NCERT Solution for Class 9 Science - Chapter 3 Atoms and Molecules

Exercise-3.1

1. In a reaction, 5.3 g of sodium carbonate reacted with 6 g of acetic acid. The products were 2.2 g of carbon dioxide, 0.9 g water and 8.2 g of sodium acetate. Show that these observations are in agreement with the law of conservation of mass.
Sodium carbonate + acetic acid \rightarrow Sodium acetate + carbon dioxide + water
Solution:
Sodium carbonate + acetic acid \rightarrow Sodium acetate + carbon dioxide + water
5.3 g
6 g
8.2 g
2.2 g
0.9 g

As per the law of conservation of mass, the total mass of reactants must be equal to the total mass of products

As per the above reaction, $\mathrm{LHS}=$ RHS i.e., $5.3 \mathrm{~g}+6 \mathrm{~g}=2.2 \mathrm{~g}+0.9 \mathrm{~g}+8.2 \mathrm{~g}=11.3 \mathrm{~g}$
Hence the observations are in agreement with the law of conservation of mass.
2. Hydrogen and oxygen combine in the ratio of $1: 8$ by mass to form water. What mass of oxygen gas would be required to react completely with 3 g of hydrogen gas?

Solution:

We know hydrogen and water mix in the ratio 1: 8 .
For every 1 g of hydrogen, it is 8 g of oxygen.
Therefore, for 3 g of hydrogen, the quantity of oxygen $=3 \times 8=24 \mathrm{~g}$
Hence, 24 g of oxygen would be required for the complete reaction with 3 g of hydrogen gas.
3. Which postulate of Dalton's atomic theory is the result of the law of conservation of mass?

Solution:
The postulate of Dalton's Atomic theory which is a result of the law of conservation of mass is,
"Atoms can neither be created nor destroyed".

NCERT Solution for Class 9 Science - Chapter 3 Atoms and Molecules

4. Which postulate of Dalton's atomic theory can explain the law of definite proportions? Solution:

The postulate of Dalton's atomic theory that can explain the law of definite proportions is - the relative number and kinds of atoms are equal in given compounds.

Exercise-3.2

5. Define the atomic mass unit?

Solution:
An atomic mass unit is a unit of mass used to express weights of atoms and molecules where one atomic mass is equal to $1 / 12$ th the mass of one carbon- 12 atom.
6. Why is it not possible to see an atom with naked eyes?

Solution:
Firstly, atoms are miniscule in nature, measured in nanometers. Secondly, except for atoms of noble gasses, they do not exist independently. Hence, an atom cannot be visible to the naked eyes.

Exercise-3.3-3.4

7. Write down the formulae of
(i) sodium oxide
(ii) aluminium chloride
(iii) sodium sulphide (iv) magnesium hydroxide

Solution:

NCERT Solution for Class 9 Science - Chapter 3 Atoms and Molecules

The following are the formulae:
(i) sodium oxide - $\mathrm{Na}_{2} \mathrm{O}$
(ii) aluminium chloride $-\mathrm{AlCl}_{3}$
(iii) sodium sulphide - $\mathrm{Na}_{2} \mathrm{~S}$
(iv) magnesium hydroxide $-\mathrm{Mg}(\mathrm{OH})_{2}$
8. Write down the names of compounds represented by the following formulae:
(i) $\mathbf{A l}_{2}\left(\mathbf{S O}_{4}\right)_{3}$
(ii) $\mathbf{C a C l}_{\mathbf{2}}$
(iii) $\mathrm{K}_{2} \mathrm{SO}_{4}$
(iv) KNO_{3}
(v) CaCO_{3}.

Solution:

Listed below are the names of the compounds for each of the following formulae
(i) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ - Aluminium sulphate
(ii) CaCl_{2} - Calcium chloride
(iii) $\mathrm{K}_{2} \mathrm{SO}_{4}$ - Potassium sulphate
(iv) KNO_{3} - Potassium nitrate
(v) CaCO_{3} - Calcium carbonate
9. What is meant by the term chemical formula?

Solution:
Chemical formula is the symbolic representation of a chemical compound. For example: The chemical formula of hydrochloric acid is HCl .

NCERT Solution for Class 9 Science - Chapter 3 Atoms and Molecules

10. How many atoms are present in a

(i) $\mathrm{H}_{2} \mathrm{~S}$ molecule and
(ii) $\mathrm{PO}_{4}{ }^{\mathbf{3 -}} \mathrm{ion}$?

Solution:

The number of atoms present are as follows:
(i) $\mathrm{H}_{2} \mathrm{~S}$ molecule has 2 atoms of hydrogen and 1 atom of sulphur hence 3 atoms in totality.
(ii) $\mathrm{PO}_{4}{ }^{3-}$ ion has 1 atom of phosphorus and 4 atoms of oxygen hence 5 atoms in totality.

Exercise-3.5.1-3.5.2

11. Calculate the molecular masses of $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{OH}$.

Solution:

The following are the molecular masses:
The molecular mass of $\mathrm{H}_{2}-2 \mathrm{x}$ atoms atomic mass of $\mathrm{H}=2 \times 1 \mathrm{u}=2 \mathrm{u}$
The molecular mass of $\mathrm{O}_{2}-2 \mathrm{x}$ atoms atomic mass of $\mathrm{O}=2 \times 16 \mathrm{u}=32 \mathrm{u}$

The molecular mass of $\mathrm{Cl}_{2}-2 \mathrm{x}$ atoms atomic mass of $\mathrm{Cl}=2 \times 35.5 \mathrm{u}=71 \mathrm{u}$
The molecular mass of CO_{2} - atomic mass of $\mathrm{C}+2 \mathrm{x}$ atomic mass of $\mathrm{O}=12+(2 \mathrm{x} 16) \mathrm{u}=44 \mathrm{u}$
The molecular mass of CH_{4} - atomic mass of $\mathrm{C}+4 \mathrm{x}$ atomic mass of $\mathrm{H}=12+(4 \times 1) u=16 u$
The molecular mass of $\mathrm{C}_{2} \mathrm{H}_{6}-2 \mathrm{x}$ atomic mass of $\mathrm{C}+6 \times$ atomic mass of $\mathrm{H}=(2 \times 12)+$
$(6 \times 1) u=24+6=30 u$
The molecular mass of $\mathrm{C}_{2} \mathrm{H}_{4}-2 \mathrm{x}$ atomic mass of $\mathrm{C}+4 \mathrm{x}$ atomic mass of $\mathrm{H}=(2 \mathrm{x} 12)+$ $(4 \times 1) u=24+4=28 u$

The molecular mass of NH_{3} - atomic mass of $\mathrm{N}+3 \times$ atomic mass of $\mathrm{H}=(14+3 \times 1) \mathrm{u}=17 \mathrm{u}$

NCERT Solution for Class 9 Science - Chapter 3 Atoms and Molecules

The molecular mass of $\mathrm{CH}_{3} \mathrm{OH}$ - atomic mass of $\mathrm{C}+3 \mathrm{x}$ atomic mass of $\mathrm{H}+$ atomic mass of $\mathrm{O}+$ atomic mass of $\mathrm{H}=(12+3 \mathrm{x} 1+16+1) \mathrm{u}=(12+3+17) \mathrm{u}=32 \mathrm{u}$
12. Calculate the formula unit masses of $\mathrm{ZnO}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{CO}_{3}$, given atomic masses of $\mathbf{Z n}=65 \mathrm{u}$, Na $=23 \mathrm{u}, \mathrm{K}=39 \mathrm{u}, \mathrm{C}=12 \mathrm{u}$, and $\mathrm{O}=16 \mathrm{u}$.

Solution:
Given:
Atomic mass of $\mathrm{Zn}=65 \mathrm{u}$

Atomic mass of $\mathrm{Na}=23 \mathrm{u}$
Atomic mass of $K=39 u$
Atomic mass of $\mathrm{C}=12 \mathrm{u}$
Atomic mass of $\mathrm{O}=16 \mathrm{u}$
The formula unit mass of $\mathrm{ZnO}=$ Atomic mass of $\mathrm{Zn}+$ Atomic mass of $\mathrm{O}=65 \mathrm{u}+16 \mathrm{u}=81 \mathrm{u}$
The formula unit mass of $\mathrm{Na}_{2} \mathrm{O}=2 \times$ Atomic mass of $\mathrm{Na}+$ Atomic mass of $\mathrm{O}=(2 \times 23) \mathrm{u}$ $+16 u=46 u+16 u=62 u$

Exercise-3.5.3

13. If one mole of carbon atoms weighs 12 grams , what is the mass (in grams) of 1 atom of carbon?

Solution:
Given: 1 mole of carbon weighs 12 g
1 mole of carbon atoms $=6.022 \times 10^{23}$
Molecular mass of carbon atoms $=12 \mathrm{~g}=$ an atom of carbon mass
Hence, mass of 1 carbon atom $=12 / 6.022 \times 10^{23}=1.99 \times 10^{-23} \mathrm{~g}$
14. Which has more number of atoms, 100 grams of sodium or 100 grams of iron (given, atomic mass of $\mathrm{Na}=23 \mathrm{u}, \mathrm{Fe}=56 \mathrm{u}$)?

NCERT Solution for Class 9 Science - Chapter 3 Atoms and Molecules

Solution:
Given: Atomic mass of $\mathrm{Na}=23 \mathrm{u}$, Atomic mass of $\mathrm{Fe}=56 \mathrm{u}$

To calculate the number of atoms in 100 g of sodium:
23 g of Na contains $=6.022 \times 10^{23}$ atoms
1 g of Na contains $=6.022 \times 10^{23}$ atoms $/ 23$
100 g of Na contains $=6.022 \times 10^{23}$ atoms $\times 100 / 23$

$$
=2.6182 \times 10^{24} \text { atoms }
$$

To calculate the number of atoms in 100 g of sodium:
56 g of Fe contains $=6.022 \times 10^{23}$ atoms
1 g of Fe contains $=6.022 \times 10^{23}$ atoms $/ 56$
100 g of Fe contains $=6.022 \times 10^{23}$ atoms $\times 100 / 56$

$$
=1.075 \times 10^{24} \text { atoms }
$$

Hence, through comparison, it is evident that 100 g of Na has more atoms.

Exercise

1. A 0.24 g sample of compound of oxygen and boron was found by analysis to contain 0.096 g of boron and 0.144 g of oxygen. Calculate the percentage composition of the compound by weight.

Solution:
Given: Mass of the sample compound $=0.24 \mathrm{~g}$, mass of boron $=0.096 \mathrm{~g}$, mass of oxygen $=0.144 \mathrm{~g}$
To calculate percentage composition of the compound:
Percentage of boron $=$ mass of boron $/$ mass of the compound $\times 100$

$$
=0.096 \mathrm{~g} / 0.24 \mathrm{~g} \mathrm{x} 100=40 \%
$$

NCERT Solution for Class 9 Science - Chapter 3 Atoms and Molecules

$$
\begin{aligned}
\text { Percentage of oxygen } & =100-\text { percentage of boron } \\
& =100-40=60 \%
\end{aligned}
$$

2. When 3.0 g of carbon is burnt in 8.00 g of oxygen, 11.00 g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00 g of carbon is burnt in 50.00 g of oxygen?
Which law of chemical combination will govern your answer?

Solution:

11.00 g of carbon dioxide is formed when 3.00 g carbon is burnt in 8.00 g of oxygen.

Carbon and oxygen are combined in the ratio 3:8 to give carbon dioxide using up all the carbon and oxygen

Hence, for 3 g of carbon and 50 g of oxygen, 8 g of oxygen is used and 11 g of carbon is formed, the left oxygen is unused i.e., $50-3=47 \mathrm{~g}$ of oxygen is unused.

This depicts the law of definite proportions - The combining elements in compounds are present in definite proportions by mass.
3. What are polyatomic ions? Give examples.

Solution:
Polyatomic ions are ions that contain more than one atom but they behave as a single unit Example:
$\mathrm{CO}_{3}{ }^{2-}, \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
4. Write the chemical formula of the following.
(a) Magnesium chloride
(b) Calcium oxide
(c) Copper nitrate

NCERT Solution for Class 9 Science - Chapter 3 Atoms and Molecules

(d) Aluminium chloride
(e) Calcium carbonate

Solution:

The following are the chemical formula of the above-mentioned list:
(a) Magnesium chloride $-\mathrm{MgCl}_{2}$
(b) Calcium oxide - CaO
(c) Copper nitrate $-\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
(d) Aluminium chloride - AlCl_{3}
(e) Calcium carbonate $-\mathrm{CaCO}_{3}$
5. Give the names of the elements present in the following compounds.
(a) Quick lime
(b) Hydrogen bromide
(c) Baking powder (d) Potassium sulphate.

Solution:
The following are the names of the elements present in the following compounds:
(a) Quick lime - Calcium and oxygen (CaO)
(b) Hydrogen bromide - Hydrogen and bromine (HBr)
(c) Baking powder - Sodium, Carbon, Hydrogen, Oxygen $\left(\mathrm{NaHCO}_{3}\right)$
(d) Potassium sulphate - Sulphur, Oxygen, Potassium $\left(\mathrm{K}_{2} \mathrm{SO}_{4}\right)$
6. Calculate the molar mass of the following substances.

NCERT Solution for Class 9 Science - Chapter 3 Atoms and Molecules

(a) Ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}$
(b) Sulphur molecule, S_{8}
(c) Phosphorus molecule, \mathbf{P}_{4} (Atomic mass of phosphorus $=\mathbf{3 1}$)
(d) Hydrochloric acid, HCl
(e) Nitric acid, HNO_{3}

Solution:

Listed below is the molar mass of the following substances:
(a) Molar mass of Ethyne $\mathrm{C}_{2} \mathrm{H}_{2}=2 \times$ Mass of $\mathrm{C}+2 \times$ Mass of $\mathrm{H}=(2 \times 12)+(2 \times 1)=24+2=26 \mathrm{~g}$
(b) Molar mass of Sulphur molecule $\mathrm{S}_{8}=8 \times$ Mass of $\mathrm{S}=8 \times 32=256 \mathrm{~g}$
(c) Molar mass of Phosphorus molecule, $\mathrm{P}_{4}=4 \times$ Mass of $\mathrm{P}=4 \times 31=124 \mathrm{~g}$
(d) Molar mass of Hydrochloric acid, $\mathrm{HCl}=$ Mass of $\mathrm{H}+$ Mass of $\mathrm{Cl}=1+35.5=36.5 \mathrm{~g}$
(e) Molar mass of Nitric acid, $\mathrm{HNO}_{3}=$ Mass of $\mathrm{H}+$ Mass of Nitrogen $+3 x$ Mass of $\mathrm{O}=1+14+$ $3 \times 16=63 \mathrm{~g}$
7. What is the mass of -
(a) $\mathbf{1}$ mole of nitrogen atoms?
(b) 4 moles of aluminium atoms((Atomic mass of aluminium $=\mathbf{2 7}$)?
(c) $\mathbf{1 0}$ moles of sodium sulphite $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$?

Solution:

The mass of the above mentioned list is as follows:
(a) Atomic mass of nitrogen atoms $=14 \mathrm{u}$

Mass of 1 mole of nitrogen atoms= Atomic mass of nitrogen atoms

NCERT Solution for Class 9 Science - Chapter 3 Atoms and Molecules

Therefore, mass of 1 mole of nitrogen atom is 14 g
(b) Atomic mass of aluminium $=27 \mathrm{u}$

Mass of 1 mole of aluminium atoms $=27 \mathrm{~g}$
1 mole of aluminium atoms $=27 \mathrm{~g}, 4$ moles of aluminium atoms $=4 \times 27=108 \mathrm{~g}$
(c) Mass of 1 mole of sodium sulphite $\mathrm{Na}_{2} \mathrm{SO}_{3}=$ Molecular mass of sodium sulphite $=2 \times$ Mass of $\mathrm{Na}+$ Mass of $\mathrm{S}+3 \times$ Mass of $\mathrm{O}=(2 \times 23)+32+(3 \times 16)=46+32+48=126 \mathrm{~g}$

Therefore, mass of 10 moles of $\mathrm{Na}_{2} \mathrm{SO}_{3}=10 \times 126=1260 \mathrm{~g}$

8. Convert into mole.

(a) 12 g of oxygen gas
(b) 20 g of water
(c) 22 g of carbon dioxide

Solution:

Conversion of the above-mentioned molecules into moles is as follows:
(a) Given: Mass of oxygen gas $=12 \mathrm{~g}$

Molar mass of oxygen gas $=2$ Mass of Oxygen $=2 \times 16=32 \mathrm{~g}$
Number of moles $=$ Mass given $/$ molar mass of oxygen gas $=12 / 32=0.375$ moles
(b) Given: Mass of water $=20 \mathrm{~g}$

Molar mass of water $=2 \times$ Mass of Hydrogen + Mass of Oxygen $=2 \times 1+16=18 \mathrm{~g}$
Number of moles $=$ Mass given $/$ molar mass of water

$$
=20 / 18=1.11 \text { moles }
$$

(c) Given: Mass of carbon dioxide $=22 \mathrm{~g}$

Molar mass of carbon dioxide $=$ Mass of $C+2$ x Mass of Oxygen $=12+2 \times 16=12+32=44 \mathrm{~g}$
Number of moles $=$ Mass given $/$ molar mass of carbon dioxide $=22 / 44=0.5$ moles

NCERT Solution for Class 9 Science - Chapter 3 Atoms and Molecules

9. What is the mass of:

(a) $\mathbf{0 . 2}$ mole of oxygen atoms?
(b) 0.5 mole of water molecules?

Solution:
The mass is as follows:
(a) Mass of 1 mole of oxygen atoms $=16 \mathrm{u}$, hence it weighs 16 g

Mass of 0.2 moles of oxygen atoms $=0.2 \times 16=3.2 \mathrm{u}$
(b) Mass of 1 mole of water molecules $=18 \mathrm{u}$, hence it weighs 18 g

Mass of 0.5 moles of water molecules $=0.5 \times 18=9 \mathrm{u}$
10. Calculate the number of molecules of sulphur (S_{8}) present in 16 g of solid sulphur.

Solution:

To calculate molecular mass of sulphur:
Molecular mass of Sulphur $\left(\mathrm{S}_{8}\right)=8 \mathrm{xMass}$ of Sulphur $=8 \mathrm{x} 32=256 \mathrm{~g}$
Mass given $=16 \mathrm{~g}$
Number of moles $=$ mass given $/$ molar mass of sulphur

$$
=16 / 256=0.0625 \text { moles }
$$

To calculate the number of molecules of sulphur in 16 g of solid sulphur:
Number of molecules $=$ Number of moles x Avogadro number

$$
\begin{aligned}
& =0.0625 \times 6.022 \times 10^{23} \text { molecules } \\
& =3.763 \times 10^{22} \text { molecules }
\end{aligned}
$$

NCERT Solution for Class 9 Science - Chapter 3 Atoms and Molecules

11. Calculate the number of aluminium ions present in 0.051 g of aluminium oxide.

(Hint: The mass of an ion is the same as that of an atom of the same element. Atomic mass of $\mathrm{Al}=$ 27u)

Solution:

To calculate the number of aluminium ions in 0.051 g of aluminium oxide:
1 mole of aluminium oxide $=6.022 \times 10^{23}$ molecules of aluminium oxide

1 mole of aluminium oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)=2 \mathrm{x}$ Mass of aluminium $+3 \times$ Mass of Oxygen

$$
=(2 \times 27)+(3 \times 16)=54+48=102 \mathrm{~g}
$$

1 mole of aluminium oxide $=102 \mathrm{~g}=6.022 \times 10^{23}$ molecules of aluminium oxide
Therefore, 0.051 g of aluminium oxide has $=0.051 \times 6.022 \times 10^{23} / 102$

$$
=3.011 \times 10^{20} \text { molecules of aluminium oxide }
$$

One molecule of aluminium oxide has 2 aluminium ions, hence number of aluminium ions present in 0.051 g of aluminium oxide $=2 \times 3.011 \times 10^{20}$ molecules of aluminium oxide $=$ 6.022×10^{20}

