{ and } AD = v_2 t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2                                   |
|     | $BC = v_1 t$ and $D = v_2 t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | / 2                                   |

| $\sin i = \frac{BC}{AC}$ and $\sin r = \frac{AD}{AC}$                                                                                                          | 1/2 |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| $\therefore \frac{\sin i}{\sin r} = \frac{BC}{AD} = \frac{v_1 t}{v_2 t}$                                                                                       | 1/2 |   |
| $=\frac{v_1}{v_2} = a \ constant$                                                                                                                              | 1/2 |   |
| This proves Snell's law of refraction.                                                                                                                         | . ~ |   |
| b) When unpolarised light gets scattered by molecules, the scattered light has only one of its two components in it.  (Also accept diagrammatic representation |     |   |
| Incident Sunlight<br>(Unpolarised)                                                                                                                             |     |   |
|                                                                                                                                                                |     |   |
| Scattered Light<br>(Polarised)                                                                                                                                 | 1/2 |   |
| We have, $\mu = \tan i_B$                                                                                                                                      | 1/2 |   |
| $\therefore \tan i_B = 1.5$                                                                                                                                    |     |   |
| $\therefore i_B = \tan^{-1} 1.5$                                                                                                                               |     |   |
| (/56.3°)                                                                                                                                                       | 1/2 | 5 |
|                                                                                                                                                                |     |   |
| O.D.                                                                                                                                                           |     |   |
| OR                                                                                                                                                             |     |   |
| a) Ray diagram 1                                                                                                                                               |     |   |
| Expression for power 2                                                                                                                                         |     |   |
| b) Formula ½                                                                                                                                                   |     |   |
| Calculation of speed of light 1 ½                                                                                                                              |     |   |
|                                                                                                                                                                |     |   |

a)



Two thin lenses, of focal length  $f_1$  and  $f_2$  are kept in contact. Let O be the position of object and let u be the object distance. The distance of the image (which is at  $I_1$ ), for the first lens is  $v_1$ .

This image serves as object for the second lens.

Let the final image be at I. We then have

$$\frac{1}{f_1} = \frac{1}{v_1} - \frac{1}{u}$$

$$\frac{1}{f_2} = \frac{1}{v} - \frac{1}{v_1}$$

Adding, we get

$$\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\therefore \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

$$\therefore P = P_1 + P_2$$

b) At minimum deviation

$$r = A/2 = 30^{\circ}$$

We are given that

$$i = \frac{3}{4}A = 45^0$$

$$\therefore \mu = \frac{\sin 45^0}{\sin 30^0} = \sqrt{2}$$

∴ Speed of light in the prism = 
$$\frac{c}{\sqrt{2}}$$
  
( $\approx 2.1 \times 10^8 \text{ ms}^{-1}$ )

[Award ½ mark if the student writes the formula:

$$\mu = \frac{\sin(A + D_m)/2}{\sin(A/2)}$$

but does not do any calculations.]

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Q25

- (a) Derivation of E along the axial line of dipole
- (b) Graph between E vs r
- (c) (i) Diagrams for stable and unstable  $\frac{1}{2} + \frac{1}{2}$  equilibrium of dipole
  - (ii) Torque on the dipole in the two cases  $\frac{1}{2} + \frac{1}{2}$

(a)



Electric field at P due to charge  $(+q) = E_1 = \frac{1}{4\pi\epsilon_0} \frac{q}{(r-a)^2}$ 

Electric field at P due to charge  $(-q) = E_2 = \frac{1}{4\pi\epsilon_0} \frac{q}{(r+a)^2}$ 

Net electric Field at P=  $E_1 - E_2 = \frac{1}{4\pi\varepsilon_0} \frac{q}{(r-a)^2} - \frac{1}{4\pi\varepsilon_0} \frac{q}{(r+a)^2}$ 

$$= \frac{1}{4\pi\varepsilon_0} \frac{2pr}{(r^2 - a^2)^2} \qquad (p = q.2a)$$

Its direction is parallel to  $\vec{p}$ .

1/2

1/2

1/2

1/2

1

(b)



(Note: Award  $\frac{1}{2}$  mark if the student just writes: For short Dipole =  $\frac{1}{4\pi\epsilon_0} \frac{2p}{r^3}$  without drawing the graph)



|     | The electric field E points outwards normal to the sheet. The field lines are parallel to the Gaussian surface except for surfaces 1 and 2. Hence the net flux = $\oint E \cdot ds = EA + EA$ where A is the area of each of the surface 1 and 2. | 1       |   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|
|     | $\therefore \oint E.  ds = \frac{q}{\varepsilon_0} = \frac{\sigma A}{\varepsilon_0} = 2EA;$ $E = \frac{\sigma}{2\varepsilon_0}$                                                                                                                   | 1       |   |
|     | b) $W = q \int_{-r}^{r} \vec{E} \cdot d\vec{r}$                                                                                                                                                                                                   | 1/2     |   |
|     | $= q \int_{\infty}^{r} (-Edr)$                                                                                                                                                                                                                    | 1/2     |   |
|     | $= -q \int_{\infty}^{r} \left(\frac{\sigma}{2\epsilon_0}\right) dr$ $q\sigma$                                                                                                                                                                     | 1/2     |   |
|     | $= \frac{q\sigma}{2\epsilon}  \infty - r $ $\Rightarrow (\infty)$                                                                                                                                                                                 | 1/2     | 5 |
| Q26 | a) Identification b) Identifying the curves Justification c) Variation of Impedance with frequency  1/2  1/2  1/2                                                                                                                                 |         |   |
| (   | Graph d) Expression for current Phase relation  1½  1½  2  1½  1½                                                                                                                                                                                 | 1/2     |   |
|     | <ul> <li>a) The device X is a capacitor</li> <li>b) Curve B → voltage</li></ul>                                                                                                                                                                   | 1/2 1/2 |   |

1/2

1/2

1/2

1/2

1/2

1/2

1/2

5

Reason: The current leads the voltage in phase, by  $\pi/2$ ,







d)  $V = V_o \sin \omega t$  $Q = CV = CV_0 \sin \omega t$ 

$$I = \frac{dq}{dt} = \omega c V_o \cos \omega t$$

$$=I_0\,\sin(\,\omega t+\pi/_2\,)$$

Current leads the voltage, in phase, by  $\pi/2$ 

(Note: If the student identifies the device X as an Inductor but writes correct answers to parts (c) and (d) (in terms of an inductor), the student be given full marks for (only) these two parts)

OR

- a) Labelled diagram of ac generator 1 Expression for emf 2
- b) Formula for emf 1/2 Substitution 1/2 Calculation of emf 1



## MARKING SCHEME

| Q. No. | Expected Answer/ Value Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marks     | Total<br>Marks |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
|        | Section A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                |
| Q1     | i. Decreases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2       |                |
|        | ii. $n_{\text{Violet}} > n_{\text{Red}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2       |                |
|        | (Also accept if the student writes $\lambda_V < \lambda_R$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /2        |                |
|        | District Control of the Control of t |           | 1              |
| Q2     | Photoelectric Effect (/Raman Effect/ Compton Effect)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         |                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1              |
| Q3     | Clockwise in loop 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2       |                |
|        | Anticlockwise in loop 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2       |                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |
| Q4     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1              |
| Q1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |
|        | $\vec{E}$ along y- axis and $\vec{B}$ along z-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2 + 1/2 | <b>-</b> 00    |
|        | ( Alternatively : $\vec{E}$ along z-axis and $\vec{B}$ along y-axis)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           | 1              |
| Q5     | i. Nichrome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2       |                |
|        | ii. $R_{Ni} > R_{Cu}$ (or Resistivity <sub>Ni</sub> > Resistivity <sub>Cu</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/2       | 1              |
| 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /2        |                |
| 0.6    | SECTION B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | П         |                |
| Q6     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |
|        | a) Two properties for making permanent ½ + ½ magnet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                |
|        | b) Two properties for making an $\frac{1}{2} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                |
|        | electromagnet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |
|        | a) For making permanent magnet:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |
|        | (i) High retentivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/2 + 1/2 |                |
|        | (ii) High coercitivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /2 + /2   |                |
|        | (iii) High permeability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                |
|        | (Any two)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |



|    | Differences                           |                                                                          |              |
|----|---------------------------------------|--------------------------------------------------------------------------|--------------|
|    | Interference                          | Diffraction                                                              |              |
|    | All maxima have equal                 | Maxima have different                                                    |              |
|    | intensity                             | (/rapidly decreasing)                                                    |              |
|    |                                       | intensity                                                                | 1/2 + 1/2    |
|    | All fringes have equal                | Different (/changing)                                                    |              |
|    | width.                                | width.                                                                   |              |
|    | Superposition of two                  | Superposition of wavelets                                                |              |
|    | wavefronts                            | from the same wavefront                                                  |              |
|    | 7                                     | (Any two)                                                                | 2            |
|    |                                       | OR                                                                       |              |
|    | Expression for intensity              |                                                                          |              |
|    | Plot of intensity variatio            |                                                                          |              |
|    | 2                                     | is the intensity of unpolarised light the intensity of polarized light.) |              |
|    |                                       | ent writes the expression as $I_0 \cos^2$                                | $\theta$ ) 1 |
|    |                                       | $\frac{1}{1-\frac{1}{2}}$                                                | 1 2          |
| Q8 |                                       | no flow of current 1 momentary current 1                                 |              |
| K  |                                       |                                                                          |              |
|    | In the steady state, the disp         | lacement current and hence the                                           |              |
|    | conduction current, is zero constant. | as $ \vec{E} $ , between the plates , is                                 | 1            |
|    | 1                                     |                                                                          | 1 1          |

| î î                       |                                                                                                                                            | 7   |   |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| two                       | he steady state no current flows because, we have sources (battery and fully charged capacitor) of ual potential' connected in opposition. | 1   |   |
| flov                      | ring charging /discharging there is a momentary v of current as the 'potentials' of the two 'sources' not equal to each other.             | 1   |   |
|                           |                                                                                                                                            |     |   |
| Alternatively,            |                                                                                                                                            |     |   |
|                           | Capacitative impedence $=\frac{1}{\omega C}$                                                                                               | 1/2 |   |
|                           | ring steady state: $\omega = 0$<br>$\therefore X_c \to \infty$                                                                             | 1/2 |   |
| Her                       | nce current is zero.                                                                                                                       |     |   |
| iv) Dur                   | ring charging /discharging : $\omega \neq 0$                                                                                               | 1/2 |   |
| Her                       | $\therefore X_c$ is finite. nee current can flow.                                                                                          | 1/2 | 2 |
| b) Formula<br>c) Calculat | ion of energy difference  a                                                                                                                |     |   |

|     | Energy = $\frac{hc}{\lambda}$ =3.024×10 <sup>-19</sup> J<br>Wavelength = 6.57x10 <sup>-7</sup> m<br>Series is Balmer series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2<br>1/2<br>1/2                      |   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10001124                               | ~ |
|     | Series is Balmer series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1/2                                    |   |
|     | The state of the s |                                        | 2 |
| Q10 | Condition  i. For directions of $\vec{E}$ , $\vec{B}$ , $\vec{v}$ 1  ii. For magnitudes of $\vec{E}$ , $\vec{B}$ , $\vec{v}$ 1  (i) The velocity $\vec{v}$ , of the charged particles, and the $\vec{E}$ and $\vec{B}$ vectors, should be mutually perpendicular. Also the forces on $q$ , due to $\vec{E}$ and $\vec{B}$ , must be oppositely directed.  (Also accept if the student draws a diagram to show the directions.)  (ii) $qE = qvB$ $or \ v = \frac{E}{B}$ [Alternatively, The student may write: Force due to electric field $= q\vec{E}$ Force due to magnetic field $= q(\vec{v} \times \vec{B})$ The required condition is $q\vec{E} = -q(\vec{v} \times \vec{B})$ $[or \ \vec{E} = -(\vec{v} \times \vec{B}) = (\vec{B} \times \vec{v})]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2<br>1/2<br>1/2<br>1/2<br>1/2<br>1/2 |   |
|     | (Note: Award 1 mark only if the student just writes: "The forces, on the charged particle, due to the electric and magnetic fields, must be equal and opposite to each other")]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 2 |

|     | SECTION C                                                                                                                                                                                                                                                      |     |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
| Q11 | a. Calculation of wavelength, frequency and speed  b. Lens Maker's Formula  Calculation of $R$ $1\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ $1\frac{1}{2}$                                                                                                       |     |   |
|     | a) $\lambda = \frac{589 \text{ nm}}{1.33} = 442.8 \text{nm}$ Frequency $\nu = \frac{3 \times 10^8 \text{ ms}^{-1}}{589 \text{ nm}} = 5.09 \times 10^{12} \text{Hz}$                                                                                            | 1/2 |   |
|     | Speed $v = \frac{3 \times 10^8}{1.33} \text{m/s} = 2.25 \times 10^8 \text{m/s}$<br>b) $\frac{1}{f} = \left[\frac{\mu_2}{\mu_1} - 1\right] \left[\frac{1}{R_1} - \frac{1}{R_2}\right]$                                                                          | 1/2 |   |
|     | $\therefore \frac{1}{20} = \left[\frac{1.55}{1} - 1\right] \frac{2}{R}$ $\therefore R = (20 \times 1.10) \text{cm} = 22 \text{ cm}$                                                                                                                            | 1/2 | 3 |
| Q12 | Definition of mutual inductance 1 Derivation of mutual inductance for two long solenoids 2  (i) Mutual inductance is numerically equal to the induced                                                                                                          |     |   |
| 2   | emf in the secondary coil when the current in the primary coil changes by unity.  Alternatively: Mutual inductance is numerically equal to the magnetic flux linked with one coil/secondary coil when unit current flows through the other coil /primary coil. | 1   |   |
|     |                                                                                                                                                                                                                                                                |     |   |



|     | (ii) The work done against back /induced emf is stored as        | 1/2 |   |
|-----|------------------------------------------------------------------|-----|---|
|     | magnetic potential energy.                                       |     |   |
|     | The rate of work done, when a current $i$ is passing             | 1/2 |   |
|     | through the coil, is                                             |     |   |
|     |                                                                  |     |   |
|     | $\frac{dW}{dt} =  \varepsilon i = \left(L\frac{di}{dt}\right)i$  | 1/2 |   |
|     |                                                                  |     |   |
|     | $\cdot W = \int dW = \int_{0}^{I} I di$                          | 1/2 |   |
|     | $\therefore W = \int dW = \int_0^I Lidi$                         |     |   |
|     | $=\frac{1}{2}Li^2$                                               |     | 3 |
|     |                                                                  |     |   |
| Q13 | a) Principle of meter bridge 1                                   | 7   |   |
|     | b) Relation between $l_1, l_2$ , and $S$                         |     |   |
|     | 5) 110.00.00 51.110.00 13.12.5                                   |     |   |
|     | a) The principle of working of a meter bridge is same as         |     |   |
|     | that of a balanced Wheatstone bridge.                            |     |   |
|     | (Alternatively:                                                  |     |   |
|     | When $i_g=0$ , then $\frac{P}{Q}=\frac{R}{S}$ )                  | 1   |   |
|     | b) $\frac{R}{S} = \frac{l_1}{100 - l_1}$                         |     |   |
|     |                                                                  | 1/2 |   |
|     | When $X$ is connected in parallel:                               |     |   |
|     | $\frac{R}{\left(\frac{XS}{X+S}\right)} = \frac{l_2}{100 - l_2}$  | 1/2 |   |
|     | On solving, we get $X = \frac{l_1 S(100 - l_2)}{100(l_2 - l_1)}$ | 1   | 3 |

| Q14 | Transistor amplifier circuit diagram 1                                           |       |   |
|-----|----------------------------------------------------------------------------------|-------|---|
|     | Derivation of voltage gain 1 ½                                                   |       |   |
|     | Explanation of phase reversal ½                                                  |       |   |
|     |                                                                                  |       |   |
|     | $V_{BB}$ $V_{CC}$ $V_{CC}$ $V_{CC}$ $V_{CC}$ $V_{CC}$                            |       |   |
|     | Change in the input voltage: $\Delta V_{BE} = I_B r_i$                           | 1/2   |   |
|     | Change in the output voltage: $\Delta V_{CE} = I_C R_C$                          | 1/2   |   |
|     | Voltage gain= Output voltage/Input voltage $A_V = -\frac{\beta R_C}{r_i}$        | 1/2   |   |
|     | Negative sign indicates, phase difference is 180°                                | 1/2   |   |
|     | (Alternatively, There is a phase reversal)                                       |       |   |
|     |                                                                                  |       | 3 |
| Q15 | a) The factor by which the potential difference changes 1 b) Voltmeter reading 1 |       |   |
|     | Ammeter Reading 1                                                                | orne. |   |
|     | a) $H = \frac{V^2}{R}$                                                           | 1/2   |   |
|     | $\therefore V \text{ increases by a factor of } \sqrt{9} = 3$                    | 1/2   |   |
|     | b) Ammeter Reading $I = \frac{V}{R+r}$                                           | 1/2   |   |
| o p | $=\frac{12}{4+2}A=2A$                                                            | 1/2   |   |

|     | Voltmeter Reading $V = E - Ir$                                                                                                                              | 1/2 |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | $= [12 - (2 \times 2)] V = 8V$ (Alternatively, $V = iR = 2 \times 4V = 8V$ )                                                                                | 1/2 | 3 |
| Q16 | Diagram of generalized communication system 1½  Function of (a) transmitter (b) channel (c) receiver ½+½+½                                                  |     |   |
|     | Communication System  formation Message Signal  Transmitter Signal  Channel Signal  Received Receiver Message Information Signal  Noise                     | 5   |   |
|     | [Also accept the following diagram  Information Source Communication channel Receiver of Information                                                        | 1 ½ |   |
|     | (a) Transmitter: A transmitter processes the incoming message signal so as to make it suitable for transmission through a channel and subsequent reception. | 1/2 |   |
| 0   | (b) Channel: It carries the message signal from a transmitter to a receiver.                                                                                | 1/2 |   |
|     | (c) Receiver: A receiver extracts the desired message signals from the received signals at the channel output.                                              | 1/2 |   |
|     |                                                                                                                                                             |     | 3 |

1

1/2

1/2

1/2

1/2

Q17

- a) Ray diagram for compound microscope 1
- b) Identification of objective and eye piece 1
- c) Resolving power of microscope ½
- d) One factor affecting the resolving power ½
- a) Ray Diagram for compound microscope



b) Objective: Lens L<sub>3</sub> Eye Piece: Lens L<sub>2</sub>

c)  $R_p = \frac{2\mu \sin \beta}{1.22\lambda}$ 

d) Any one factor

- 1. It depends on the wavelength of the light used.
- 2. Semi angle of cone of incident light.
- 3. Aperture of the objective
- 4. Refractive index of the medium.

3



| Q19 | Formula for energy stored ½                                                                                                           |     |   |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | Energy stored before 1                                                                                                                |     |   |
|     | Energy stored after 1                                                                                                                 |     |   |
|     | Ratio ½                                                                                                                               |     |   |
|     | Energy stored = $\frac{1}{2} CV^2 \left( = \frac{1}{2} \frac{Q^2}{C} \right)$                                                         | 1/2 |   |
|     | Net capacitance with switch S closed = $C + C = 2C$                                                                                   | 1/2 |   |
|     | $\therefore \text{ Energy stored} = \frac{1}{2} \times 2C \times V^2 = CV^2$                                                          | 1/2 |   |
|     | After the switch S is opened, capacitance of each capacitor= $KC$                                                                     |     |   |
|     | $\therefore \text{ Energy stored in capacitor A} = \frac{1}{2}KCV^2$                                                                  |     |   |
|     | For capacitor B,                                                                                                                      | 1/2 |   |
|     | Energy stored = $\frac{1}{2} \frac{Q^2}{KC} = \frac{1}{2} \frac{C^2 V^2}{KC} = \frac{1}{2} \frac{CV^2}{K}$                            | /2  |   |
|     | $\therefore \text{ Total Energy stored} = \frac{1}{2}KCV^2 + \frac{1}{2}\frac{CV^2}{K} = \frac{1}{2}CV^2\left(K + \frac{1}{K}\right)$ |     |   |
|     | $=\frac{1}{2}CV^2\left(\frac{K^2+1}{K}\right)$                                                                                        | 1/2 |   |
|     | $\therefore \text{ Required ratio} = \frac{2CV^2.K}{CV^2(K^2+1)} = \frac{2K}{(K^2+1)}$                                                | 1/2 | 3 |
| 020 | Formula for energy stored ½                                                                                                           |     |   |
| Q20 | Energy stored before 1                                                                                                                |     |   |
|     | Energy stored after 1                                                                                                                 |     |   |
| 6   | Ratio ½                                                                                                                               |     |   |
|     | Energy stored = $\frac{1}{2} CV^2 \left( = \frac{1}{2} \frac{Q^2}{C} \right)$                                                         | 1/2 |   |
|     | Net capacitance with switch S closed = $C + C = 2C$                                                                                   | 1/2 |   |
|     | $\therefore \text{ Energy stored} = \frac{1}{2} \times 2C \times V^2 = CV^2$                                                          | 1/2 |   |
|     | After the switch S is opened, capacitance of each capacitor= $KC$                                                                     |     |   |

| 30  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 4 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
|     | $\therefore \text{ Energy stored in capacitor A} = \frac{1}{2}KCV^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |   |
|     | For capacitor B,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |   |
|     | Energy stored = $\frac{1}{2} \frac{Q^2}{KC} = \frac{1}{2} \frac{C^2 V^2}{KC} = \frac{1}{2} \frac{CV^2}{K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2      |   |
|     | $\therefore \text{ Total Energy stored} = \frac{1}{2}KCV^2 + \frac{1}{2}\frac{CV^2}{K} = \frac{1}{2}CV^2\left(K + \frac{1}{K}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |   |
|     | $=\frac{1}{2}CV^2\left(\frac{K^2+1}{K}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1/2      |   |
|     | $\therefore \text{ Required ratio} = \frac{2CV^2.K}{CV^2(K^2+1)} = \frac{2K}{(K^2+1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/2      | 3 |
| Q21 | a) Correct Choice of R Reason b) Circuit Diagram Working I-V characteristics  y 2  y 2  y 4  y 2  y 4  y 2  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4  y 4 |          | 3 |
|     | a) R would be increased.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2      |   |
|     | Resistance of S (a semi conductor) decreases on heating.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2      |   |
|     | b) Photodiode diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |   |
| 2   | p-side n-side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1        |   |
|     | When the photodiode is illuminated with light (photons) (with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |   |
|     | energy $(h\nu)$ greater than the energy gap $(E_g)$ of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |   |
|     | semiconductor), then electron-hole pairs are generated due to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 524.00EZ |   |

|     | absorption of photons. Due to junction field, electrons and holes                                                                                                                                                                                                                                                                                                                                                |     |   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | are separated before they recombine. Electrons are collected on                                                                                                                                                                                                                                                                                                                                                  |     |   |
|     | n-side and holes are collected on p-side giving rise to an emf.                                                                                                                                                                                                                                                                                                                                                  | 1/2 |   |
|     | When an external load is connected, current flows.                                                                                                                                                                                                                                                                                                                                                               |     |   |
|     | V-I Characteristics of the diode                                                                                                                                                                                                                                                                                                                                                                                 |     |   |
|     | ↑ mA                                                                                                                                                                                                                                                                                                                                                                                                             | 4   |   |
|     | Reverse bias                                                                                                                                                                                                                                                                                                                                                                                                     |     |   |
|     | $egin{array}{c} I_1 & & 	ext{volts} \\ I_2 & & & & \\ I_3 & & & & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                | 1/2 |   |
|     | $I_4 > I_3 > I_2 > I_1$ $\mu A$                                                                                                                                                                                                                                                                                                                                                                                  |     | 3 |
| 000 | (a) Statement of Biot Savart law 1                                                                                                                                                                                                                                                                                                                                                                               |     | 3 |
| Q22 | Expression in vector form ½                                                                                                                                                                                                                                                                                                                                                                                      |     |   |
|     | (b) Magnitude of magnetic field at centre 1                                                                                                                                                                                                                                                                                                                                                                      |     |   |
|     | Direction of magnetic field ½                                                                                                                                                                                                                                                                                                                                                                                    |     |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                  | 8   |   |
| 0   | (a) It states that magnetic field strength, $d\vec{B}$ , due to a current element, $Id\vec{l}$ , at a point, having a position vector $\mathbf{r}$ relative to the current element, is found to depend (i) directly on the current element, (ii) inversely on the square of the distance $ \mathbf{r} $ , (iii) directly on the sine of angle between the current element and the position vector $\mathbf{r}$ . | 1   |   |
|     | In vector notation, $\overrightarrow{d}\overrightarrow{B} = \frac{\mu_0}{4\pi} \frac{I \overrightarrow{d} \overrightarrow{l} \times \overrightarrow{r}}{ \overrightarrow{r} ^3}$                                                                                                                                                                                                                                 | 1/2 |   |
|     | Alternatively, $\left(d\vec{\textbf{\textit{B}}}=\frac{\mu_0}{4\pi}\frac{I\vec{d}\vec{\textbf{\textit{l}}}\times\hat{r}}{ \vec{r} ^2}\right)$                                                                                                                                                                                                                                                                    |     |   |

|     | (b) $B_p = \frac{\mu_0 \times 1}{2R} = \frac{\mu_0}{2R}$ (along z – direction)                                           | 1/2   |   |
|-----|--------------------------------------------------------------------------------------------------------------------------|-------|---|
|     | $B_Q = \frac{\mu_0 \times \sqrt{3}}{2R} = \frac{\mu_0 \sqrt{3}}{2R}$ (along x – direction)                               |       |   |
|     | $\therefore B = \sqrt{B_p^2 + B_Q^2} = \frac{\mu_0}{R}$                                                                  | 1/2   |   |
|     | This net magnetic field $\mathbf{B}$ , is inclined to the field $\mathbf{B}_{\mathbf{p}}$ , at an angle $\Theta$ , where |       |   |
|     | $\tan \theta = \sqrt{3}$ $\left(/\theta = \tan^{-1} \sqrt{3} = 60^{0}\right)$                                            | 1/2   |   |
|     | (in XZ plane)                                                                                                            | 17    | 3 |
|     | SECTION D                                                                                                                |       |   |
| Q23 | a) Name of the installation, the cause of disaster b) Energy release process c) Values shown by Asha and mother  1+1     |       |   |
|     | a) (i) Nuclear Power Plant:/'Set-up' for releasing Nuclear<br>Energy/Energy Plant<br>(Also accept any other such term)   | 1/2   |   |
|     | (ii)Leakage in the cooling unit/ Some defect in the set up.                                                              | 1/2   |   |
|     | b) Nuclear Fission/Nuclear Energy Break up (/ Fission) of Uranium nucleus into fragments                                 | 1     |   |
|     | c) Asha: Helpful, Considerate, Keen to Learn, Modest                                                                     | 1     |   |
|     | Mother: Curious, Sensitive, Eager to Learn, Has no airs (Any one such value in each case)                                | 1     |   |
|     | (7 my one such value in each case)                                                                                       |       | 4 |
|     | SECTION E                                                                                                                | 1     |   |
| Q24 | a) Identification ½                                                                                                      |       |   |
| V24 | b) Identifying the curves 1                                                                                              |       |   |
|     | Justification ½                                                                                                          |       |   |
|     | c) Variation of Impedance                                                                                                |       |   |
|     | with frequency ½                                                                                                         |       |   |
|     | Graph ½                                                                                                                  |       |   |
|     | d) Expression for current 1½                                                                                             |       |   |
|     | Phase relation ½                                                                                                         | 52555 |   |
|     | a) The device X is a capacitor                                                                                           | 1/2   |   |
|     |                                                                                                                          |       |   |



Curve C  $\longrightarrow$  current

Curve A → power 1/2 1/2

Reason: The current leads the voltage in phase, by  $\pi/2$ , for a capacitor.

1/2

c)  $X_c = \frac{1}{\omega c} \left( / X_c \propto \frac{1}{\omega} \right)$ 

1/2



d)  $V = V_o \sin \omega t$ 

 $Q = CV = CV_0 \sin \omega t$ 

 $I = \frac{dq}{dt} = \omega c V_0 \cos \omega t$ 

 $=I_0 \sin(\omega t + \frac{\pi}{2})$ 



1/2

1/2

1/2

1/2

Current leads the voltage, in phase, by  $\pi/2$ 

(Note: If the student identifies the device X as an Inductor but writes correct answers to parts (c) and (d) (in terms of an inductor), the student be given full marks for (only) these two parts )

5

OR

- a) Labelled diagram of ac generator 1 Expression for emf 2
- b) Formula for emf 1/2 Substitution 1/2 Calculation of emf

1



1/2

1/2

1/2

1/2

1/2

a) The wavefront is the common locus of all points which are in phase(/surface of constant phase)



Let a plane wavefront be incident on a surface separating two media as shown. Let  $v_1$  and  $v_2$  be the velocities of light in the rarer medium and denser medium respectively. From the diagram

$$BC = v_1 t$$
 and  $AD = v_2 t$ 

$$\sin i = \frac{BC}{AC}$$
 and  $\sin r = \frac{AD}{AC}$ 

$$\therefore \frac{\sin i}{\sin r} = \frac{BC}{AD} = \frac{v_1 t}{v_2 t}$$

$$=\frac{v_1}{v_2}=a\ constant$$

This proves Snell's law of refraction.

b) When unpolarised light gets scattered by molecules, the scattered light has only one of its two components in it. (Also accept diagrammatic representation



1/2

| We have, $\mu = \tan i_B$                                                                                                                     | 1/2 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\therefore \tan i_B = 1.5$                                                                                                                   |     |
| $\therefore i_B = \tan^{-1} 1.5$                                                                                                              |     |
| (/56.3°)                                                                                                                                      | 1/2 |
| OR                                                                                                                                            | 5   |
| a) Ray diagram 1                                                                                                                              |     |
| Expression for power 2                                                                                                                        |     |
| b) Formula ½                                                                                                                                  |     |
| Calculation of speed of light 1 ½                                                                                                             |     |
| a)                                                                                                                                            |     |
| A B                                                                                                                                           | 1   |
| O P I I                                                                                                                                       |     |
| • · · · · · · · · · · · · · · · · · · ·                                                                                                       |     |
| Two thin lenses, of focal length $f_1$ and $f_2$ are kept in contact. Let                                                                     |     |
| O be the position of object and let $u$ be the object distance. The distance of the image (which is at $I_1$ ), for the first lens is $v_1$ . |     |
| This image serves as object for the second lens.                                                                                              | 1/2 |
| Let the final image be at I. We then have                                                                                                     |     |
| $\frac{1}{f} = \frac{1}{v} - \frac{1}{v}$                                                                                                     | 1/2 |
| $\frac{1}{f_1} = \frac{1}{v_1} - \frac{1}{u}$ $\frac{1}{f_2} = \frac{1}{v} - \frac{1}{v_1}$                                                   |     |
| Adding, we get                                                                                                                                |     |
| $\frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{v} - \frac{1}{u} = \frac{1}{f}$                                                                     | 1/2 |
| $\therefore \frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$                                                                                      |     |
| $\int_{1}^{\infty} \int_{1}^{1} \int_{2}^{1}$                                                                                                 |     |
| $\therefore P = P_1 + P_2$                                                                                                                    | 1/2 |

|     | b) At minimum deviation $r = \frac{A}{2} = 30^{\circ}$                                                                                                                                                   | 1/2 |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | We are given that $i = \frac{3}{4}A = 45^{0}$ $\therefore \mu = \frac{\sin 45^{0}}{\sin 30^{0}} = \sqrt{2}$                                                                                              | 1/2 |   |
|     | $\therefore \mu = \frac{\sin 45^\circ}{\sin 30^\circ} = \sqrt{2}$                                                                                                                                        | 1/2 |   |
|     | ∴ Speed of light in the prism = $\frac{c}{\sqrt{2}}$<br>( $\approx 2.1 \times 10^8 \text{ ms}^{-1}$ )                                                                                                    | 1/2 |   |
|     | [Award $\frac{1}{2}$ mark if the student writes the formula:<br>$\mu = \frac{\sin(A + D_m)/2}{\sin(A/2)}$                                                                                                |     |   |
|     | but does not do any calculations.]                                                                                                                                                                       |     | 5 |
| Q26 | (a) Derivation of E along the axial line of dipole  (b) Graph between E vs r  (c) (i) Diagrams for stable and unstable equilibrium of dipole  (ii) Torque on the dipole in the two cases  (a)  E+q  P  P |     |   |
|     | Electric field at P due to charge $(+q) = E_1 = \frac{1}{4\pi\epsilon_0} \frac{q}{(r-a)^2}$                                                                                                              | 1/2 |   |
| 6   | Electric field at P due to charge $(-q) = E_2 = \frac{1}{4\pi\epsilon_0} \frac{q}{(r+a)^2}$                                                                                                              | 1/2 |   |
|     | Net electric Field at P= $E_1 - E_2 = \frac{1}{4\pi\epsilon_0} \frac{q}{(r-a)^2} - \frac{1}{4\pi\epsilon_0} \frac{q}{(r+a)^2}$                                                                           | 1/2 |   |
|     | $= \frac{1}{4\pi\varepsilon_0} \frac{2pr}{(r^2 - a^2)^2} \qquad (p = q.2a)$                                                                                                                              |     |   |
|     | Its direction is parallel to $\vec{p}$ .                                                                                                                                                                 | 1/2 |   |



