NCERT Solutions for Class 11 Maths Chapter 6
Linear Inequalities

1. Solve $24 x$ < 100 , when (i) x is a natural number.
(ii) x is an integer.

Solution:

(i) Given that $24 x<100$

Now we have to divide the inequality by 24 then we get $x<25 / 6$
Now when x is a natural integer then
It is clear that the only natural number less than $25 / 6$ are $1,2,3,4$.
Thus, $1,2,3,4$ will be the solution of the given inequality when x is a natural number. Hence $\{1,2,3,4\}$ is the solution set.
(ii) Given that $24 x<100$

Now we have to divide the inequality by 24 then we get $x<25 / 6$ now when x is an integer then
It is clear that the integer number less than $25 / 6$ are...-1, $0,1,2,3,4$.
Thus, solution of $24 x<100$ are..., $-1,0,1,2,3,4$, when x is an integer. Hence $\{\ldots,-1,0,1,2,3,4\}$ is the solution set.
2. Solve-12x > 30, when (i) x is a natural number.
(ii) x is an integer.

Solution:

(i) Given that, $-12 x>30$

Now by dividing the inequality by -12 on both sides we get, $x<-5 / 2$
When x is a natural integer then
It is clear that there is no natural number less than $-2 / 5$ because $-5 / 2$ is a negative number and natural numbers are positive numbers.
Therefore there would be no solution of the given inequality when x is a natural number.
(ii) Given that, $-12 x>30$

Now by dividing the inequality by -12 on both sides we get, $x<-5 / 2$
When x is an integer then
It is clear that the integer number less than $-5 / 2$ are..., $-5,-4,-3$ Thus, solution of $-12 x>30$ is $\ldots,-5,-4,-3$, when x is an integer. Therefore the solution set is $\{\ldots,-5,-4,-3\}$

3. Solve $5 x-3<7$, when

(i) x is an integer
(ii) x is a real number

Solution:

(i) Given that, $5 x-3<7$

Now by adding 3 both side we get,
$5 x-3+3<7+3$
Above inequality becomes
$5 x<10$
Again by dividing both sides by 5 we get,
$5 x / 5<10 / 5$
$\mathrm{x}<2$
When x is an integer then
It is clear that that the integer number less than 2 are..., $-2,-1,0,1$.
Thus, solution of $5 x-3<7$ is ..., $-2,-1,0,1$, when x is an integer. Therefore the solution set is $\{\ldots,-2,-1,0,1\}$
(ii) Given that, $5 x-3<7$

Now by adding 3 both side we get,
$5 x-3+3<7+3$
Above inequality becomes
$5 x<10$
Again by dividing both sides by 5 we get,
$5 x / 5<10 / 5$
$\mathrm{x}<2$
When x is a real number then

NCERT Solutions for Class 11 Maths Chapter 6 Linear Inequalities

It is clear that the solutions of $5 x-3<7$ will be given by $x<2$ which states that all the real numbers that are less than 2 . Hence the solution set is $x \in(-\infty, 2)$
4. Solve $3 x+8>2$, when
(i) x is an integer.
(ii) x is a real number.

Solution:

(i) Given that, $3 x+8>2$

Now by subtracting 8 from both sides we get,
$3 x+8-8>2-8$
The above inequality becomes,
$3 x>-6$
Again by dividing both sides by 3 we get,
$3 x / 3>-6 / 3$
Hence $x>-2$
When x is an integer then
It is clear that the integer number greater than -2 are $-1,0,1,2, \ldots$
Thus, solution of $3 x+8>2$ is $-1,0,1,2, \ldots$ when x is an integer. Hence the solution set is $\{-1,0,1,2, \ldots\}$
(ii) Given that, $3 x+8>2$

Now by subtracting 8 from both sides we get,
$3 x+8-8>2-8$
The above inequality becomes,
$3 x>-6$
Again by dividing both sides by 3 we get,
$3 x / 3>-6 / 3$
Hence $x>-2$
When x is a real number.
It is clear that the solutions of $3 x+8>2$ will be given by $x>-2$ which states that all the real numbers that are greater than -2 . Therefore the solution set is $x \in(-2, \infty)$

Solve the inequalities in Exercises 5 to 16 for real x.

5. $4 x+3<5 x+7$

Solution:

Given that, $4 x+3<5 x+7$
Now by subtracting 7 from both the sides, we get
$4 x+3-7<5 x+7-7$
The above inequality becomes,
$4 x-4<5 x$
Again by subtracting $4 x$ from both the sides,
$4 x-4-4 x<5 x-4 x x$
>-4
\therefore The solutions of the given inequality are defined by all the real numbers greater than 4.

Required solution set is $(-4, \infty)$
6. $3 x-7>5 x-1$

Solution:

Given that,
$3 x-7>5 x-1$
Now by adding 7 to both the sides, we get
$3 x-7+7>5 x-1+7$
$3 x>5 x+6$
Again by subtracting $5 x$ from both the sides,
$3 x-5 x>5 x+6-5 x$
$-2 x>6$
Dividing both sides by -2 to simplify we get
$-2 x /-2<6 /-2 x$
<-3
\therefore The solutions of the given inequality are defined by all the real numbers less than -3 .
Hence the required solution set is $(-\infty,-3)$
7. $3(x-1) \leq 2(x-3)$

Solution:

Given that, $3(x-1) \leq 2(x-3)$
By multiplying above inequality can be written as
$3 x-3 \leq 2 x-6$
Now by adding 3 to both the sides, we get
$3 x-3+3 \leq 2 x-6+3$
$3 x \leq 2 x-3$
Again by subtracting $2 x$ from both the sides,
$3 x-2 x \leq 2 x-3-2 x x$
≤-3
Therefore the solutions of the given inequality are defined by all the real numbers less than or equal to - 3 .
Hence the required solution set is $(-\infty,-3]$
8. $3(2-x) \geq 2(1-x)$

Solution:

Given that, $3(2-x) \geq 2(1-x)$
By multiplying we get
$6-3 x \geq 2-2 x$
Now by adding $2 x$ to both the sides,
$6-3 x+2 x \geq 2-2 x+2 x$
$6-x \geq 2$
Again by subtracting 6 from both the sides, we get
$6-x-6 \geq 2-6$
$-x \geq-4$
Multiplying throughout inequality by negative sign we get x
≤ 4
\therefore The solutions of the given inequality are defined by all the real numbers greater than or equal to 4.
Hence the required solution set is $(-\infty, 4]$
9. $x+x / 2+x / 3<11$

Solution:
Given that,
$x+\frac{x}{2}+\frac{x}{3}<11$
By taking x as common then we get
$x\left(1+\frac{1}{2}+\frac{1}{3}\right)<11$
By taking LCM
$x\left(\frac{6+3+2}{2}\right)<11$
$\frac{11 x}{6}<11$
Dividing by 11 on both sides,
$\frac{11 \mathrm{x}}{6 \times 11}<\frac{11}{11}$
$\frac{x}{6}<1$
$x<6$
The solutions of the given inequality are defined by all the real numbers less than 6 .
Hence the solution set is $(-\infty, 6)$
10. $x / 3>x / 2+1$

Solution:

Given that,
$\frac{x}{3}>\frac{x}{2}+1$
On rearranging and by taking LCM we get
$\left(\frac{2 \mathrm{x}-3 \mathrm{x}}{6}\right)>1$
$-x / 6>1$
$-x>6 x$
<-6
\therefore The solutions of the given inequality are defined by all the real numbers less than - 6 .
Hence the required solution set is $(-\infty,-6)$
11. $3(x-2) / 5 \leq 5(2-x) / 3$

Solution:

Given that,
$\frac{3(x-2)}{5} \leq \frac{5(2-x)}{3}$
Now by cross - multiplying the denominators, we get
$9(x-2) \leq 25(2-x) 9 x$
$-18 \leq 50-25 x$
Now adding $25 x$ both the sides,
$9 x-18+25 x \leq 50-25 x+25 x$
$34 x-18 \leq 50$
Adding $25 x$ both the sides,
$34 x-18+18 \leq 50+18$
$34 x \leq 68$
Dividing both sides by 34 ,
$34 x / 34 \leq 68 / 34$
$x \leq 2$
The solutions of the given inequality are defined by all the real numbers less than or equal to 2.
Required solution set is $(-\infty, 2]$
12. $\frac{1}{2}\left(\frac{3 x}{5}+4\right) \geq \frac{1}{3}(x-6)$

Solution:

Given that,
$\frac{1}{2}\left(\frac{3 x}{5}+4\right) \geq \frac{1}{3}(x-6)$
Now by cross - multiplying the denominators, we get
$3\left(\frac{3 x}{5}+4\right) \geq 2(x-6)$
Multiplying by 3 we get
$\left(\frac{9 x}{5}+12\right) \geq 2 x-12$
On rearranging, we get
$12+12 \geq 2 x-\frac{9 x}{5}$
$24 \geq \frac{10 x-9 x}{5}$
$24 \geq \frac{x}{5}$
$120 \geq x$
\therefore The solutions of the given inequality are defined by all the real numbers less than or equal to 120.
Thus, $(-\infty, 120]$ is the required solution set.
13.2 $2(2 x+3)-10<6(x-2)$

Solution:

Given that,
$2(2 x+3)-10<6(x-2)$
By multiplying we get
$4 x+6-10<6 x-12$
On simplifying we get
$4 x-4<6 x-12$
$-4+12<6 x-4 x$
$8<2 x$
$4<x$
\therefore The solutions of the given inequality are defined by all the real numbers greater than or equal to 4.
Hence the required solution set is $(4,-\infty)$
$14.37-(3 x+5) \geq 9 x-8(x-3)$

Solution:

Given that, $37-(3 x+5) \geq 9 x-8(x-3)$
On simplifying we get
$=37-3 x-5 \geq 9 x-8 x+24$
$=32-3 x \geq x+240 n$
rearranging
$=32-24 \geq x+3 x$
$=8 \geq 4 x$
$=2 \geq x$
All the real numbers of x which are less than or equal to 2 are the solutions of the given inequality
Hence, $(-\infty, 2]$ will be the solution for the given inequality
15. $\frac{x}{4}<\frac{(5 x-2)}{3}-\frac{(7 x-3)}{5}$

Solution:

Given,
$\frac{x}{4}<\frac{(5 x-2)}{3}-\frac{(7 x-3)}{5}=\frac{x}{4}<\frac{5(5 x-2)-3(7 x-3)}{15}$
On simplifying we get
$=\frac{x}{4}<\frac{25 x-10-21 x+9}{15}$
$=\frac{x}{4}<\frac{4 x-1}{15}$
$=15 \mathrm{x}<4(4 \mathrm{x}-1)$
$=15 x<16 x-4$
$=4<x$
All the real numbers of x which are greater than 4 are the solutions of the given inequality
Hence, $(4, \infty)$ will be the solution for the given inequality
16. $\frac{(2 x-1)}{3} \geq \frac{(3 x-2)}{4}-\frac{(2-x)}{5}$

Solution:

Given,

$$
\frac{(2 x-1)}{3} \geq \frac{(3 x-2)}{4}-\frac{(2-x)}{5}=\frac{(2 x-1)}{3} \geq \frac{5(3 x-2)-4(2-x)}{20}
$$

On rearranging we get

$$
=\frac{(2 x-1)}{3} \geq \frac{15 x-10-8+4 x}{20}
$$

$=\frac{(2 x-1)}{3} \geq \frac{19 x-18}{20}$
$=20(2 x-1) \geq 3(19 x-18)$
$=40 x-20 \geq 57 x-54$
$=-20+54 \geq 57 x-40 x$
$=34 \geq 17 x$

NCERT Solutions for Class 11 Maths Chapter 6 Linear Inequalities
$=2 \geq x$
\therefore All the real numbers of x which are less than or equal to 2 are the solutions of the given inequality
Hence, $(-\infty, 2]$ will be the solution for the given inequality
Solve the inequalities in Exercises 17 to 20 and show the graph of the solution in each case on number line.
17.3x-2<2x+1

Solution:

Given,
$3 x-2<2 x+1$
Solving the given inequality, we get
$3 x-2<2 x+1$
$=3 x-2 x<1+2$
$=x<3$
Now, the graphical representation of the solution is as follows:

$18.5 x-3 \geq 3 x-5$

Solution:

We have,
$5 x-3 \geq 3 x-5$
Solving the given inequality, we get
$5 x-3 \geq 3 x-5$
On rearranging we get
$=5 x-3 x \geq-5+3$
On simplifying
$=2 x \geq-2$
Now divide by 2 on both sides we get
$=x \geq-1$

The graphical representation of the solution is as follows:

$$
-1 \leq x
$$

19.3(1-x)<2(x+4)

Solution:

Given,
$3(1-x)<2(x+4)$
Solving the given inequality, we get
$3(1-x)<2(x+4)$
Multiplying we get
$=3-3 x<2 x+8$
On rearranging we get
$=3-8<2 x+3 x$
$=-5<5 x$
Now by dividing 5 on both sides we get
$-5 / 5<5 x / 5$
$=-1<x$
Now, the graphical representation of the solution is as follows:

Solution:

Given,

$$
\frac{x}{2} \geq \frac{(5 x-2)}{3}-\frac{(7 x-3)}{5}
$$

Solving the given inequality, we get

$$
\frac{x}{2} \geq \frac{5(5 x-2)-3(7 x-3)}{15}
$$

On computing we get

$$
\begin{aligned}
& =\frac{x}{2} \geq \frac{25 x-10-21 x+9}{15} \\
& =\frac{x}{2} \geq \frac{4 x-1}{15}
\end{aligned}
$$

On computing we get
$=\frac{x}{2} \geq \frac{25 x-10-21 x+9}{15}$
$=\frac{x}{2} \geq \frac{4 x-1}{15}$
$=15 x \geq 2(4 x-1)$
$=15 x \geq 8 x-2$
$=15 x-8 x \geq 8 x-2-8 x$
$=7 x \geq-2$
$=x \geq-2 / 7$
Now, the graphical representation of the solution is as follows:

21. Ravi obtained 70 and 75 marks in first two unit test. Find the minimum marks he should get in the third test to have an average of at least $\mathbf{6 0}$ marks.

Solution:

Let us assume, x be the marks obtained by Ravi in his third unit test
According to question, the entire students should have an average of at least 60 marks $(70+75+x) / 3 \geq 60$
$=145+x \geq 180$
$=x \geq 180-145=$
$x \geq 35$
Hence, all the students must obtain 35 marks in order to have an average of at least 60 marks
22. To receive Grade ' A ' in a course, one must obtain an average of 90 marks or more in five examinations (each of 100 marks). If Sunita's marks in first four examinations are $87,92,94$ and 95 , find minimum marks that Sunita must obtain in fifth examination to get grade ' A ' in the course.

Solution:

Let us assume Sunita scored x marks in her fifth examination
Now, according to the question in order to receive A grade in the course she must have to obtain average 90 marks or more in her five examinations
$(87+92+94+95+x) / 5 \geq 90$
$=(368+x) / 5 \geq 90$
$=368+x \geq 450$
$=x \geq 450-368=$
$x \geq 82$
Hence, she must have to obtain 82 or more marks in her fifth examination
23. Find all pairs of consecutive odd positive integers both of which are smaller than 10 such that their sum is more than 11.

Solution:

Let us assume x be the smaller of the two consecutive odd positive integers $:$
Other integer is $=x+2$
It is also given in the question that, both the integers are smaller than $10 \therefore$
$x+2<10$
$x<8$... (i)
Also, it is given in the question that sum off two integers is more than 11
$\therefore \mathrm{x}+(\mathrm{x}+2)>112 \mathrm{x}+2>11$
$x>9 / 2 x>4.5 \ldots$ (ii)

Thus, from (i) and (ii) we have x is an odd integer and it can take values 5 and 7 Hence, possible pairs are $(5,7)$ and $(7,9)$
24. Find all pairs of consecutive even positive integers, both of which are larger than 5 such that their sum is less than 23.Solution:
Let us assume x be the smaller of the two consecutive even positive integers :.
Other integer $=x+2$
It is also given in the question that, both the integers are larger than $5 .:$
$x>5$
Also, it is given in the question that the sum of two integers is less than 23.
$\therefore \mathrm{x}+(\mathrm{x}+2)<23$
$2 x+2<23 x<$
21/2
$x<10.5$.... (ii)
Thus, from (i) and (ii) we have x is an even number and it can take values 6,8 and 10 Hence, possible pairs are $(6,8),(8,10)$ and $(10,12)$.
25. The longest side of a triangle is $\mathbf{3}$ times the shortest side and the third side is $\mathbf{2 c m}$ shorter than the longest side. If the perimeter of the triangle is at least 61 cm , find the minimum length of the shortest side.

Solution:

Let us assume the length of the shortest side of the triangle be xcm. .
According to the question, length of the longest side $=3 \mathrm{xcm}$
And, length of third side $=(3 x-2) \mathrm{cm}$
As, the least perimeter of the triangle $=61 \mathrm{~cm}$
Thus, $x+3 x+(3 x-2) \mathrm{cm} \geq 61 \mathrm{~cm}$
$=7 x-2 \geq 61$
$=7 x \geq 63$
Now divide by 7 we get
$=7 x / 7 \geq 63 / 7$
$=x \geq 9$
Hence, the minimum length of the shortest side will be 9 cm
26. A man wants to cut three lengths from a single piece of board of length 91 cm . The second length is to be 3 cm longer than the shortest and the third length is to be twice as long as the shortest. What are the possible lengths of the shortest board if the third piece is to be at least 5 cm longer than the second?

Solution:

Let us assume the length of the shortest piece be xcm
\therefore According to the question, length of the second piece $=(x+3) \mathrm{cm}$
And, length of third piece $=2 \mathrm{xcm}$
As all the three lengths are to be cut from a single piece of board having a length of 91 cm
$\therefore \mathrm{x}+(\mathrm{x}+3)+2 \mathrm{x} \leq 91 \mathrm{~cm}$
$=4 x+3 \leq 91$
$=4 x \leq 88$
$=4 x / 4 \leq 88 / 4$
$=x \leq 22$... (i)
Also, it is given in the question that, the third piece is at least 5 cm longer than the second piece
$\therefore 2 \mathrm{x} \geq(\mathrm{x}+3)+5$
$2 x \geq x+8 x \geq 8$
... (ii)
Thus, from equation (i) and (ii) we have:
$8 \leq x \geq 22$
Hence, it is clear that the length of the shortest board is greater than or equal to 8 cm and less than or equal to 22 cm

NCERT Solutions for Class 11 Maths Chapter 6
Linear Inequalities

Solve the following inequalities graphically in two-dimensional plane:

1. $x+y<5$

Solution:

Given $x+y<5$
Consider

x	0	5
y	5	0

Now draw a dotted line $x+y=5$ in the graph $(\because x+y=5$ is excluded in the given question)
Now Consider $\mathrm{x}+\mathrm{y}<5$
Select a point (0,0)
$\Rightarrow 0+0<5$
$\Rightarrow 0<5$ (this is true)
\therefore Solution region of the given inequality is below the line $x+y=5$. (That is origin is included in the region) The graph is as follows:

NCERT Solutions for Class 11 Maths Chapter 6
 Linear Inequalities

2. $2 x+y \geq 6$

Solution:

Given $2 x+y \geq 6$
Now draw a solid line $2 x+y=6$ in the graph $(\because 2 x+y=6$ is included in the given question)
Now Consider $2 \mathrm{x}+\mathrm{y} \geq 6$
Select a point $(0,0)$
$\Rightarrow 2 \times(0)+0 \geq 6$
$\Rightarrow 0 \geq 5$ (this is false)
\therefore Solution region of the given inequality is above the line $2 x+y=6$. (Away from the origin)
The graph is as follows:

3. $3 x+4 y \leq 12$

Solution:

NCERT Solutions for Class 11 Maths Chapter 6
 Linear Inequalities

Given $3 x+4 y \leq 12$
Now draw a solid line $3 x+4 y=12$ in the graph $(\because 3 x+4 y=12$ is included in the given question)
Now Consider $3 x+4 y \leq 12$
Select a point (0,0)
$\Rightarrow 3 \times(0)+4 \times(0) \leq 12 \Rightarrow$
$0 \leq 12$ (this is true)
\therefore Solution region of the given inequality is below the line $3 x+4 y=12$. (That is origin is included in the region) The graph is as follows:

4. $y+8 \geq 2 x$

Solution:

Given $y+8 \geq 2 x$
Now draw a solid line $y+8=2 x$ in the graph $(\because y+8=2 x$ is included in the given question)
Now Consider $\mathrm{y}+8 \geq 2 \mathrm{x}$
Select a point (0,0)
$\Rightarrow(0)+8 \geq 2 \times(0)$
$\Rightarrow 0 \leq 8$ (this is true)

NCERT Solutions for Class 11 Maths Chapter 6 Linear Inequalities

\therefore Solution region of the given inequality is above the line $y+8=2 x$. (That is origin is included in the region)
The graph is as follows:

5. $x-y \leq 2$

Solution:

Given $x-y \leq 2$
Now draw a solid line $x-y=2$ in the graph ($\because x-y=2$ is included in the given question)
Now Consider $x-y \leq 2$
Select a point (0,0)
$\Rightarrow(0)-(0) \leq 2$
$\Rightarrow 0 \leq 12$ (this is true)
\therefore Solution region of the given inequality is above the line $\mathrm{x}-\mathrm{y}=2$. (That is origin is included in the region)
The graph is as follows:

NCERT Solutions for Class 11 Maths Chapter 6 Linear Inequalities

6. $2 x-3 y>6$

Solution:

Given $2 x-3 y>6$
Now draw a dotted line $2 x-3 y=6$ in the graph $(\because 2 x-3 y=6$ is excluded in the given question)
Now Consider $2 x-3 y>6$
Select a point $(0,0)$
$\Rightarrow 2 \times(0)-3 \times(0)>6 \Rightarrow$
$0>5$ (this is false)
\therefore Solution region of the given inequality is below the line $2 x-3 y>6$. (Away from the origin)
The graph is as follows:

NCERT Solutions for Class 11 Maths Chapter 6
Linear Inequalities

7. $-3 x+2 y \geq-6$

Solution:

Given $-3 x+2 y \geq-6$
Now draw a solid line $-3 x+2 y=-6$ in the $\operatorname{graph}(\because-3 x+2 y=-6$ is included in the given question)
Now Consider $-3 x+2 y \geq-6$
Select a point $(0,0)$
$\Rightarrow-3 \times(0)+2 \times(0) \geq-6$
$\Rightarrow 0 \geq-6$ (this is true)
\therefore Solution region of the given inequality is above the line $-3 x+2 y \geq-6$. (That is origin is included in the region) The graph is as follows:

NCERT Solutions for Class 11 Maths Chapter 6

Linear Inequalities

8. $y-5 x<30$

Solution:

Given $\mathrm{y}-5 \mathrm{x}<30$
Now draw a dotted line $3 y-5 x=30$ in the graph $(\because 3 y-5 x=30$ is excluded in the given question)
Now Consider $3 y-5 x<30$
Select a point (0,0)
$\Rightarrow 3 \times(0)-5 \times(0)<30 \Rightarrow$
$0<30$ (this is true)
\therefore Solution region of the given inequality is below the line $3 y-5 x<30$. (That is origin is included in the region)
The graph is as follows:

NCERT Solutions for Class 11 Maths Chapter 6
 Linear Inequalities

9. $y<-2$

Solution:

Given y <-2
Now draw a dotted line $y=-2$ in the graph ($\because y=-2$ is excluded in the given question)
Now Consider y<-2
Select a point $(0,0)$
$\Rightarrow 0<-2$
$\Rightarrow 0<30$ (this is false)
\therefore Solution region of the given inequality is below the line $y<-2$. (That is Away from the origin)
The graph is as follows:

10. $x>-3$

Solution:

Given x >-3
Now draw a dotted line $x=-3$ in the graph ($\because x=-3$ is excluded in the given question) Now Consider x >-3
Select a point $(0,0)$
$\Rightarrow 0>-3$
$\Rightarrow 0>-3$ (this is true)
\therefore Solution region of the given inequality is right to the line $\mathrm{x}>-3$. (That is origin is included in the region)
The graph is as follows:

NCERT Solutions for Class 11 Maths Chapter 6 Linear Inequalities

Solve the following system of inequalities graphically:

1. $x \geq 3, y \geq 2$

Solution:

Given $x \geq 3$ (i) y
≥ 2.
(ii)

Since $x \geq 3$ means for any value of y the equation will be unaffected so similarly for $y \geq 2$, for any value of x the equation will be unaffected.
Now putting $x=0$ in the (i)
$0 \geq 3$ which is not true
Putting $y=0$ in (ii)
$0 \geq 2$ which is not true again
This implies the origin doesn't satisfy in the given inequalities. The region to be included will be on the right side of the two equalities drawn on the graphs. The shaded region is the desired region.

2. $3 x+2 y \leq 12, x \geq 1, y \geq 2$

Solution:

Given $3 x+2 y \leq 12$
Solving for the value of x and y by putting $x=0$ and $y=0$ one by one
We get
$y=6$ and $x=4$
So the points are $(0,6)$ and $(4,0)$

Now checking for $(0,0)$
$0 \leq 12$ which is also true,
Hence the origin lies in the plane and the required area is toward the left of the equation.
Now checking for $x \geq 1$,
The value of x would be unaffected by any value of y
The origin would not lie on the plane
$\Rightarrow 0 \geq 1$ which is not true
The required area to be included would be on the left of the graph $x \geq 1$ Similarly, for $y \geq 2$
Value of y will be unaffected by any value of x in the given equality. Also, the origin doesn't satisfy the given inequality.
$\Rightarrow 0 \geq 2$ which is not true, hence origin is not included in the solution of the inequality.
The region to be included in the solution would be towards the left of the equality $\mathrm{y} \geq 2$ The shaded region in the graph will give the answer to the required inequalities as it is the region which is covered by all the given three inequalities at the same time satisfying all the given conditions.

3. $2 x+y \geq 6,3 x+4 y \leq 12$

Solution:

Given $2 x+y \geq 6$
$3 x+4 y \leq 12$
$2 x+y \geq 6$
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=6$ and $x=3$
So the point for the $(0,6)$ and $(3,0)$
Now checking for $(0,0)$
$0 \geq 6$ which is not true, hence the origin does not lies in the solution of the equality. The required region is on the right side of the graph.
Checking for $3 x+4 y \leq 12$
Putting value of $x=0$ and $y=0$ one by one in equation
We get $y=3, x=4$
The points are $(0,3),(4,0)$
Now checking for origin $(0,0)$
$0 \leq 12$ which is true,
So the origin lies in solution of the equation.
The region on the right of the equation is the region required.
The solution is the region which is common to the graphs of both the inequalities. The shaded region is the required region.

4. $x+y \geq 4,2 x-y<0$

Solution:

Given $x+y \geq 4$

Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=4$ and $x=4$
The points for the line are $(0,4)$ and $(4,0)$
Checking for the origin $(0,0)$
$0 \geq 4$
This is not true,
So the origin would not lie in the solution area. The required region would be on the right of line`s graph.
$2 x-y<0$
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of $y=$
0 and $x=0$
Putting $x=1$ we get $y=2$
So the points for the given inequality are $(0,0)$ and $(1,2)$
Now that the origin lies on the given equation we will check for $(4,0)$ point to check which side of the line's graph will be included in the solution.
$\Rightarrow 8<0$ which is not true, hence the required region would be on the left side of the line $2 x-y<0$
The shaded region is the required solution of the inequalities.

5. $2 x-y>1, x-2 y<-1$

Solution:

Given $2 x-y>1$

Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=-1$ and $x=1 / 2=0.5$
The points are ($0,-1$) and ($0.5,0$)
Checking for the origin, putting $(0,0)$
$0>1$, which is false
Hence the origin does not lie in the solution region. The required region would be on the right of the line`s graph. $x-2 y<-1$. \qquad (ii)

Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=1 / 2=0.5$ and $x=-1$
The required points are $(0,0.5)$ and $(-1,0)$
Now checking for the origin, $(0,0)$
$0<-1$ which is false
Hence the origin does not lies in the solution area, the required area would be on the left side of the line`s graph. .: the shaded area is the required solution of the given inequalities.

6. $x+y \leq 6, x+y \geq 4$

Solution:

Given $x+y \leq 6$,
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of Y
$=6$ and $x=6$
The required points are $(0,6)$ and $(6,0)$
Checking further for origin $(0,0)$ We
get $0 \leq 6$, this is true.

Hence the origin would be included in the area of the line`s graph. So the required solution of the equation would be on the left side of the line graph which will be including origin.
$x+y \geq 4$
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of
$\mathrm{y}=4$ and $\mathrm{x}=4$
The required points are $(0,4)$ and $(4,0)$
Checking for the origin $(0,0)$
$0 \geq 4$ which is false
So the origin would not be included in the required area. The solution area will be above the line graph or the area on the right of line graph.
Hence the shaded area in the graph is required graph area.

7. $2 x+y \geq 8, x+2 y \geq 10$

Solution:

Given $2 x+y \geq 8$
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=8$ and $x=4$
The required points are $(0,8)$ and $(4,0)$
Checking if the origin is included in the line`s graph \((0,0)\) \(0 \geq 8\), which is false Hence the origin is not included in the solution area and the requires area would be the area to the right of line`s graph. $x+2 y \geq 10$

Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=5$ and $x=10$
The required points are $(0,5)$ and $(10,0)$
Checking for the origin $(0,0)$
$0 \geq 10$ which is false,
Hence the origin would not lie in the required solution area. The required area would be to the left of the line graph.
The shaded area in the graph is the required solution of the given inequalities.

8. $x+y \leq 9, y>x, x \geq 0$

Solution:

Given $x+y \leq 9$,
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=9$ and $x=9$
The required points are $(0,9)$ and $(9,0)$
Checking if the origin is included in the line`s graph \((0,0)\) \(0 \leq 9\) Which is true, so the required area would be including the origin and hence will lie on the left side of the line`s graph.
$y>x$,

Solving for $\mathrm{y}=\mathrm{x}$
We get $x=0, y=0$ so the origin lies on the line s graph.
The other points would be $(0,0)$ and $(2,2)$
Checking for $(9,0)$ in $y>x$,
We get $0>9$ which is false, since the area would not include the area below the line's graph and hence would be on the left side of the line.
We have $x \geq 0$
The area of the required line`s graph would be on the right side of the line`s graph.
Therefore the shaded are is the required solution of the given inequalities.

9. $5 x+4 y \leq 20, x \geq 1, y \geq 2$

Solution:

Given $5 x+4 y \leq 20$,
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=5$ and $\mathrm{x}=4$
The required points are $(0,5)$ and $(4,0)$
Checking if the origin lies in the solution area (0,0)
$0 \leq 20$
Which is true, hence the origin would lie in the solution area. The required area of the line`s graph is on the left side of the graph.
We have $x \geq 1$,

For all the values of y, x would be 1 ,
The required points would be $(1,0),(1,2)$ and so on.
Checking for origin (0,0)
$0 \geq 1$, which is not true
So the origin would not lie in the required area. The required area on the graph will be on the right side of the line`s graph. Consider y \(\geq 2\) Similarly for all the values of \(x\), \(y\) would be 2 . The required points would be \((0,2),(1,2)\) and so on. Checking for origin \((0,0)\) \(0 \geq 2\), this is no true Hence the required area would be on the right side of the line`s graph.
The shaded area on the graph shows the required solution of the given inequalities.

$10.3 x+4 y \leq 60, x+3 y \leq 30, x \geq 0, y \geq 0$

Solution:

Given $3 x+4 y \leq 60$,
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=15$ and $\mathrm{x}=20$
The required points are $(0,15)$ and $(20,0)$
Checking if the origin lies in the required solution area $(0,0) 0$ ≤ 60, this is true.
Hence the origin would lie in the solution area of the line`s graph. The required solution area would be on the left of the line`s graph.

We have $x+3 y \leq 30$,
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=10$ and $\mathrm{x}=30$
The required points are $(0,10)$ and $(30,0)$
Checking for the origin $(0,0) 0 \leq 30$, this
is true.
Hence the origin lies in the solution area which is given by the left side of the line`s graph. Consider $x \geq 0, y \geq 0$,
The given inequalities imply the solution lies in the first quadrant only.
Hence the solution of the inequalities is given by the shaded region in the graph.

11. $2 x+y \geq 4, x+y \leq 3,2 x-3 y \leq 6$

Solution:

Given $2 x+y \geq 4$,
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of $y=4$ and $x=2$
The required points are $(0,4)$ and $(2,0)$
Checking for origin $(0,0)$
$0 \geq 4$, this is not true
Hence the origin doesn't lies in the solution area of the line`s graph. The solution area would be given by the right side of the line`s graph.
$x+y \leq 3$,
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=3$ and $x=3$

The required points are $(0,3)$ and $(3,0)$
Checking for the origin $(0,0)$
$0 \leq 3$, this is true
Hence the solution area would include the origin and hence would be on the left side of the line`s graph. \(2 x-3 y \leq 6\) Putting value of \(x=0\) and \(y=0\) in equation one by one, we get value of \(y\) \(=-2\) and \(x=3\) The required points are \((0,-2),(3,0)\) Checking for the origin \((0,0)\) \(0 \leq 6\) this is true So the origin lies in the solution area and the area would be on the left of the line`s graph.
Hence the shaded area in the graph is the required solution area for the given inequalities.

12. $x-2 y \leq 3,3 x+4 y \geq 12, x \geq 0, y \geq 1$

Solution:

Given, $x-2 y \leq 3$
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=-3 / 2=-1.5$ and $x=3$
The required points are $(0,-1.5)$ and $(3,0)$
Checking for the origin $(0,0) 0 \leq 3$, this is
true.

Hence the solution area would be on the left of the line`s graph \(3 x+4 y \geq 12\), Putting value of \(x=0\) and \(y=0\) in equation one by one, we get value of \(y=3\) and \(x=4\) The required points are \((0,3)\) and \((4,0)\) Checking for the origin (0,0) \(0 \geq 12\), this is not true So the solution area would of include the origin and the required solution area would be on the right side of the line`s graph.
We have $x \geq 0$,
For all the values of y, the value of x would be same in the given inequality, which would be the region above the x axis on the graph.

Consider, $\mathrm{y} \geq 1$

For all the values of x, the value of y would be same in the given inequality.
The solution area of the line would be not include origin as $0 \geq 1$ is not true.
The solution area would be on the left side of the line`s graph.
The shaded area in the graph is the required solution area which satisfies all the given inequalities at the same time.

$13.4 x+3 y \leq 60, y \geq 2 x, x \geq 3, x, y \geq 0$

Solution:

Given, $4 x+3 y \leq 60$,

Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=20$ and $x=15$
The required points are $(0,20)$ and $(15,0)$
Checking for the origin $(0,0) 0 \leq 60$, this
is true.
Hence the origin would lie in the solution area. The required area would include be on the left of the line`s graph.
We have $\mathrm{y} \geq 2 \mathrm{x}$,
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=0$ and $x=0$
Hence the line would pass through origin.
To check which side would be included in the line's graph solution area, we would check for point $(15,0)$
$\Rightarrow 0 \geq 15$, this is not true so the required solution area would be to the left of the line's graph.
Consider, $x \geq 3$,
For any value of y, the value of x would be same.
Also the origin $(0,0)$ doesn't satisfies the inequality as $0 \geq 3$
So the origin doesn't lies in the solution area, hence the required solution area would be the right of the line's graph.
We have $\mathrm{x}, \mathrm{y} \geq 0$
Since given both x and y are greater than $0 .:$ the solution
area would be in the first $I^{\text {st }}$ quadrant only.
The shaded area in the graph shows the solution area for the given inequalities

$14.3 x+2 y \leq 150, x+4 y \leq 80, x \leq 15, y \geq 0, x \geq 0$

Solution:

Given, $3 x+2 y \leq 150$
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=75$ and $x=50$
The required points are $(0,75)$ and $(50,0)$
Checking for the origin (0,0)
$0 \leq 150$, this is true
Hence the solution area for the line would be on the left side of the line`s graph which would be including the origin too. We have \(x+4 y \leq 80\), Putting value of \(x=0\) and \(y=0\) in equation one by one, we get value of \(y\) \(=20\) and \(\mathrm{x}=80\) The required points are \((0,20)\) and \((80,0)\) Checking for the origin (0,0) \(0 \leq 80\), this is also true so the origin lies in the solution area. The required solution area would be toward the left of the line`s graph. Given
$x \leq 15$,
For all the values of y, x would be same

Checking for the origin $(0,0)$
$0 \leq 15$, this is true so the origin would be included in the solution area. The required solution area would be towards the left of the line`s graph.
Consider $y \geq 0, x \geq 0$
Since x and y are greater than 0 , the solution would lie in the $1^{\text {st }}$ quadrant.
The shaded area in the graph satisfies all the given inequalities and hence is the solution area for given inequalities.

15. $x+2 y \leq 10, x+y \geq 1, x-y \leq 0, x \geq 0, y \geq 0$

Solution:

Given, $x+2 y \leq 10$,
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=5$ and $\mathrm{x}=10$
The required points are $(0,5)$ and $(10,0)$
Checking for the origin $(0,0) 0 \leq 10$, this
is true.
Hence the solution area would be toward origin including the same. The solution area would be toward the left of the line`s graph.
We have $x+y \geq 1$,

Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y
$=1$ and $\mathrm{x}=1$
The required points are $(0,1)$ and $(1,0)$
Checking for the origin $(0,0) 0 \geq 1$, this
is not true.
Hence the origin would not be included into the solution area. The required solution area would be toward right of the line's graph.
Consider $\mathrm{x}-\mathrm{y} \leq 0$,
Putting value of $x=0$ and $y=0$ in equation one by one, we get value of y $=0$ and $x=0$
Hence the origin would lie on the line.
To check which side of the line graph would be included in the solution area we would check for the $(10,0)$
$10 \leq 0$ which is not true hence the solution area would be on the left side of the line`s graph.
Again we have $x \geq 0, y \geq 0$
Since both x and y are greater than 0 , the solution area would be in the $1^{\text {st }}$ quadrant. Hence, the solution area for the given inequalities would be the shaded area of the graph satisfying all the given inequalities.

NCERT Solutions for Class 11 Maths Chapter 6 Linear Inequalities

MISCELLANEOUS EXERCISE

Solve the inequalities in Exercises 1 to 6

1. $2 \leq 3 x-4 \leq 5$

Solution:

According to the question, The inequality given is,
$2 \leq 3 x-4 \leq 5$
$\Rightarrow 2 \leq 3 \mathrm{x}-4 \leq 5$
$\Rightarrow 2+4 \leq 3 x-4+4 \leq 5+4$
$\Rightarrow 6 \leq 3 x \leq 9$
$\Rightarrow 6 / 3 \leq 3 x / 3 \leq 9 / 3$
$\Rightarrow 2 \leq x \leq 3$
Hence, all real numbers x greater than or equal to 2 but less than or equal to 3 are solution of given equality.
$x \in[2,3]$
2. $6 \leq-3(2 x-4)<12$

Solution:

According to the question,
The inequality given is,
$6 \leq-3(2 x-4)<12$
$\Rightarrow 6 \leq-3(2 x-4)<12$
Dividing the inequality by 3 we get.
$\Rightarrow 2 \leq-(2 x-4)<4$
Multiplying the inequality by -1 .
$\Rightarrow-2 \geq 2 x-4>-4$ [multiplying the inequality with -1 changes the inequality sign.]
$\Rightarrow-2+4 \geq 2 x-4+4>-4+4$
$\Rightarrow 2 \geq 2 x>0$
Dividing the inequality by 2
$\Rightarrow 0<x \leq 1$

NCERT Solutions for Class 11 Maths Chapter 6 Linear Inequalities

Hence, all real numbers x greater than 0 but less than or equal to 1 are solution of given equality. $x \in(0,1]$
3. $-3 \leq 4-7 x / 2 \leq 18$

Solution:

According to the question,
The inequality given is,
$-3 \leq 4-7 x / 2 \leq 18$
$\Rightarrow-3-4 \leq 4-7 x / 2-4 \leq 18-4$
$\Rightarrow-7 \leq-7 x / 2 \leq 18-14$
Multiplying the inequality by -2 .
$\Rightarrow(-7) \times(-2) \geq-\frac{7 x}{2} \times(-2) \geq 14 \times(-2)$
$\Rightarrow 14 \geq 7 x \geq-28$
$\Rightarrow-28 \leq 7 x \leq 14$
Dividing the inequality by 7
$\Rightarrow-4 \leq x \leq 2$
Hence, all real numbers x greater than or equal to -4 but less than or equal to 2 are solution of given equality.
$x \in[-4,2]$
4. $-15 \leq 3(x-2) / 5 \leq 0$

Solution:

According to the question,
The inequality given is,
$-15 \leq 3(x-2) / 5 \leq 0$
$\Rightarrow-15<3(x-2) / 5 \leq 0$
Multiplying the inequality by 5 .
$\Rightarrow-15 \times 5<\frac{3(\mathrm{x}-2)}{5} \times 5 \leq 0 \times 5$
$\Rightarrow-75<3(x-2) \leq 0$
Dividing the inequality by 3 we get
$\Rightarrow-\frac{75}{3}<\frac{3(x-2)}{3} \leq \frac{0}{3}$
$\Rightarrow-25<x-2 \leq 0$
$\Rightarrow-25+2<x-2+2 \leq 0+2$
$\Rightarrow-23<x \leq 2$
Hence, all real numbers x greater than -23 but less than or equal to 2 are solution of given equality.
$x \in(-23,2]$
5. $-12<4-3 x /(-2) \leq 2$

Solution:

According to the question,
The inequality given is,
$-12<4-\frac{3 \mathrm{x}}{-5} \leq 2$
$\Rightarrow-12<4-\frac{3 x}{-5} \leq 2$
$\Rightarrow-12-4<4-\frac{3 x}{-5}-4 \leq 2-4$
$\Rightarrow-16<\frac{-3 x}{-5} \leq-2$
$\Rightarrow-16<\frac{3 x}{5} \leq-2$
Multiplying the inequality by 5 .
$\Rightarrow-16 \times 5<\frac{3 \mathrm{x}}{5} \times 5 \leq-2 \times 5$
$\Rightarrow-80<3 \mathrm{x} \leq-10$
$\Rightarrow-\frac{80}{3}<x \leq-\frac{10}{3}$
Hence, all real numbers x greater than $-80 / 3$ but less than or equal to $-10 / 3$ are solution of given equality. $x \in(-80 / 3,-10 / 3]$

6. $7 \leq(3 x+11) / 2 \leq 11$ Solution:

According to the question,
The inequality given is,

NCERT Solutions for Class 11 Maths Chapter 6 Linear Inequalities

$$
\begin{aligned}
& 7 \leq \frac{(3 x+11)}{2} \leq 11 \\
& \Rightarrow \\
& \Rightarrow \quad \frac{(3 x+11)}{2} \leq 11
\end{aligned}
$$

Multiplying the inequality by 2 .
$\Rightarrow 7 \times 2 \leq \frac{(3 x+11)}{2} \times 2 \leq 11 \times 2$
$\Rightarrow 14 \leq 3 x+11 \leq 22$
$\Rightarrow 14-11 \leq 3 x+11-11 \leq 22-11$
$\Rightarrow 3 \leq 3 x \leq 11$
$\Rightarrow 1 \leq x \leq 11 / 3$
Hence, all real numbers x greater than or equal to -4 but less than or equal to 2 are solution of given equality.
$x \in[1,11 / 3]$
Solve the inequalities in Exercises 7 to 11 and represent the solution graphically on number line.
7. $5 x+1>-24,5 x-1<24$ Solution:

According to the question,
The inequalities given are,
$5 x+1>-24$ and $5 x-1<24$
$5 x+1>-24$
$\Rightarrow 5 x>-24-1$
$\Rightarrow 5 x>-25$
$\Rightarrow x>-5$
$5 x-1<24$
$\Rightarrow 5 \mathrm{x}<24+1$
$\Rightarrow 5 \mathrm{x}<25$
$\Rightarrow x<5$
From equations (i) and (ii),
We can infer that the solution of given inequalities is $(-5,5)$.

NCERT Solutions for Class 11 Maths Chapter 6 Linear Inequalities

8. $2(x-1)<x+5,3(x+2)>2-x$

Solution:

According to the question,
The inequalities given are,
$2(x-1)<x+5$ and $3(x+2)>2-x$
$2(x-1)<x+5$
$\Rightarrow 2 x-2<x+5$
$\Rightarrow 2 x-x<5+2$
$\Rightarrow x<7$ \qquad
$3(x+2)>2-x$
$\Rightarrow 3 x+6>2-x$
$\Rightarrow 3 x+x>2-6$
$\Rightarrow 4 x>-4 \Rightarrow x>-$
1 (ii)

From equations (i) and (ii),
We can infer that the solution of given inequalities is $(-1,7)$.

9. $3 x-7>2(x-6), 6-x>11-2 x$

Solution:

According to the question, The inequalities given are,
$3 x-7>2(x-6)$ and $6-x>11-2 x$
$3 x-7>2(x-6)$

NCERT Solutions for Class 11 Maths Chapter 6 Linear Inequalities
$\Rightarrow 3 x-7>2 x-12$
$\Rightarrow 3 x-2 x>7-12$
$\Rightarrow x>-5$
$6-x>11-2 x \Rightarrow$
$2 x-x>11-6 \Rightarrow$
$x>5$ \qquad (ii)

From equations (i) and (ii),
We can infer that the solution of given inequalities is $(5, \infty)$.

10. $5(2 x-7)-3(2 x+3) \leq 0,2 x+19 \leq 6 x+47$

Solution:

According to the question,
The inequalities given are,
$5(2 x-7)-3(2 x+3) \leq 0$ and $2 x+19 \leq 6 x+47$
$5(2 x-7)-3(2 x+3) \leq 0$
$\Rightarrow 10 x-35-6 x-9 \leq 0$
$\Rightarrow 4 x-44 \leq 0$
$\Rightarrow 4 x \leq 44 x \leq$
$\Rightarrow 11 \ldots$.....
$2 x+19 \leq 6 x+47$
$\Rightarrow 6 x-2 x \geq 19-47$
$\Rightarrow 4 x \geq-28 \Rightarrow x$
≥-7
From equations (i) and (ii),
We can infer that the solution of given inequalities is $(-7,11)$.

11. A solution is to be kept between $68^{\circ} \mathrm{F}$ and $77^{\circ} \mathrm{F}$. What is the range in temperature in degree Celsius (C) if the Celsius / Fahrenheit (F) conversion formula is given by F = (9/5) C + 32?

Solution:

According to the question,
The solution has to be kept between $68^{\circ} \mathrm{F}$ and $77^{\circ} \mathrm{F}$
So, we get, $68^{\circ}<\mathrm{F}<77^{\circ}$
Substituting,

$$
\begin{aligned}
& F=\frac{9}{5} C+32 \\
& \Rightarrow 68<\frac{9}{5} C+32<77 \\
& \Rightarrow 68-32<\frac{9}{5} C+32-32<77-32 \\
& \Rightarrow 36<\frac{9}{5} C<45 \\
& \Rightarrow 36 \times \frac{5}{9}<\frac{9}{5} C \times \frac{5}{9}<45 \times \frac{5}{9} \\
& \Rightarrow 20<C<25
\end{aligned}
$$

Hence, we get,
The range of temperature in degree Celsius is between $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.
12. A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to it. The resulting mixture is to be more than 4% but less than 6% boric acid. If we have 640 litres of the 8% solution, how many litres of the 2% solution will have to be added?

Solution:

According to the question,
8% of solution of boric acid $=640$ litres
Let the amount of 2% boric acid solution added $=x$ litres
Then we have,
Total mixture $=x+640$ litres
We know that,
The resulting mixture has to be more than 4% but less than 6% boric acid.

NCERT Solutions for Class 11 Maths Chapter 6 Linear Inequalities

$\therefore 2 \%$ of $x+8 \%$ of $640>4 \%$ of $(x+640)$ and
2% of $x+8 \%$ of $640<6 \%$ of $(x+640)$
2% of $x+8 \%$ of $640>4 \%$ of $(x+640)$
$\Rightarrow(2 / 100) \times x+(8 / 100) \times 640>(4 / 100) \times(x+640)$
$\Rightarrow 2 x+5120>4 x+2560$
$\Rightarrow 5120-2560>4 x-2 x$
$\Rightarrow 2560>2 x$
$\Rightarrow x<1280 \ldots$ (i)
2% of $x+8 \%$ of $640<6 \%$ of $(x+640)$
$\Rightarrow(2 / 100) \times x+(8 / 100) \times 640<(6 / 100) \times(x+640)$
$\Rightarrow 2 x+5120<6 x+3840$
$\Rightarrow 6 x-2 x>5120-3840$
$\Rightarrow 4 x>1280$
$\Rightarrow x>320$
From (i) and (ii)
$320<x<1280$
Therefore, the number of litres of 2% of boric acid solution that has to be added will be more than 320 litres but less than 1280 litres.
13. How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than $\mathbf{2 5 \%}$ but less than $\mathbf{3 0 \%}$ acid content?

Solution:

According to the question,
45% of solution of acid $=1125$ litres
Let the amount of water added $=x$ litres
Resulting mixture $=x+1125$ litres
We know that,
The resulting mixture has to be more than 25% but less than 30% acid content.
Amount of acid in resulting mixture $=45 \%$ of 1125 litres.
$\therefore 45 \%$ of $1125<30 \%$ of $(x+1125)$ and 45% of $1125>25 \%$ of $(x+1125) 45 \%$
of $1125<30 \%$ of $(x+1125)$

NCERT Solutions for Class 11 Maths Chapter 6 Linear Inequalities

$$
\begin{align*}
& \Rightarrow \frac{45}{100} \times 1125<\frac{30}{100} \times(x+1125) \\
& \Rightarrow 45 \times 1125<30 x+30 \times 1125 \\
& \Rightarrow(45-30) \times 1125<30 x \\
& \Rightarrow 15 \times 1125<30 x \\
& \Rightarrow x>562.5 \ldots(\text { i }) \tag{i}\\
& 45 \% \text { of } 1125>25 \% \text { of }(x+1125) \\
& \Rightarrow \frac{45}{100} \times 1125>\frac{25}{100} \times(x+1125) \\
& \Rightarrow 45 \times 1125>25 x+25 \times 1125 \\
& \Rightarrow(45-25) \times 1125>25 x \\
& \Rightarrow 25 x<20 \times 1125 \\
& \Rightarrow x<900 \ldots . .(i i)
\end{align*}
$$

$\therefore 562.5<\mathrm{x}<900$
Therefore, the number of litres of water that has to be added will have to be more than 562.5 litres but less than 900 litres.
14. IQ of a person is given by the formula
$I Q=\frac{M A}{C A} \times 100$,
, Where MA is mental age and CA is chronological age. If $80 \leq \mathrm{IQ} \leq$
140 for a group of $\mathbf{1 2}$ years old children, find the range of their mental age.

Solution:

According to the question,
Chronological age = CA = 12 years
IQ for age group of 12 is $80 \leq \mathrm{IQ} \leq 140$.
We get that,
$80 \leq \mathrm{IQ} \leq 140$
Substituting,

$$
\mathrm{IQ}=\frac{\mathrm{MA}}{\mathrm{CA}} \times 100
$$

We get,
$\Rightarrow 80 \leq \frac{\mathrm{MA}}{\mathrm{CA}} \times 100 \leq 140$
$\Rightarrow 80 \leq \frac{\mathrm{MA}}{12} \times 100 \leq 140$
$\Rightarrow 80 \times \frac{12}{100} \leq \frac{M A}{12} \times 100 \leq 140 \times \frac{12}{100}$
$\Rightarrow 9.6 \leq \mathrm{MA} \leq 16.8$
\therefore Range of mental age of the group of 12 years old children is $9.6 \leq \mathrm{MA} \leq 16.8$

