

CBSE Class 12 Chemistry Question Paper Solution 2018

Marking Scheme - 2017-18

CHEMISTRY (043)/ CLASS XII

<u>56/1</u>

Q.No	Value Points	Marks
1	Shows metal deficiency defect / It is a mixture of Fe ²⁺ and Fe ³⁺ /Some Fe ²⁺ ions are replaced by Fe ³⁺ / Some of the ferrous ions get oxidised to ferric ions.	1
2	Selectivity of a catalyst	1
3	Coordination Number = 6, Oxidation State = +2	1/2, 1/2
4	Benzyl chloride ;	1/2
	Due to resonance, stable benzyl carbocation is formed.	1/2
5	3,3 - Dimethylpentan-2-ol	1
6	$\Delta T_f = K_f m$ = $K_f \frac{w_2 \times 1000}{M_2 \times w_1}$	1/2
	= <u>1.86 x 60 x 1000</u> 180x250	1/2
	= 2.48 K	1/2
	= 2.48 K $\Delta T_f = T_f^{\circ} - T_f$ 2.48 = 273.15 - T_f	/2
	T _f = 270.67 K / 270.52 K / - 2.48 °C	1/2
7	$Rate = \frac{1}{4} \frac{\Delta (NO2)}{\Delta (t)} = -\frac{1}{2} \frac{\Delta (N_2O_5)}{\Delta (t)}$	1/2
	$\frac{1}{4} (2.8 \times 10^{-3}) = -\frac{1}{2} \frac{\Delta(t)}{\Delta(t)}$	1/2
	Rate of disappearance of N ₂ O ₅ $\left(-\frac{\Delta(N_2O_5)}{\Delta(t)}\right) = 1.4 \times 10^{-3} \text{ M/s}$	1
	(Deduct half mark if unit is wrong or not written)	
8	(a)PH₃	1/2
	(b)NH ₃	1/2
	(c)NH ₃	1/2
	(d)BiH ₃	1/2
9	(a)CH ₃ CHO (i)CH ₃ MgBr, Dry ether(ii)H ₂ O/H ⁺ CH ₃ CH(OH)CH ₃ CrO ₃ CH ₃ COCH ₃ (b) CH ₃ KMnO ₄ -KOH	1
	$\xrightarrow{\text{H}^3\text{O},}$	1
	(or any other correct method)	
	OR	
9	 (a) because the carboxyl group is deactivating and the catalyst aluminium chloride (Lewis acid) gets bonded to the carboxyl group 	1
	(b) Nitro group is an electron withdrawing group (-I effect) so it stabilises the carboxylate anion and strengthens the acid / Due to the presence of an electron withdrawing Nitro group (-I effect).	1

-		
10.	(a) $5 \text{Fe}^{2+} + \text{MnO}_4 + 8 \text{H}^+ \longrightarrow \text{Mn}^{2+} + 4 \text{H}_2 \text{O} + 5 \text{Fe}^{3+}$	1
		_
	(b)	
	$2MnO_4^- + H_2O + \Gamma \longrightarrow 2MnO_2 + 2OH^- + IO_3^-$	
		1
	(Half mark to be deducted in each equation for not balancing)	
11	(a) As compared to other colligative properties, its magnitude is large even for very dilute solutions / macromolecules are generally not stable at higher	1
	temperatures and polymers have poor solubility / pressure measurement is around the room temperature and the molarity of the solution is used	
	instead of molality.	1
	(b) Because oxygen is more soluble in cold water or at low temperature.	1
12	(c) Due to dissociation of KCI / KCI (aq) → K ⁺ + Cl ⁻ , i is nearly equal to 2	7
12	$d = \frac{z \mathrm{M}}{a^3 \mathrm{N_A}}$	1/2
		1/2
	$(4x10^{-8})^3 \times 6.022 \times 10^{23}$	1/2
	= 4.15 g/cm ³ No of unit cells = total no of atoms /4	1/2
	$= \frac{14}{100} \times 6.022 \times 10^{23} 1/4$	1/2
	$= \left[\frac{4}{40} \times 6.022 \times 10^{23}\right] / 4$ $= 1.5 \times 10^{22}$	1/2
	(Or any other correct method)	
13		
	$k_2 = 0.693 / 20,$	1/2
	$k_1 = 0.693/40$	1/2
	$\log \frac{k_2}{k_1} = \frac{E_a}{2.303R} \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$	1/2
	$k_2/k_1 = 2$ $E = 320 - 300$	1/2
	$\log 2 = \frac{E_a}{2303 \times 8314} \left[\frac{320 - 300}{320 \times 300} \right]$	/2
	Ea = 27663.8 J/mol or 27.66 kJ/mol	1
14	(a)Peptisation occurs / Colloidal solution of Fe(OH)₃ is formed	1
	(b)Coagulation occurs	1
	(c)Demulsification or breaks into constituent liquids	1
15	$4\text{Au(s)} + 8\text{CN}^{-}(\text{aq}) + 2\text{H}_2\text{O}(\text{aq}) + \text{O}_2(\text{g}) \rightarrow$	1
	4[Au(CN) ₂] ⁻ (aq) + 4OH ⁻ (aq)	
	$2[Au(CN)_2]^-(aq) + Zn(s) \rightarrow 2Au(s) + [Zn(CN)_4]^{2-}(aq)$	1
	(No marks will be deducted for not balancing)	
	NaCN leaches gold/NaCN acts as a leacing agent / complexing agent	1/
	Zn acts as reducing agent / Zn displaces gold.	1/2
16	(a) The comparatively high value for Mn shows that $Mn^{2+}(d^5)$ is particularly	1
	stable / Much larger third ionisation energy of Mn (where the required change is from	

		ř.
	d^5 to d^4)	
	(b)Due to higher number of unpaired electrons.	1
	(c)Absence of unpaired d- electron in Sc ³⁺ whereas in Ti ³⁺ there is one unpaired	1
	electron or Ti ³⁺ shows d-d transition.	
17		1
	(a) (i) / OH	
	(b)	1
	CH _a	
		1
	(c)	3.55
	CH ₂	
	or V	V 7
18	(a)	
10	A= CH ₃ CH ₂ CH ₂ CHO	1/
	B = CH ₃ COCH ₂ CH ₃	1/2
	C= (CH ₃) ₂ CHCHO	1/2
	D= CH ₃ CH ₂ CH ₃	1/2
	(b) B	1/2
		1
19.		
	(i)	
	OH	1
	CH, C-OCH,	(A)
		1
	(ii) C ₆ H ₅ CH(OH)CH ₃	1
		1
	(iii) C ₂ H ₅ I + C ₆ H ₅ OH (No splitting of marks)	L
20.	a) To impart antiseptic properties	1
20.	b) 2-3% solution of iodine in alcohol – water mixture / iodine dissolved in	10000
	alcohol, used as an antiseptic/ applied on wounds.	1/2, 1/2
	c) Sodium benzoate / Aspartame	1
21	(a)Carbohydrates that give large number of monosaccharide units on hydrolysis /	1/2
V 200-00- 0	large number of monosaccharides units joined together by glycosidic linkage	10.50
	Starch/ glycogen/ cellulose (or any other)	1/2
	(b)Proteins that lose their biological activity / proteins in which secondary and	1/2
	tertiary structures are destroyed	CONTRACTOR
	Curdling of milk (or any other)	1/2
	(c)Amino acids which cannot be synthesised in the body.	1/2
	Valine / Leucine (or any other)	1/2
1	OR	
21	(a)Saccharic acid / COOH-(CHOH) ₄ -COOH	1
	(b)Due to the presence of carboxyl and amino group in the same molecule / due to	1
	formation of zwitter ion or dipolar ion.	
	(c) α - helix has intramolecular hydrogen bonding while β pleated has intermolecular	1
	hydrogen bonding / α - helix results due to regular coiling of polypeptide chains	10000
anne e con	while in β pleated all polypeptide chains are stretched and arranged side by side.	700.0
	(a) Fe ₄ [Fe (CN) ₆] ₃	1
22		I I service
22	(b) Ionisation isomerism	1
22	(b) Ionisation isomerism (c) sp ³ d ² , 4	1 1/2, 1/2
22		1950 ma

	(b) Low density polythene is highly branched while high density polythene is linear. (c) As it is non-biodegradable.	1 1
	(d) Which can be degraded by microorganisms, eg PHBV(or any other correct example)	1/2,1/2
24	a) (i) In +3 oxidation state of phosphorus tends to disproportionate to higher and lower oxidation states / Oxidation state of P in H ₃ PO ₃ is +3 so it undergoes disproportionation but in H ₃ PO ₄ it is +5 which is the highest oxidation state, so it	1
	cannot. (ii) F cannot show positive oxidation state as it has highest electronegativity/	1
	Because Fluorine cannot expand its covalency / As Fluorine is a small sized atom, it cannot pack three large sized Cl atoms around it. (iii) Oxygen has multiple bonding whereas sulphur shows catenation / Due to	1
	$p\pi$ - $p\pi$ bonding in oxygen whereas sulphur does not / Oxygen is diatomic therefore held by weak intermolecular force while sulphur is polyatomic held by	
	strong intermolecular forces. b) (i) (ii)	,
	B B	1, 1
	OR	
24	a) (i) $A = NO_2$, $B = N_2O_4$ (ii)	1/2, 1/2
		1/2,1/2
	(iii) Because NO ₂ dimerises to N ₂ O ₄ / NO ₂ is an odd electron species.	1
	b) HI > HBr > HCl > HF	1
	c) $XeF_4 + SbF_5 \rightarrow [XeF_3]^+ [SbF_6]^-$	1
25	(a) $Sn + 2 H^+ \rightarrow Sn^{2+} + H_2$ (Equation must be balanced)	1
	$E = E^{\circ} - \frac{0.059}{2} \log \frac{[Sn^{2+}]}{[H^{+}]^{2}}$	1/2
	$= [0 - (-0.14)] - 0.0295 \log \frac{(0.004)}{(0.02)^2}$	1/2
	= 0.14 - 0.0295 log 10 = 0.11 V / 0.1105 V	1
	(b) (i) Due to overpotential/ Overvoltage of O₂(ii) The number of ions per unit volume decreases.	1
	OR	A TOTAL
25	a) $\Delta G^{\circ} = -nFE^{\circ}$ -43600 = -2 × 96500 × E°	1/2
	$E^{\circ} = 0.226 \text{ V}$ $E = E^{\circ} - 0.059/2 \log \left([H^{+}]^{2} [C^{-}]^{2} / [H_{2}] \right)$	1/2
	$= 0.226 - 0.059/2 \log \left([H] [G] / [H_2] \right)$ $= 0.226 - 0.059/2 \log \left[(0.1)^2 \times (0.1)^2 \right] / 1$ $= 0.226 - 0.059 / 2 \log 10^{-4}$	1/2
	- 0.220 - 0.039/2 log[(0.1) ^(0.1)]/ 1	1/2

	= 0.226 + 0.118 = 0.344 V (Deduct half mark if unit is wrong or not written)	1
	b) Cells that convert the energy of combustion of fuels (like hydrogen, methane, methanol, etc.) directly into electrical energy are called fuel cells. Advantages: High efficiency, non polluting (or any other suitable advantage)	1/2 ,1/2
26	(a)(i) Ar/ R-CONH ₂ + Br ₂ + 4 NaOH \rightarrow Ar/ R-NH ₂ + 2NaBr + Na ₂ CO ₃ + 2 H ₂ O (ii)	1
	$C_6H_5NH_2 + NaNO_2 + 2HCI \xrightarrow{273-278K} C_6H_5 \stackrel{\bar{N_2}}{N_2} \stackrel{\bar{Cl}}{Cl} + NaCI + 2H_2O$	1
	(or any other correct equation)	
	$ \begin{array}{c c} & O \\ & O \\$	>
	$ \begin{array}{c c} O \\ C \\ N - R \end{array} $ $ \begin{array}{c c} N - R \end{array} $ $ \begin{array}{c c} N - R \end{array} $ $ \begin{array}{c c} O \\ C \\ C \\ O \\ O \\ Na' \end{array} $ $ \begin{array}{c c} + R - NH_{2} \end{array} $	1
	(b)(i)Because of the combined factors of inductive effect and solvation or hydration effect	1
	(ii)Due to resonance stabilisation or structural representation / resonating structures.	1
	OR	
26	(a) (i) C ₆ H ₅ NHCOCH ₃	1
	(ii) C ₆ H ₅ SO ₂ N(CH ₃) ₂	1
	(iii) C ₆ H ₆	1
	(b) Add chloroform in the presence of KOH and heat , Aniline gives a offensive smell while N,N dimethylaniline does not. (or any other correct test)	1
	$(c)C_2H_5NH_2 < C_6H_5NHCH_3 < C_6H_5NH_2$	