

CBSE Class 12 Chemistry Question Paper Solution 2015

QUESTION PAPER CODE 56/1/1

EXPECTED ANSWERS/VALUE POINTS

7. 1) Diamminedichloridoethylenediaminechromium(III) chloride 1+12) [Co(NH₂)₅(ONO)]²⁺ LiAIH₄/NaBH₄/H₂, Pt 8. 1 (i) KMnO₄, KOH (ii) 1 9. When vapour pressure of solution is higher than that predicted by Raoult's law / the intermolecular attractive forces between the solute-solvent/(A-B) molecules are weaker than those between the solute-solute and solvent-solvent molecules/ A-A or B-B molecules. 1/2 Eg. ethanol-acetone/cthanol-cyclohexane/CS₂-acetone or any other correct example Δ_{\min} H is positive 1/2 OR Azeotropcs are binary mixtures having the same composition in the liquid and (a) vapour phase and boil at a constant temperature. 1 Minimum boiling azeotrope (b) 1/2 eg - ethanol + water or any other example 1/2 $Ag^{+}(aq) + e \rightarrow Ag(s)$ 10. (i) 1/2 Reaction with higher E°value / Δ G°negative 1/2 (ii) Molar conductivity of a solution at infinite dilution or when concentration approaches zero 1/2 Number of ions per unit volume decreases 1/2 $\Delta T_f = i K_f m$ 1/2 11. $\Delta T_{\rm f} = i K_{\rm f} \frac{w_b \times 1000}{M_b \times w_a}$

1.62 K =
$$i \times 4.9$$
K kg mol⁻¹ × $\frac{3.9 \text{ g}}{122 \text{ gmol}^{-1}} \times \frac{1000}{49 \text{ g}}$

$$i = 0.506$$

Or by any other correct method

As i < 1, therefore solute gets associated.

- 12 (i) Zinc being low boiling will distil first leaving behind impurities/ or on electrolysis the pure metal gets deposited on cathode from anode.
 - (ii) Silica acts as flux to remove iron oxide which is an impurity as slag or
 FeO + SiO₂ → FeSiO₃
 - (iii) Wrought iron

13.
$$d = \frac{z \times M}{a^3 N_A}$$

$$z = \frac{d a^3 N_A}{M}$$

$$z = \frac{2.7 \text{ g cm}^{-3} \times 6.022 \times \text{mol}^{-1} \times (4.05 \times 10^{-8} \text{ cm})^{3}}{M}$$

$$= 3.999 \approx 4$$

Face centered cubic cell / fcc

- 14. (i) 5f orbital electrons have poor shielding effect than 4f.
 - (ii) due to d-d transition / or the energy of excitation of an electron from lower d-orbital to' higher d-orbital lies in the visible region /presence of unpaired electrons in the d-orbital.

(iii)
$$2 \text{ MnO}_{4}^{-} + 6 \text{ H}^{+} + 5 \text{ NO}_{2}^{-} \rightarrow 2 \text{ Mn}^{2+} + 3 \text{ H}_{2}\text{O} + 5 \text{ NO}_{3}^{-}$$

1

15. (i)

(ii) $t2g^3 e g^1$

1

1

(iii) sp³, diamagnetic $\frac{1}{2}+\frac{1}{2}$

16. The cell reaction: $Fe(s) + 2H^+(aq) \rightarrow Fe^{2+}(aq) + H_2(g)$

$$E_{cell}^{o} = E_{c}^{o} - E_{a}^{o}$$

$$= [0-(-0.44)] V = 0.44V$$

$$E_{\text{cell}} = E_{\text{cell}}^{\text{o}} - \frac{0.059}{2} \log \left[\frac{\text{Fe}^{2+}}{\text{F}^{2}} \right]$$

$$E_{\text{cell}} = 0.44 \text{ V} - \frac{0.059}{2} \log \frac{(0.001)}{(0.01)^2}$$

=
$$0.44 \text{ V} - \frac{0.059}{2} \log (10)$$

$$= \approx 0.410 \text{ V}$$

17. (i) mutual coagulation 1

- (ii) strong interaction between dispersed phase and dispersion medium or solvated layer
- (iii) CO acts as a poison for catalyst

18. (i) Hexamethylene diamine
$$NH_2$$
 (CH_2)₆ NH_2 and $HOOC - (CH_2)$ ₄ - $HOOC - (CH_2)$ ₆ $HOOC - (CH_2)$ ₇

(ii) 3 hydroxybutanoic acid CH₃CH(OH)CH₂COOH and ½

1/2 3 hydroxypentanoic acid CH₂CH₂CH(OH)CH₂COOH 1/2 Chloroprene H₄C=C(CI)CH=CH, (iii) 1/2 IUPAC names are accepted Note: ½ mark for name /s and ½ mark for structure / s 1

(ii)
$$C_6H_5COONa + CHI_3$$
 $\frac{1}{2}$

(iii) CH_{4}

20. (i) $C_6H_5OH + NaOH \rightarrow C_6H_5ONa$ <u>CH₃X</u> C₆H₅OCH₃ CH₃X C₆H₅OCH₃ 1 $C_6H_5OH + Na \rightarrow C_6H_5ONa$

(iii)
$$C_6H_5NH_2$$
 NaNO₂ + HCl $C_6H_5N_2Cl$ H_2O warm C_6H_5OH 273K

1

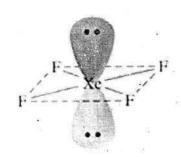
1

OR

(i)
$$CH_3$$
- CH_2 - O - H + H ⁺ \longrightarrow CH_3 - CH_2 - O - H

(iii)CH₃-CH₂-O: + CH₂-CH₂-O'_H
$$\rightarrow$$
 CH₃CH₃-O-CH₂CH₃+ H₂O

1


COOH
$$(CH_3CO)_2O \rightarrow (COOH_3 + CH_4COOH_3)$$

(Acetyl chloride instead of acetic anhydride may be used)

21.	(i)	Maltose	
	(ii)	fibrous proteins: parallel polypeptide chain, insoluble in water, Globular proteins:	
		spherical shape, soluble in water, (or any I suitable difference)	j
	(iii)	Vitamin D	ĵ
22	(i)	Larger surface area, higher van der Waals' forces ,higher the boiling point	j
	(ii)	Rotation due to one enantiomer is cancelled by another enantiomer	
	(iii)	- NO ₂ acts as Electron withdrawing group or –I effect	
23.	(i)	Concern for students health, Application of knowledge of chemistry to daily life, empathy, caririg or any other	1/2, 1/
	(ii)	Through posters, nukkad natak in community, social media, play in assembly or any other	1
	(iii)	Tranquilizers are drugs used for treatment of stress or mild and severe mental	
		disorders Eg: equanil (or any other suitable example)	1/2, 1/
	(iv)	Aspartame is unstable at cooking temperature.	Ī
24.	(a)	 (i) Due to decrease in bond dissociation enthalpy from HF to HI, there is an increase in acidic character observed. (ii) Oxygen exists as diatomic O₂ molecule while sulphur as polyatomic S₈ 	
			ă a
		(iii) Due to non availability of d orbitals	
	(b)	CI F	ĵ

1

OR

(i) White Phosphorus because it is less stable due to angular strain 1/2+1/2

(ii) Nitrogen oxides emitted by supersonic jet planes are responsible for depletion of ozone layer.

 $NO+O_3 \rightarrow NO_2 + O_2$ Or

(iii) due to small size of F, large inter electronic repulsion / electron- electron repulsion among the lone pairs of fluorine

1

(iv) Helium 1

 $XeF_2 + PF_5 \rightarrow [XeF]^+ [PF_6]^-$

1

25.

$$A = \bigcirc$$

N=NCI

ii)

N≓C

E =

$$1 \times 5 = 5$$

OR

a. i)

NH,CI

1 1

 $(CH_3)_3N \le C_2H_5NH_2 \le C_2H_5OH$ b.

1

By Hinsberg test secondary amines (CH₃)₂ NH shows ppt formation which is c. insoluble in KOH tertiary amines (CH₂)₃N do not react with benzene sulphonyl choride

1

26.

$$k = \underbrace{2.303}_{t} \log \left[\underbrace{A_0}_{A} \right]$$

1

$$k = \underbrace{2.303}_{30} \log \underbrace{0.60}_{0.30}$$

$$k = 2.303 x 0.301 = 0.023 s^{-1}$$

1/2

$$k = \underbrace{2.303}_{60} \log \underbrace{0.60}_{0.15}$$

1/2

$$k = 2.303 \times 0.6021 = 0.023 \text{ s}^{-1}$$

As k is constant in both the readings, hence it is a pseudo first order reaction.

1/2

ii) Rate
$$=-\Delta[R]/\Delta t$$

1/2

$$=\frac{-\big[0.15-0.30\big]}{60-30}$$

1

$$= 0.005 \ mol \ L^{-1} \ s^{-1}$$

OR

a) (i) Rate will increase 4 times of the actual. rate of reaction.

1+1

- (ii) Second order, reaction
- b) t

 $t_{1/2} = \frac{0.693}{k}$

$$30 \min = \frac{0.693}{k}$$

 $\frac{1}{2}$

$$k = 0.0231 min^{-1}$$

1/2

$$k = \underbrace{2.303}_{t} \log \underbrace{\left[A_{\underline{0}} \right]}_{\left[A \right]}$$

$$t = \underbrace{2.303}_{0.0231} \quad \log \underbrace{100}_{10}$$

$$t = \frac{2.303}{0.0231} \min_{\frac{1}{2}}$$

t = 99.7min