

## **CBSE Class 12 Physics Question Paper Solution**

|          | CBSE Class 12 Flysics Question Faper Solution                                                                                                                                                                                                                                                                                                                            |           | 5/1/1 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|
| Q.       | MARKING SCHEME – PHYSICS                                                                                                                                                                                                                                                                                                                                                 |           | Total |
| No.      | Value Points/ Expected answers                                                                                                                                                                                                                                                                                                                                           | Marks     | Marks |
| 1        | [Note: i) Deduct ½ mark, if arrows are not shown. ii) do not deduct any mark, if charges on the plates are not shown]                                                                                                                                                                                                                                                    | 1         | 1     |
| 2        | No Change                                                                                                                                                                                                                                                                                                                                                                | 1         | 1     |
|          |                                                                                                                                                                                                                                                                                                                                                                          | A         |       |
| 3        | Threshold frequency equals the minimum frequency of incident radiation (light) that can cause photoemission from a given photosensitive surface.  (Alternatively)  The frequency below which the incident radiations cannot cause the photoemission from photosensitive surface.  OR  Intensity of radiation is proportional to (/ equal to) the number of energy quanta | 1         | 1     |
| 4        | (photons) per unit area per unit time.                                                                                                                                                                                                                                                                                                                                   | 1/2       |       |
| •        | $\mathrm{d}\mu_r$ = tan 30° = $\frac{1}{\sqrt{3}}$ (where $\mathrm{d}\mu_r$ is the retractive index of rarer medium w.r.t denser medium)                                                                                                                                                                                                                                 | 1/2       |       |
|          | [Note- Also accept if a student solves it as follows] $\mu = \tan i_p$                                                                                                                                                                                                                                                                                                   | /2        |       |
|          | $\mu = \tan 30^{\circ} = \frac{1}{\sqrt{3}}$                                                                                                                                                                                                                                                                                                                             | 1/2       | 1     |
|          |                                                                                                                                                                                                                                                                                                                                                                          | 1/2       |       |
| 5        | The waves beyond 30 MHz frequency penetrate through the lonosphere/ are not                                                                                                                                                                                                                                                                                              | 1         |       |
|          | reflected back.                                                                                                                                                                                                                                                                                                                                                          |           | 459   |
|          | OR .                                                                                                                                                                                                                                                                                                                                                                     | 1/ . 1/   | 1     |
|          | Transmitted Power and Frequency  SECTION - B                                                                                                                                                                                                                                                                                                                             | 1/2 + 1/2 |       |
| 6        | SECTION - D                                                                                                                                                                                                                                                                                                                                                              |           |       |
| <u> </u> | Calculation of Power dissipation in two combinations 1+1                                                                                                                                                                                                                                                                                                                 |           |       |
|          | $R_1 = \frac{V^2}{P_1}$ , $R_2 = \frac{V^2}{P_2}$ , $P_2 = \frac{V^2}{P_2} = \frac{P_1 P_2}{P_2}$                                                                                                                                                                                                                                                                        | 1/2       |       |
|          | $P_{s} = \frac{V^{2}}{Rs} = \frac{P_{1}P_{2}}{P_{1} + P_{2}}$ $\frac{1}{P_{s}} = \frac{1}{P_{1}} + \frac{1}{P_{2}}$                                                                                                                                                                                                                                                      | 1/2       |       |
|          | $\frac{1}{Rp} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{P_1 + P_2}{V^2}$                                                                                                                                                                                                                                                                                                   | 1/2       |       |

|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | , |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---|
|   | $\therefore P_p = \frac{V^2}{R_P} = P_1 + P_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/2                                     | 2 |
| 7 | Calculation of focal length $\frac{1}{12}$ Lens maker's formula $\frac{1}{12}$ Calculation of radius of curvature 1 $f = \frac{1}{p} = \frac{1}{-5} \text{ m} = -\frac{100}{5} \text{ cm} = -20 \text{ cm}$ $\frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \left(\frac{1}{R1} - \frac{1}{R2}\right)$ $\mu_2 = 1.5,  \mu_1 = 1.4,  R_1 = -R$ $R_2 = R$ $\frac{1}{-20} = \left(\frac{1.5}{1.4} - 1\right) \left(-\frac{1}{R} - \frac{1}{R}\right)$ $\frac{1}{-20} = \left(\frac{0.1}{1.4}\right) \left(-\frac{2}{R}\right)$ $R = \frac{20}{7} \text{ cm}  (= 2.86 \text{ cm})$ OR  Formula $\frac{1}{2}$ Substitution and calculation $\frac{1}{2}$ $\mu = \frac{\sin \frac{(A + D_m)}{2}}{\sin A/2}$ $\mu = \frac{\mu_2}{\mu_1} = \frac{1.6}{\frac{5}{3}\sqrt{2}} = \frac{8}{4\sqrt{2}} = \sqrt{2}$ $\sqrt{2} = \frac{\sin \left(\frac{60 + D_m}{2}\right)}{\sin 60/2} = \frac{\sin \left(\frac{60 + D_m}{2}\right)}{\sin 30}$ $\therefore \sin \left(\frac{60 + D_m}{2}\right) = \sqrt{2} \cdot \frac{1}{2} = \frac{1}{\sqrt{2}} = \sin 45^\circ$ $\therefore D_m = 30^\circ$ | 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 | 2 |
| 8 | Formula ½ Calculation of ratio of radii 1½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/2                                     |   |

|   |                                                                                                                                                | 1    |   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
|   | $radius r = \frac{mv}{qB} = \frac{\sqrt{2mk}}{qB}$                                                                                             |      |   |
|   | $K_{\alpha} = K_{proton}$                                                                                                                      |      |   |
|   | $M_{\alpha} = 4 \text{ m}_{p}$                                                                                                                 | 1/2  |   |
|   | $q_{\alpha} = 2q_{p}$                                                                                                                          |      |   |
|   | $\frac{r_{\alpha}}{r_{p}} = \frac{\frac{\sqrt{2m_{\alpha} K}}{q_{\alpha} B}}{\frac{q_{\alpha} B}{\sqrt{2m_{p} K}}}$                            |      |   |
|   | $r_p = \frac{\sqrt{2m_p K}}{q_{p B}}$                                                                                                          | 1/2  |   |
|   | $= \sqrt{\frac{m_{\alpha}}{m_{p}}} \times \sqrt{\frac{q_{p}}{q_{\alpha}}}$                                                                     |      |   |
|   | $=\sqrt{m_p} \wedge \sqrt{q_\alpha}$                                                                                                           | 1/2  | 2 |
|   | $=\sqrt{4} \times \frac{1}{2} = 1$                                                                                                             |      |   |
|   | The second Articles of                                                                                                                         |      |   |
| 9 | Statement of Bohr's quantization condition ½                                                                                                   |      | 1 |
|   |                                                                                                                                                |      |   |
|   | Calculation of shortest wavelength 1                                                                                                           |      |   |
|   | Identification of part of electromagnetic spectrum 1/2                                                                                         |      |   |
|   |                                                                                                                                                |      |   |
|   |                                                                                                                                                |      |   |
|   | Electron revolves around the nucleus only in those orbits for which the angular                                                                | 1/2  |   |
|   | momentum is some integral of $h/2\pi$ . (where h is planck's constant)                                                                         | /2   |   |
|   | (Also give full credit it a student write mathematically mvr = $\frac{nh}{2\pi}$ )                                                             |      |   |
|   | $2\pi$                                                                                                                                         |      |   |
|   | $\frac{1}{\lambda} = R \left( \frac{1}{n_f^2} - \frac{1}{n_i^2} \right)$                                                                       | 14   |   |
|   | $\lambda^{-R} \left( n_f^2 - n_i^2 \right)$                                                                                                    | 1/2  |   |
|   | For Brackett Series,                                                                                                                           |      |   |
|   | Shortest wavelength is for the transition of electrons from                                                                                    |      |   |
|   | $n_i = \infty$ to $n_f = 4$                                                                                                                    |      |   |
|   | $\frac{1}{\lambda} = R\left(\frac{1}{4^2}\right) = \frac{R}{16}$                                                                               |      |   |
|   |                                                                                                                                                | 1/2  |   |
|   | $\lambda = \frac{16}{R}$ m                                                                                                                     | 65   |   |
|   |                                                                                                                                                |      |   |
|   | = 1458.5 nm on substitution of value of R                                                                                                      |      |   |
|   | [Note: Den't deduct any mark for this part when a student does not substitute                                                                  |      |   |
|   | [Note: Don't deduct any mark for this part, when a student does not substitute the value of R, to calculate the numerical value of $\lambda$ ] |      |   |
|   | Infrared region                                                                                                                                | 1/2  |   |
|   | OR                                                                                                                                             |      |   |
|   |                                                                                                                                                |      |   |
|   | Statement of the Formula for r <sub>n</sub> ½ Statement of the formula for v <sub>n</sub> ½                                                    |      |   |
|   | Obtaining formula for T <sub>n</sub> ½                                                                                                         |      |   |
|   | Getting expression for $T_2$ (n = 2) $\frac{1}{2}$                                                                                             |      |   |
|   |                                                                                                                                                |      |   |
|   | 1.2                                                                                                                                            |      |   |
|   | Radius $r_n = \frac{h^2 \epsilon_0}{\pi m e^2} n^2$                                                                                            | 1/2  |   |
|   | nme =                                                                                                                                          | 6000 |   |
|   |                                                                                                                                                | 1    | I |

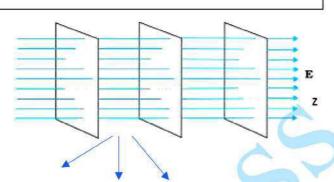
| The state of the s | 2 3                                                                                                      |     |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | velocity $v_n = \frac{2\pi e^2}{4\pi \varepsilon_0 h} \frac{1}{n}$                                       | 1/2 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time period $T_n = \frac{2\pi r_n}{v_n} = \frac{4\varepsilon_0^2 h^3 n^3}{me^4}$                         |     |   |
| For first excited state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e of hydrogen atom n=2                                                                                   | 1/2 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $T_2 = \frac{32\varepsilon_0^2 h^3}{me^4}$                                                               | 1/2 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wells:                                                                                                   |     | 2 |
| Self Adjust and a self and an all the self and a self a | Let $T_2 \approx 1.22  X  10^{-15}  s$ . Educt the last ½ mark if a student does not calculate the $T_2$ |     | 2 |
| Alternatively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |     | 1 |
| $r_n = (0.53 n^2) A^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= 0.53 X 10^{-10} n^2$                                                                                  | 1/2 |   |
| $v_n = (\frac{c}{137  n})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          | 1/2 |   |
| $T_n = \frac{2\pi(0.53)}{\left(\frac{c}{137n}\right)}  X  1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0^{-10} n^2$                                                                                            |     |   |
| $= \frac{2\pi(0.53)}{c} X 10^{-10} r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |     |   |
| = 2 x 3.14 x 0.53 x 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                          | 5%  |   |
| 3 x 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                                                                                       | 1/2 |   |
| = 1215.97 x 10 <sup>-18</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= (1.22 \times 10^{-15}) \text{ s}$                                                                     | 1/2 |   |
| Alternatively If the student writes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | directly $T_n \ \alpha \ n^3$                                                                            |     |   |
| $T_2$ = 8 times of orbita only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al period of the electron in the ground state (award one mark                                            |     | 2 |
| 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |     |   |
| Reason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                        |     |   |
| Expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                        |     |   |
| Because of line of sig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ght nature of propagation, direct waves get blocked at some                                              |     |   |
| point by the curvatu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                          | 1   |   |
| [Alternatively : The t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ransmitting antenna of height h, the distance to the horizon                                             |     |   |
| $d=\sqrt{2hR}$ (R = Radiu tower]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | is of earth, which is upto a certain distance from the TV                                                |     |   |
| The optimum separa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ation between the receiving and transmitting antenna.                                                    |     |   |
| $d = \sqrt{2h_T R} + \sqrt{2h_R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          | 1   | 2 |
| [Where h <sub>T</sub> = height o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of Transmitting antenna ( $h_R$ = Height of Receiving antenna)]                                          |     |   |



| 11. | Reason for inability of e.m. theory 1 Resolution through photon picture 1  The explanation based on e.m theory does not agree with the experimental observations (instantaneous nature, max K.E of emitted photoelectron is independent of intensity, existence of threshold frequency) on the photoelectric effect.  [Note: Do not deduct any mark if the student does not mention the relevant experimental observation or mentions any one or any two of these observation.] The photon picture resolves this problem by saying that light, in interaction with matter behaves as if it is made of quanta or packets of energy, each of energy h v. This picture enables us to get a correct explanation of all the observed experimental features of photoelectric effect.  [NOTE: Award the first mark if the student just writes "As per E.M. theory the free electrons at the surface of the metal absorb the radiant energy continuously, this leads us to conclusions which do not match with the experimental observations"]  Also award the second mark if the student just writes "The photon picture give us the Einstein photoelectric equation | 1        | 2 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|
|     | $K_{max}$ ( = eV <sub>o</sub> ) = h $\nu$ - $\phi$ o which provides a correct explanation of the observed features of the photoelectric effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |   |
| 12. | Plot of the graph showing the variation of $\lambda$ Vs $\frac{1}{\sqrt{V}}$ 1 Information regarding magnitude of charge 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |   |
|     | $\therefore \lambda = \frac{h}{\sqrt{2mqV}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>½</b> |   |

$$\frac{\lambda}{\left(\frac{1}{\sqrt{V}}\right)} = \frac{h}{\sqrt{2mq}} = \text{slope}$$

2


$$q = \frac{h^2}{2m (slope)^2}$$

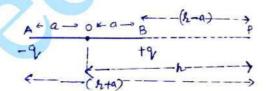
## **SECTION C**

13.

- (a) Drawing of equipotential surfaces
- 1 2
- (b) Derivation of the expression of electric potential

1




**Equipotential Surfaces** 

[Note: Award ½ mark if the student just writes: The equipotential surfaces are the equidistant planes perpendicular to the Z-axis and does not draw them or "The equipotential surfaces are equidistant planes parallel to the X-Y Plane".]

[NOTE: In this part the Hindi version requires the student to draw equipotential surfaces for a uniform magnetic field.]

"Award this 1 mark if the student just writes that these cannot be drawn."

(b)



1/2

Potential at point P

$$V_p = V_{-q} + V_{+q}$$



|   | 1                     | -q      | 1                 | q     |
|---|-----------------------|---------|-------------------|-------|
| = | $4\pi \in \mathbb{R}$ | (r+a) + | $4\pi \in \Omega$ | (r-a) |

$$= \frac{q}{4\pi \in_{0}} \left[ \frac{1}{(r-a)} \cdot \frac{1}{(r+a)} \right]$$

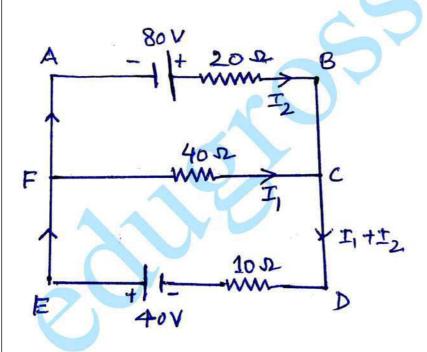
1/2

$$= \frac{q}{4\pi \in_{0}} \left[ \frac{r+a-r+a}{(r-a)(r+a)} \right]$$

$$= \frac{q}{4\pi \in_{0}} \times \frac{2a}{(r^{2}-a^{2})} = \frac{qX2a}{4\pi \varepsilon_{o}(r^{2}-a^{2})}$$

1/2

$$= \frac{1}{4\pi \in_0} \frac{p}{(r^2 - a^2)}$$


(where P is the dipole moment)

14.

Writing two loop equations

1 + 1

Calculation of currents through 40  $\Omega$  and 20  $\Omega$  resistors



In loop ABCFA

$$+80 - 20 I_2 + 40 I_1 = 0$$
  
 $4 = I_2 - 2 I_1$ 

1

In loop FCDEA

$$-40 I_1 - 10(I_1 + I_2) + 40 = 0$$

| DWLEDGE                                                                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                       | 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| o I <sub>1</sub> + I <sub>2</sub> = 4                                                 | 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Solving these two equations                                                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $I_1 = 0A$                                                                            | 1/2                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                       | 1/2                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OR                                                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| End error, overcoming 1/2                                                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Formula for meter bridge ½                                                            |                            | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Calculation of value of S 2                                                           |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The end error, in a meter bridge, is the error arising due to                         | 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| metallic strips .                                                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                       | 1/4                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| positions of it and 5 and taking the average value of 5 from two readings.            | /2                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (Note: Award this ½ make even if student just writes only the point (i) or point (ii) |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| given above.)                                                                         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| For a meter bridge                                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R 1                                                                                   | 1/2                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{1}{S} = \frac{1}{100 - l}$                                                     | 0,50,75                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| For the two given conditions                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5 1                                                                                   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{s}{S} = \frac{l_1}{100 - l_1}$                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5 151                                                                                 |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                       | 1/2                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                       | 17                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $2 = \frac{1.5l_1}{(100 - 1.5l)} \times \frac{(100 - l_1)}{l}$                        | 1/2                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $(100-1.5l_1) \qquad l_1$                                                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                       | Formula for meter bridge ½ | 1.50 $I_1 - 10$ $I_2 + 40 = 0$ 5 $I_1 + I_2 = 4$ 1. Solving these two equations $I_1 = 0A$ 8. $I_2 = 4A$ OR  End error, overcoming Formula for meter bridge Calculation of value of S  2. The end error, in a meter bridge, is the error arising due to (i)Ends of the wire not coinciding with the 0 cm / 100 cm marks on the meter scale. (iii)Presence of contact resistance at the joints of the meter bridge wire with the metallic strips.  It can be reduced/overcome by finding balance length with two interchanged positions of R and S and taking the average value of 'S' from two readings.  (Note: Award this ½ make even if student just writes only the point (i) or point (ii) given above.)  For a meter bridge $\frac{R}{S} = \frac{I}{100 - I}$ For the two given conditions $\frac{5}{S} = \frac{I_1}{100 - I_1}$ Dividing the two |

 $200 - 3 l_1 = 150 - 1.5 l_1$ 

|     | $l_1 = \frac{100}{3} \text{ cm}$                                                                                                                  | 1/2     | 7 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|
|     | <u></u>                                                                                                                                           |         |   |
|     | Putting the value of $l_{\scriptscriptstyle 1}$ in any one of the two given conditions.                                                           | 1/      |   |
|     | $S = 10\Omega$                                                                                                                                    | 1/2     | 3 |
| -   |                                                                                                                                                   |         |   |
| 15. | (a) Identification                                                                                                                                |         |   |
| 13. | (b) Proof 1                                                                                                                                       |         |   |
|     |                                                                                                                                                   |         |   |
|     | Microwaves: Frequency range ( $\sim 10^{10}$ to $10^{12}$ hz)                                                                                     | 1/2+1/2 |   |
|     | Ultraviolet rays: Frequency range ( $\sim 10^{15}$ to $10^{17}$ hz)                                                                               | 1/2+1/2 | 1 |
|     | Note: Award $(\frac{1}{2} + \frac{1}{2})$ marks for frequency ranges even if the student just writes                                              |         |   |
|     | the correct order of magnitude for them)                                                                                                          | ) '     |   |
|     | (b) Average energy density of the electric field = $\frac{1}{2} \in_{0} E^{2}$                                                                    | 1/2     |   |
|     | $= \frac{1}{2} \in_{0} (CB)^{2}$                                                                                                                  |         |   |
|     |                                                                                                                                                   |         |   |
|     | $=\frac{1}{2}\in_0\frac{1}{\mu_0\in_0}B^2$                                                                                                        |         |   |
|     | $=\frac{1}{2}\frac{B^2}{\mu_0}$                                                                                                                   | 1/2     |   |
|     | $2 \mu_0$                                                                                                                                         |         |   |
|     | = Average energy density of the magnetic field.                                                                                                   |         |   |
|     |                                                                                                                                                   |         |   |
|     | [Note: Award 1 mark for this part if the student just writes the expressions for the average energy density of the electric and magnetic fields.] |         | 3 |
|     | the average energy density of the electric and magnetic heras.                                                                                    |         |   |
|     | Definition of the wavefront 1                                                                                                                     |         |   |
| 16. | Verification of the law of Reflection 2                                                                                                           |         |   |
|     |                                                                                                                                                   |         |   |
|     |                                                                                                                                                   |         |   |
|     | The wave front is defined as a surface of constant phase                                                                                          | 1       |   |
|     | Alternatively: The wave front is a locus of points which oscillate in phase                                                                       | ATTEC   |   |
|     | Consider a plane wave AB incident at an angle 'l' on a reflecting surface MN                                                                      |         |   |
|     |                                                                                                                                                   |         |   |
|     |                                                                                                                                                   |         |   |
|     |                                                                                                                                                   |         |   |

Incident wavefront
Reflected wavefront

1

let t = time taken by the wave front to advance from B to C.

∴ BC = vt

Let CE represent the tangent plane drawn from the point C to the sphere of radius 'vt' having A as its center.

then AE= BC= vt

it follows that

 $\Delta EAC \cong \Delta BAC$ 

Hence  $\angle i = \angle r$ 

1/2

3

:. Angle of incidence = angle of reflection

OR

Definition of the refractive index

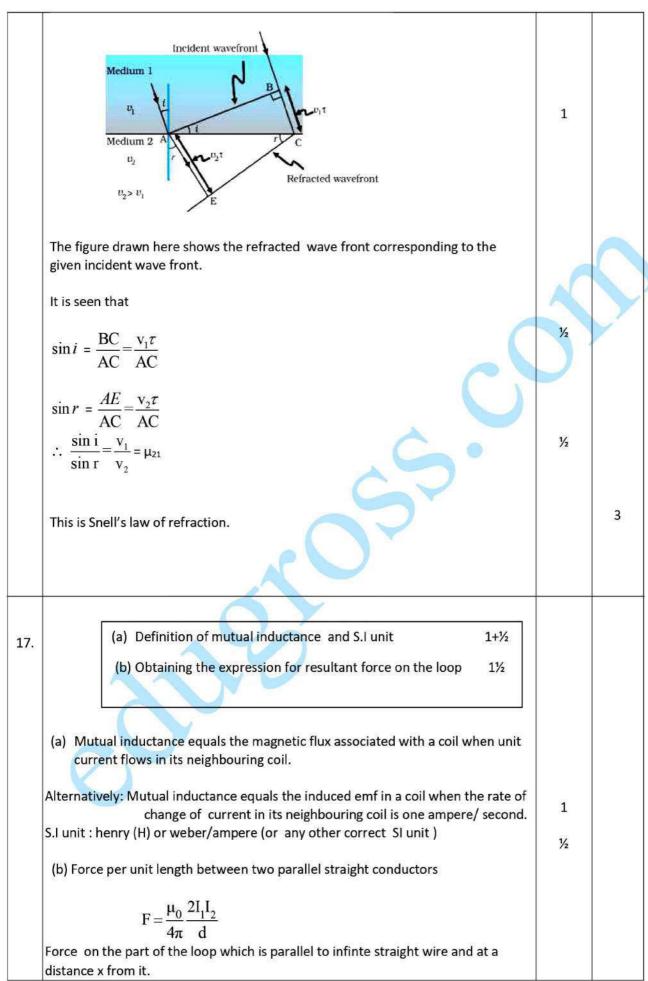
1

Verification of laws of refraction

2

The refractive index of medium 2, w.r.t medium 1 equals the ratio of the sine of angle of incidence (in medium 1) to the sine of angle of refraction (in medium 2)

Alternatively:


Refractive index of radium 2 w.r.t medium 1

$$n_{21} = \frac{\sin i}{\sin r}$$

Alternatively: Refractive index of medium 2 w.r.t medium 1

 $n_{21} = \frac{\text{Velcoity of light in medium 1}}{\text{Velocity of light in medium 2}}$ 

1



|     | $F_1 = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{x} \frac{a}{x}$ ( away from the infinte straight wire) Force on the part of the loop which is at a distance (x + a) from it                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/2 |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | $F_2 = \frac{\mu_0}{2\pi} \frac{I_1 I_2 \ a}{(x + a)}$ (towards the infinte straight wire)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2 |   |
|     | Net force $F = F_1 - F_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |   |
|     | $F = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{a} \left[ \frac{1}{x} - \frac{1}{x+a} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4   |   |
|     | $F = \frac{\mu_0}{2\pi} \frac{I_1 I_2 \ a^2}{x (x + a)}$ (away from the infinte straight wire)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2 | 3 |
| 18. | (a) Derivation of the expression for torque 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |   |
| 10, | (b) Significance of radial magnetic field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |   |
|     | (a) Consider the simula consultant a material land a mission wife ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |   |
|     | (a) Consider the simple case when a rectangular loop is placed in a uniform magnetic field B that is in the plane of the loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |   |
|     | Rotation axis  Rotation axis  Brush S  Brush S  A  Brush S  Brush | 1/2 |   |
|     | Force on arm $AB = F_1 = IbB$ (directed into the plane of the loop)<br>Force on arm $CD = F_2 = IbB$ (directed out of the plane of the loop)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2 |   |
|     | Therefore the magnitude of the torque on the loop due to these pair of forces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |   |
|     | $\tau = F_1 \frac{a}{2} + F_2 \frac{a}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/2 |   |

| ্ |     |                                                                                                                                                                                                                                                |     |   |
|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|   |     | = I (ab) B<br>= IAB = mB                                                                                                                                                                                                                       | 1/2 |   |
|   |     | ( A = ab = area of the loop)                                                                                                                                                                                                                   | 200 |   |
|   |     | Alternatively                                                                                                                                                                                                                                  |     |   |
|   |     | Also accept if the student does calculations for the general case and obtains the result                                                                                                                                                       |     |   |
|   |     | Torque = IAB $\sin \phi$                                                                                                                                                                                                                       |     |   |
|   |     | Alternatively                                                                                                                                                                                                                                  | 1/2 |   |
|   |     | Also accept if the student says that the euivalent magnetic moment (m),associated with a current carrying loop is                                                                                                                              | 1   |   |
|   |     | $\overrightarrow{m}$ =IA $\hat{\mathbf{n}}$ (A = Area of loop)                                                                                                                                                                                 |     |   |
|   |     |                                                                                                                                                                                                                                                |     |   |
|   |     | The torque, on a magnetic dipole, in a magnetic field, is given by                                                                                                                                                                             |     |   |
|   |     | $\vec{\tau} = \vec{m} \times \vec{B}$                                                                                                                                                                                                          |     |   |
|   |     | $\therefore  \tau = IA(\hat{\mathbf{n}} \times \vec{B})$                                                                                                                                                                                       |     |   |
|   |     | Hence                                                                                                                                                                                                                                          |     |   |
|   |     | Magnitude of torque is = IAB $\sin \phi$                                                                                                                                                                                                       |     |   |
|   |     | (b) When a current carrying coil is kept in a radial magnetic field the corresponding moving coil galvanometer would have a linear scale                                                                                                       | 1   |   |
|   |     | Alberta di ulti II la a vadial proposti di del devo si des afetos protesso il conscio                                                                                                                                                          |     |   |
|   |     | Alternatively "In a radial magnetic field two sides of the rectangular coil remain parallel to the magnetic field lines while its other two sides remain perpendicular to the magnetic field lines. This holds for all positions of the coil." |     | 3 |
| 3 |     | Labelled ray diagram of an astronomical telescope 1 ½                                                                                                                                                                                          |     |   |
|   | 19. | Calculation of the diameter of the image of the moon. 1½                                                                                                                                                                                       |     |   |
|   |     |                                                                                                                                                                                                                                                |     |   |
|   |     |                                                                                                                                                                                                                                                |     |   |
|   |     | ^'^                                                                                                                                                                                                                                            | 41/ |   |
|   |     | C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                          | 1½  |   |
|   |     | Objective of exepted                                                                                                                                                                                                                           |     |   |
|   |     |                                                                                                                                                                                                                                                |     |   |



[Note: (i) Deduct 1/2 mark If arrows are not shown.

(ii) Award one mark of this part if a student draws the ray diagram for normal Adjustment / relaxed eye.]

Angular magnification of the telescope = 
$$\frac{f_o}{f_e} = \frac{15}{0.01} = 1500$$

1/2

For objective lens,  $\tan \alpha = \frac{3.48 X \, 10^6}{3.8 X 10^8}$ 

3

s entrated monoral

1/2

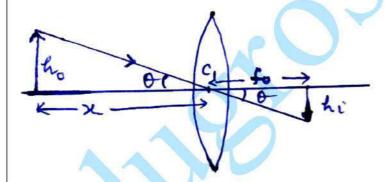
For eyepiece 
$$\tan \beta = \frac{h_i}{f_e} = \frac{h_i}{10^{-2}}$$
  

$$\therefore \text{ Magnifying power} = \frac{\beta}{\alpha} = \frac{\frac{h_i}{10^{-2}}}{\frac{3.48 \times 10^8}{3.8 \times 10^8}}$$

$$= \frac{h_i \times 3.8 \times 10^8}{3.48 \times 10^6 \times 10^{-2}} = 1500$$

$$h_i = 13.73 \text{ cm}$$

1/2


Also accept angular magnification of the telescope

$$= \frac{f_0}{f_e} \left( 1 + \frac{f_e}{d} \right) = \frac{15}{0.01} \left( 1 + \frac{0.01}{0.25} \right) = 1560$$

So,  $h_i = 14.29$  cm

Alternatively





From figure:

$$\frac{\mathbf{h}_0}{\mathbf{x}} = \frac{h_i}{f}$$

[Where  $h_o$  and  $h_i$  are the diameter of the moon and diameter of the image of the moon respectively.]

1/2

$$h_i = \frac{h_0 f_o}{x}$$
=\frac{3.48 \times 10^6}{3.8 \times 10^8} \times 15
= 13.73cm

1/2

1/2

3



| - 10 |                                                                                                                                                                                                                                                               |                                                                                       |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 1          |   |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------|---|
| 20.  |                                                                                                                                                                                                                                                               | (a)statement                                                                          | of Gauss's law in ma                                 | agnetism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/2                   |            |   |
|      |                                                                                                                                                                                                                                                               | lts signif                                                                            | icance                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2                   |            |   |
|      |                                                                                                                                                                                                                                                               |                                                                                       | rtant properties                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ½ x4                  |            |   |
|      |                                                                                                                                                                                                                                                               | (b)rodr impo                                                                          | rtuit properties                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /2.84                 |            |   |
|      | through Alterna $= \oint \vec{B} \cdot \vec{a}$ $S$ The form cl                                                                                                                                                                                               | th any closed surface $\vec{s}$ it ively $\vec{s} = 0$ is law implies that osed loops | magnetic monopole                                    | es do not exist" /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the magnetic field,   | ½<br>½     | 5 |
|      | Mary transfer of the same                                                                                                                                                                                                                                     | <b>Award this I mark</b><br>ur properties of m                                        | if the student just a<br>agnetic field lines         | attempts it]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | 1/2        |   |
|      | (i) Ma                                                                                                                                                                                                                                                        | agnetic field lines a                                                                 | always form continu<br>agnetic field line at a       | and the second of the second o |                       | 1/2        |   |
|      | di                                                                                                                                                                                                                                                            | rection of the net                                                                    | magnetic field at tha                                | at point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | /2         |   |
|      | 63500 950                                                                                                                                                                                                                                                     | e larger the numbe<br>gnitude of the ma                                               |                                                      | ing per unit area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , the stronger is the | 1/2        |   |
|      |                                                                                                                                                                                                                                                               | gnetic field lines o                                                                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 1/2        |   |
| OR   |                                                                                                                                                                                                                                                               |                                                                                       |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |   |
|      | Thre                                                                                                                                                                                                                                                          | ee points of differe                                                                  | ence                                                 | 3 x ½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |            |   |
|      | One example of each                                                                                                                                                                                                                                           |                                                                                       |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |   |
|      |                                                                                                                                                                                                                                                               |                                                                                       |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |            |   |
|      |                                                                                                                                                                                                                                                               | Diamagnetic                                                                           | Paramagnetic                                         | Ferromagnetic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 200        |   |
|      | 1                                                                                                                                                                                                                                                             | -1≤χ⟨0                                                                                | -0(χ(ε                                               | χ>>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 1/2        |   |
|      | 2                                                                                                                                                                                                                                                             | $0 \le \mu_{\Gamma} \langle 1$                                                        | $1 \le \mu_{\Gamma} \langle 1 + \varepsilon \rangle$ | $ \mu_{\Gamma}\rangle\rangle$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 1/2<br>1/2 |   |
|      | 3                                                                                                                                                                                                                                                             | μζ μ0                                                                                 | μλμο                                                 | $ \mu\rangle\rangle\mu_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 1.557      |   |
|      | Where $\varepsilon$ is any positive constant.<br>[Note: Give full credit of this part if student write any other three correct difference]<br>Examples (Any one example of each type )<br>Diamagnetic materials: Bi,Cu, Pb,Si, water, NaCl, Nitrogen (at STP) |                                                                                       |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2                   |            |   |
|      | 100                                                                                                                                                                                                                                                           |                                                                                       | Al,Na,Ca, Oxygen(at                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.V                   | 1/2        |   |
| 1    | 1                                                                                                                                                                                                                                                             | agnetic materials:                                                                    |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 1/2        | 3 |
| 21.  |                                                                                                                                                                                                                                                               | Definition of de                                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                   |            |   |
|      |                                                                                                                                                                                                                                                               | Calculation of i                                                                      | nitial number of nuc                                 | lei at t=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                     |            |   |

The decay constant (  $\lambda$  ) of a radioactive nucleus equals the ratio of the instantaneous rate of decay  $(\frac{\Delta\ N}{\Delta\ t})$  to the corresponding instantaneous number of radioactive nuclei.

3

Alternatively:

The decay constant ( $\lambda$ ) of a radioactive nucleus is the constant of proportionality in the relation between its rate of decay and number of its nuclei at any given instant.

Alternatively:

$$\frac{\Delta N}{\Delta t} \propto N$$

$$\frac{\Delta N}{\Delta t} = \lambda N$$

The constant ( $\lambda$ ) is known as the decay constant

Alternatively:

The decay constant equals the reciprocal of the mean life of a given radioactive nucleus .

$$\lambda = \frac{1}{\tau}$$

where

τ= mean life

Alternatively:

The decay constant equal the ratio of  $\ln_e 2$  to the half life of the given radioactive element.

$$\lambda = \frac{\ln_e 2}{T_{1/2}}$$

Where  $T_{1/2}$  = Half life

1

Alternatively:

The decay constant of a radioactive element, is the reciprocal of the time in which the number of its nuclei reduces to 1/e of its original number.

(Note: Do not deduct any mark of this definition, if a student does not write the formula in support of the definition)

We have

$$R = \lambda N$$

| R ( | 20 hrs) | = 10000 = | $\lambda N_{20}$ |
|-----|---------|-----------|------------------|
|-----|---------|-----------|------------------|

R ( 30 hrs) = 
$$5000 = \lambda N_{30}$$

$$\therefore \frac{N_{20}}{N_{30}} = 2$$

This means that the number of nuclei, of the given radioactive nucleus, gets halved in a time of (30 - 20) hours = 10 hours

1/2

Half life = 10 hours

1/2

This means that in 20 hours ( = 2 half lives), the original number of nuclei must have gone down by a factor of 4.

Hence Rate of decay at t = 0

1/2

$$\lambda N_0 = 4\lambda N_{20}$$

=4X10000 = 40,000 disintegration per second

(Note: Award full marks of the last part of this question even if student does not calculate initial number of nuclei and calculates correctly rate of disintegration at t=0)

i.e  $R_0 = 40,000$  disintegration per second

$$N_{_{0}} = \frac{40000}{\lambda} = \frac{40000}{\ln_{_{e}} 2} \times 10 \times 60 \times 60$$

$$N_0 = \frac{144 \times 10^7}{0.693} = 2.08 \times 10^9$$
 muclei

3

22.

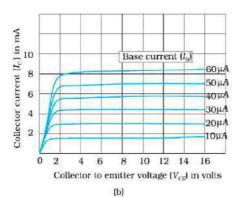
- (a) Calculation of energy of a photon of light
- 11/2

(b) Identification of photodiode

- 11/2
- Why photodiode are operated in reverse bias
- 1

We have

$$E = h \nu = \frac{h c}{\lambda}$$

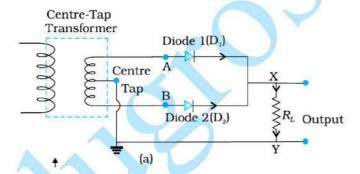

$$=\frac{6.63\times10^{-34}\times3\times10^{8}}{600\times10^{-9}} \text{ J}$$

1/2

|     | r                                                                                                                                                                                                                                                                                                                          | T.  |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|     | $= \frac{19.89 \times 10^{-26}}{6 \times 10^{-7} \times 1.6 \times 10^{-19}} \text{ eV}$                                                                                                                                                                                                                                   |     |   |
|     | $=\frac{19.89}{9.6}$ eV<br>= 2.08eV                                                                                                                                                                                                                                                                                        | 1/2 |   |
|     | The band gap energy of diode $D_2$ ( = 2eV) is less than the energy of the photon. Hence diode $D_2$ will not be able to detect light of wavelength 600 nm. [Note: Some student may take the energy of the photon as 2eV and say that all the three diodes will be able is detect this right, Award them the $\frac{1}{2}$ | 1/2 |   |
|     | mark for the last part of identification]  (b) A photodiode when operated in reverse bias, can measure the fractional change in minority carrier dominated reverse bias current with greater ease                                                                                                                          |     |   |
|     | Alternatively: It is easier is observe the change in current with change in light intensity, if a reverse bias is applied                                                                                                                                                                                                  |     | 3 |
| 23. | (a) Functions of the three segments $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ (b) Circuit diagram for studying the output characteristics 1 obtaining output characteristics                                                                                                                                               |     |   |
|     | (i) Emitter: supplies the large number of majority carriers for current flow through the transistor                                                                                                                                                                                                                        | 1/2 |   |
|     | (ii) Base: Allows most of the majority charge carriers to go over to the collector                                                                                                                                                                                                                                         | 1/2 |   |
|     | Alternatively, It is the very thin lightly doped central segment of the transistor.  Collector: collects a major portion of the majority charge carriers supplied by the emitter.                                                                                                                                          | 1/2 |   |
|     | (b) $\begin{array}{c c} I_{C} \\ I_{B} \\ I_{B} \\ I_{E} \end{array}$ $\begin{array}{c c} I_{C} \\ V_{CE} \end{array}$ $\begin{array}{c c} I_{C} \\ V_{CC} \end{array}$                                                                                                                                                    | 1   |   |
|     | The output characteristics are obtained by observing the variation of $I_c$ when $V_{CE}$ is varied keeping $I_B$ constant .                                                                                                                                                                                               | 1/2 |   |

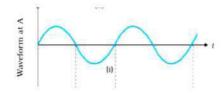


Note: Award the last  $\frac{1}{2}$  mark even if the student just draws the graph for output characteristics




[Note: Do not deduct marks of this part, for not writing values on the axis]

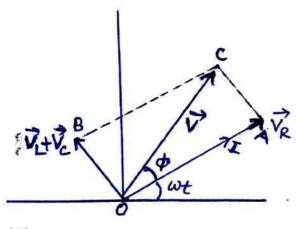
OR


| Circuit diagram of full wave rectifier | 1/2       |
|----------------------------------------|-----------|
| working                                | 1/2       |
| Input and output wave forms            | 1/2 + 1/2 |

The circuit diagram of a full wave rectifier is shown below.



Because of the center tap in the secondary of the transformer, diodes 1 and 2 get forward biased in successive halves of the input ac cycle. However the current through the load flows in the same direction in both the halves of he input ac cycle. We therefore, get a unidirectional (rectified) current through the load for the full cycle of the input ac.


The input and output wave forms are as shown below.



1

1

| 3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3a         | 40 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|
|     | Out put waveform  (across R.)  Due to Due | 1/2        | 3  |
| 24. | (a)Obtaining the expression for modulation index in terms of A and B $1\%$ (b) calculation of $\mu$ $1$ Reason $\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |    |
|     | We are given that $A = A_c + A_m$ and $B = A_c - A_m$ $A_c = (A + B)/2$ $A_m = (A - B)/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>1/2</i> |    |
|     | $\therefore  \mu = \frac{A_{m}}{A_{c}}$ $= \frac{A - B}{A + B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |    |
|     | (b) We have $H = \frac{A_m}{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2        |    |
|     | $\mu = A_c$ $= \frac{10}{15} = \frac{2}{3}$ $\mu \text{ is kept less than one to avoid distortion}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ½<br>½     | 3  |
| 25. | SECTION D  (a) Derivation of the expression for impedance 2 plot of impedance with frequency ½                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |    |
|     | b) Phase difference between voltage across inductor and capacitor $\frac{1}{2}$ (c) Reason and calculation of self induction $\frac{1}{2} + 1\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |    |



1

$$|\vec{\mathbf{V}}| = V_{\mathrm{m}}$$

$$|V_{R}| = V_{Rm}$$

$$|V_L| = V_{Lm}$$

From the figure, the pythagorean theorem gives

$$V_m^2 = V_{Rm}^2 + (V_{Lm} - V_{cm})^2$$

$$V_{Rm} = i_m R$$
,  $V_{Lm} = i_m X_L$ ,  $V_{cm} = i_m X_C$ ,

$$V_m = i_m Z$$

1/2

$$= (i_m \mathbf{Z})^2 = (I_m R)^2 + (i_m X_L - i_m X_c,)$$

$$z^2 = R^2 + ((X_L - X_c)^2)$$

$$\therefore z = \sqrt{R^2 + (X_L - X_c)^2}$$

[note: award these two marks, If a student does it correctly for the other case i.e

1/2

 $(V_c > V_L)]$ 



1/2

(b) Phase difference between voltage across inductor and the capacitor at resonance is  $180^{\circ}\,$ 

1/2

(c) Inductor will offer an additional impedance to ac due to its self inductance.

| D- | $V_{rm}$ | 200 | 200 Ω  |
|----|----------|-----|--------|
| K= | Irms     | 1 = | 200 12 |

Impedance of the inductor 
$$Z = \frac{V_{rms}}{I_{rms}} = \frac{200}{0.5} = 400 \ \Omega$$

Since 
$$Z = \sqrt{R^2 + (X_L)^2}$$
  
 $\therefore (400)^2 - (200)^2 = (X_L)^2$ 

$$X_L = \sqrt{600X200} = 346.4 \,\Omega$$

1/2

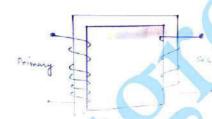
Inductance (L) = 
$$\frac{X_L}{w} = \frac{364.4}{2X3.14X50} = 1.1H$$

OR

(a) Diagram of the device

1/2

1


working Principle

 $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} +$ 

(b) Estimation of Line power loss

Four sources of energy loss

(a)



1

Working Principle: When the alternating voltage is applied to the primary, the resulting current produces an alternating magnetic flux in secondary and induces an emf in it./It works on the mutual induction.

1/2

Four sources of energy loss

- (i) Flux leakage between primary and secondary windings
- (ii) Resistance of the windings

1/2 1/2

(iii)Production of eddy currents in the iron core.

1/2

(iv)Magnetization of the core.

- 1/2
- (b) Total resistance of the line = length X resistance per unit length
  - = 40 km x  $0.5 \Omega/km$ 
    - $=20 \Omega$

| Current flowing in the line I | = P/V |
|-------------------------------|-------|
| current nowing in the line i  | = $V$ |

$$I = \frac{1200 \ X \ 10^3}{4000}$$

$$= 300A$$

:. Line power loss in the form of heat  $P=I^2R$ 

 $P=1^2 R$ = $((300)^2 \times 20)$ 

= 1800 kW

1/2

1/2

1/2 + 1/2

1/2 + 1/2

5

26.

(a) Two characteristic Two characteristic features of distinction 2

Dervation Derivation of the expression for the intensity

(b) Calculation of separation between the first order

(a)

(Any two of the following)

- (i) Interference pattern has number of equally spaced bright and dark bands while diffraction pattern has central bright maximum which is twice as wide as the other maxima.
- (ii) Interference is obtained by the superposing two waves originating from two narrow slits. The diffraction pattern is the superposition of the continuous family of waves originating from each point on a single slit.
- (iii) In interference pattern, the intensity of all bright fringes is same, while in diffraction pattern intensity of bright fringes go on decreasing with the increasing order of the maxima
- (iv)In interference pattern , the first maximum falls at an angle of  $\frac{\lambda}{a}$  . where a is the separation between two narrow slits, while in diffraction pattern, at the same angle first minimum occurs. (where 'a' is the width of single slit.)

Displacement produced by source  $s_1$ 

$$Y_1 = a \cos wt$$

Displacement produced by the other source 's2'

$$Y_2 = a \cos(wt + \emptyset)$$

1/2

Resultant displacement  $Y = Y_1 + Y_2$ 

$$= a [\cos wt + \cos (wt + \emptyset)]$$

= 2a cos (
$$^{\emptyset}/_2$$
) cos (wt +  $^{\emptyset}/_2$ )

1/2

Amplitude of resultant wave A= 2a cos ( $^{\emptyset}/_{2}$ ) Intensity I  $\alpha$   $A^{2}$ I= K $A^{2}$ = K 4  $a^{2}cos^{2}$  ( $^{\emptyset}/_{2}$ )



(a) Distance of First order minima from centre of the central maxima =  $x_{D1} = \frac{\lambda D}{\lambda}$ 

Distance of third order maxima from centre of the central maxima  $X_{B3} = \frac{7D\lambda}{2a}$ 

 $\therefore$  Distance between first order minima and third order maxima=  $x_{B3}-x_{d1}$ 

$$=\frac{7D\lambda}{2a}-\frac{\lambda D}{a}$$

$$=\frac{5D\lambda}{2a}$$

$$=\frac{5 X 620 X 10^{-9} X 1.5}{2X3X10^{-3}}$$

OR

- (a) Two conditions of total internal reflection
- 1+1

(b) Obtaining the relation

- 1
- (c) Calculating of the position of the final image
- 2
- (a) (i) Light travels from denser to rarer medium.
  (ii) Angle of incidence is more than the critical angle

1

1/2

1/2

For the Grazing incidence

$$\mu \sin i_c = 1 \sin 90^{\circ}$$

$$\mu = \frac{1}{\sin i_c}$$

1/2

1/2

(b) For convex lens of focal Length 10 cm

$$\frac{1}{f_1} = \frac{1}{v_1} - \frac{1}{u_1}$$

$$\frac{1}{10} = \frac{1}{v_1} - \frac{1}{-30} \Rightarrow v_1 = 15 \text{ cm}$$

Object distance for concave lens  $u_2$ = 15-5 =10 cm

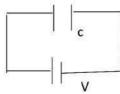
$$\frac{1}{f_2} = \frac{1}{v_2} - \frac{1}{u_2}$$

$$\frac{1}{-10} = \frac{1}{v_2} - \frac{1}{10}$$
$$v_2 = \infty$$

|     | 41    | 1    |
|-----|-------|------|
| For | third | lenc |

$$\frac{1}{f_3} = \frac{1}{\nu_3} - \frac{1}{u_3}$$

$$\frac{1}{3_0} = \frac{1}{\nu_3} - \frac{1}{\infty} = > \nu_3 = 30 \text{ cm}$$


5

27.

- a) Description of the process of transferring the charge.  $\frac{1}{2}$ Derivation of the expression of the energy stored  $2\frac{1}{2}$
- b) Calculation of the ratio of energy stored

2





The electrons are transferred to the positive terminal of the battery from the metallic plate connected to the positive terminal, leaving behind positive charge on it. Similarly, the electrons move on to the second plate from negative terminal, hence it gets negatively charged. Process continuous till the potential difference between two plates equals the potential of the battery.

[Note: award this  $\frac{1}{2}$  mark, If the student writes, there will be no transfer of charge between the plates]

Let 'dw' be the work done by the battery in increasing the charge on the capacitor from q to (q+ dq).

$$dW = V dq$$

Where V = 
$$\frac{q}{c}$$

1/2

$$\therefore dW = \frac{q}{c} dq$$

1/2

Total work done in changing up the capacitor

$$W = \int dw = \int_{0}^{Q} \frac{q}{c} dq$$

1/2

$$\therefore W = \frac{Q^2}{2C}$$

1/2

Hence energy stored =  $W = \frac{Q^2}{2C} \left( = \frac{1}{2} CV^2 = \frac{1}{2} QV \right)$ 

(b) Charge stored on the capacitor q=CV When it is connected to the uncharged capacitor of same capacitance, sharing of charge takes place between the two capacitor till the potential of both the capacitor becomes  $\frac{V}{2}$ 

Energy stored on the combination  $(u_2) = \frac{1}{2} C \left( \frac{V}{2} \right)^2 + \frac{1}{2} C \left( \frac{V}{2} \right)^2 = \frac{CV^2}{4}$ 

1/2

Energy stored on single capacitor before connecting

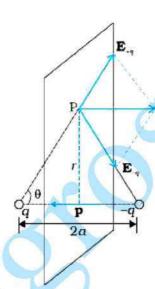
1/2

$$U_1 = \frac{1}{2} CV^2$$

Ratio of energy stored in the combination to that in the single capacitor

 $\frac{U_2}{U_1} = \frac{CV^2/4}{CV^2/2} = 1:2$ 

1/2


OR

- (a) Derivation for the expression of the electric field on the equatorial line
- (b) Finding the position and nature of Q

3 1+1

E at P

(a)



1

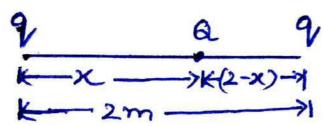
The magnitude of the electric fields due to the two charges +q and -q are

$$E_{+q} = \frac{1}{4\pi \in_0} \frac{q}{(r^2 + a^2)}$$

1/2

$$E_{-q} = \frac{1}{4\pi \in_{0}} \frac{q}{(r^{2} + a^{2})}$$

1/2


5

The components normal to the dipole axis cancel away and the components along the dipole axis add up

Hence total Electric field = - (  $E_{+q} + E_{-q}$  )cos $\theta$   $\ \hat{p}$ 

| F | 2qa                                           | ñ |
|---|-----------------------------------------------|---|
| L | $4\pi\varepsilon_0\left(r^2+a^2\right)^{3/2}$ | P |

(b)



1/2

System is in equilibrium therefore net force on each charge of system will be zero.

For the total force on 'Q' to be zero

$$\frac{1}{4\pi \in_{0}} \frac{qQ}{x^{2}} = \frac{1}{4\pi \in_{0}} \frac{qQ}{(2-x)^{2}}$$

1/2

$$x = 2 - x$$

$$2x = 2$$
  
 $x = 1 m$ 

1/2

(Give full credit of this part, if a students writes directly 1m by observing the given condition)

1/2

5

For the equilibrium of charge "q" the nature of charge Q must be opposite to the nature of charge q.