WISDOMISING KNOWLEDGE

#### www.edugrooss.com

### NCERT Solution For Class 9 Maths Chapter 15- Probability

# Exercise 15.1

Page: 283

1. In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Solution:

According to the question,

Total number of balls = 30 Numbers of boundary = 6 Number of time batswoman didn't hit boundary = 30 - 6 = 24Probability she did not hit a boundary =  $\frac{24}{30} = \frac{4}{5}$ 

2. 1500 families with 2 children were selected randomly, and the following data were recorded:

| Number of girls in a family | 2   | 1   | 0   |
|-----------------------------|-----|-----|-----|
| Number of families          | 475 | 814 | 211 |

Compute the probability of a family, chosen at random, having (i) 2 girls (ii) 1 girl (iii) No girl Also check whether the sum of these probabilities is 1. Solution: Total numbers of families = 1500Numbers of families having 2 girls = 475(i) Probability = Numbers of families having 2 girls/Total numbers of families  $=\frac{475}{1500}=\frac{19}{60}$ (ii) Numbers of families having 1 girls = 814Probability = Numbers of families having 1 girls/Total numbers of families 814 407  $1500^{-}750$ Numbers of families having 2 girls = 211(iii) Probability = Numbers of families having 0 girls/Total numbers of families 211 1500 Sum of the probability =  $\frac{19}{60} + \frac{407}{750} + \frac{211}{1500}$  $=\frac{475+814+211}{1500}=\frac{1500}{1500}=1$ 

Yes, the sum of these probabilities is 1.



# Exercise 15.1

EDUGROSS

```
Page: 283
```

**3.** Refer to Example 5, Section 14.4, Chapter 14. Find the probability that a student of the class was **born in August.** Solution:



4. Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:

| Outcome   | come 3 heads |    | 1 head | No head |  |  |
|-----------|--------------|----|--------|---------|--|--|
| Frequency | 23           | 72 | 77     | 28      |  |  |

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up. Solution:

| Number of times 2 heads come up                     | = 72  |    |
|-----------------------------------------------------|-------|----|
| Total number of times the coins were tossed         | = 200 |    |
|                                                     | 72    | 9  |
|                                                     | = =   |    |
| $\therefore$ , the probability of 2 heads coming up | 200   | 25 |

5. An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

| Monthly income | Vehicles per family |     |    |         |  |  |  |  |  |
|----------------|---------------------|-----|----|---------|--|--|--|--|--|
| (in ₹)         | 0                   | 1   | 2  | Above 2 |  |  |  |  |  |
| Less than 7000 | 10                  | 160 | 25 | 0       |  |  |  |  |  |
| 7000-10000     | 0                   | 305 | 27 | 2       |  |  |  |  |  |
| 10000-13000    | 1                   | 535 | 29 | 1       |  |  |  |  |  |
| 13000-16000    | 2                   | 469 | 59 | 25      |  |  |  |  |  |
| 16000 or more  | 1                   | 579 | 82 | 88      |  |  |  |  |  |



### Exercise 15.1

### Page: 284

Suppose a family is chosen. Find the probability that the family chosen is

- (i) earning ₹10000 13000 per month and owning exactly 2 vehicles.
- (ii) earning ₹16000 or more per month and owning exactly 1 vehicle.
- (iii) earning less than ₹7000 per month and does not own any vehicle.
- (iv) earning ₹13000 16000 per month and owning more than 2 vehicles.
- (v) owning not more than 1 vehicle.

Solution:

Total number of families = 2400

(i) Numbers of families earning ₹10000 –13000 per month and owning exactly 2 vehicles =  $29 \therefore$ , the

probability that the family chosen is earning ₹10000 – 13000 per month and owning  $=\frac{29}{2400}$ exactly 2 vehicle

- (ii) Number of families earning ₹16000 or more per month and owning exactly 1 vehicle = 579  $\therefore$ , the probability that the family chosen is earning ₹16000 or more per month and owning  $=\frac{579}{2400}$ exactly 1 vehicle
- (iii) Number of families earning less than ₹7000 per month and does not own any vehicle = 10 ∴, the probability that the family chosen is earning less than ₹7000 per month and does not 1 10 . . . 0 0

bwn any vehicle 
$$=\frac{1}{2400}=\frac{1}{24}$$

(iv) Number of families earning ₹13000-16000 per month and owning more than 2 vehicles = 25  $\therefore$ , the probability that the family chosen is earning ₹13000 – 16000 per month and owning more

than 2 vehicles  $=\frac{25}{2400}=\frac{1}{96}$ 

(v) Number of families owning not more than 1 vehicle = 10+160+0+305+1+535+2+469+1+579= 2062

 $\therefore$ , the probability that the family chosen owns not more than 1 vehicle  $=\frac{2062}{2400}=\frac{1031}{1200}$ 

#### Refer to Table 14.7, Chapter 14. 6.

- Find the probability that a student obtained less than 20% in the mathematics test. **(i)**
- (ii) Find the probability that a student obtained marks 60 or above.

Solution:

| Marks      | Number of students |
|------------|--------------------|
| 0 - 20     | 7                  |
| 20 - 30    | 10                 |
| 30 - 40    | 10                 |
| 40 - 50    | 20                 |
| 50 - 60    | 20                 |
| 60 - 70    | 15                 |
| 70 - above | 8                  |
| Total      | 90                 |

# Exercise 15.1

# Page: 284

7

90

23

Total number of students = 90

(i) Number of students who obtained less than 20% in the mathematics test = 7

 $\therefore$ , the probability that a student obtained less than 20% in the mathematics test = \_\_\_\_\_

- (ii) Number of students who obtained marks 60 or above = 15+8 = 23
  - $\therefore$ , the probability that a student obtained marks 60 or above =  $\frac{1}{90}$
- 7. To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.

| Opinior | Number of |     |
|---------|-----------|-----|
| student | s like    | 135 |
| dislike |           |     |

Find the probability that a student chosen at random (i) likes statistics, (ii) does not like it.

#### Solution:

Total number of students = 135 + 65 = 200

- (i) Number of students who like statistics = 135  $\therefore$ , the probability that a student likes statistics =  $\frac{135}{200} = \frac{27}{40}$
- (ii) Number of students who do not like statistics = 65  $\therefore$ , the probability that a student does not like statistics =  $\frac{65}{200} = \frac{13}{40}$
- 8. Refer to Q.2, Exercise 14.2. What is the empirical probability that an engineer lives:(i) less than 7 km from her place of work?
  - (ii) more than or equal to 7 km from her place of work?
    - .

2

(iii) within \_ km from her place of work?

### Solution:

The distance (in km) of 40 engineers from their residence to their place of work were found as follows:

|   | 5 | 3  | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 | 19 | 10 | 12 | 17 | 18 | 11 | 3 | 2 |
|---|---|----|----|----|----|----|----|---|----|----|----|----|----|----|----|----|---|---|
| 1 | 7 | 16 | 2  | 7  | 9  | 7  | 8  | 3 | 5  | 12 | 15 | 18 | 3  | 12 | 14 | 2  | 9 | 6 |
| 1 | 5 | 15 | 7  | 6  | 12 |    |    |   |    |    |    |    |    |    |    |    |   |   |

Total numbers of engineers = 40

- (i) Number of engineers living less than 7 km from their place of work = 9  $\therefore$ , the probability that an engineer lives less than 7 km from her place of work =  $\frac{9}{40}$
- (ii) Number of engineers living more than or equal to 7 km from their place of work = 40 9 = 31  $\therefore$ , probability that an engineer lives more than or equal to 7 km from her place of work =  $\frac{31}{40}$

### NCERT Solution For Class 9 Maths Chapter 15- Probability

# Exercise 15.1

Page: 285

7

(iii) Number of engineers living within  $\frac{1}{2}$  km from their place of work = 0

 $\therefore$ , the probability that an engineer lives within  $\frac{1}{2}$  km from her place of work  $=\frac{0}{40}=0$ 

9. Activity : Note the frequency of two-wheelers, three-wheelers and four-wheelers going past during a time interval, in front of your school gate. Find the probability that any one vehicle out of the total vehicles you have observed is a two-wheeler.

#### Solution:

The question is an activity to be performed by the students. Hence, perform the activity by yourself and note down your inference.

Activity : Ask all the students in your class to write a 3-digit number. Choose any student from the room at random. What is the probability that the number written by her/him is divisible by 3? Remember that a number is divisible by 3, if the sum of its digits is divisible by 3.

Solution:

The question is an activity to be performed by the students.

Hence, perform the activity by yourself and note down your inference.

11. Eleven bags of wheat flour, each marked 5 kg, actually contained the following weights of flour (in kg):

4.97 5.05 5.08 5.03 5.00 5.06 5.08 4.98 5.04 5.07 5.00

**Find the probability that any of these bags chosen at random contains more than 5 kg of flour.** Solution:

Total number of bags present = 11 Number of bags containing more than 5 kg of flour = 7

 $\therefore$ , the probability that any of the bags chosen at random contains more than 5 kg of flour = \_\_\_\_\_\_ 11

12. In Q.5, Exercise 14.2, you were asked to prepare a frequency distribution table, regarding the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval 0.12-0.16 on any of these days.

The data obtained for 30 days is as follows:

| 0.03 | 0.08 | 0.08 | 0.09 | 0.04 | 0.17 | 0.16 | 0.05 | 0.02 | 0.06 | 0.18 | 0.20 | 0.11 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0.08 | 0.12 | 0.13 | 0.22 | 0.07 | 0.08 | 0.01 | 0.10 | 0.06 | 0.09 | 0.18 | 0.11 | 0.07 |
| 0.05 | 0.07 | 0.01 | 0.04 |      |      |      |      |      |      |      |      |      |
| 0.1. |      |      |      |      |      |      |      |      |      |      |      |      |

Solution:

Total number of days in which the data was recorded = 30 days

Numbers of days in which sulphur dioxide was present in between the interval 0.12-0.16 = 2

 $\therefore$ , the probability of the concentration of sulphur dioxide in the interval 0.12-0.16 on any of these

 $days = \frac{2}{30} = \frac{1}{15}$ 



### Exercise 15.1

Page: 285

13. In Q.1, Exercise 14.2, you were asked to prepare a frequency distribution table regarding the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.

The blood groups of 30 students of Class VIII are recorded as follows: A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O, A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O.

Solution:

Total numbers of students = 30Number of students having blood group AB = 3

:, the probability that a student of this class, selected at random, has blood group  $AB = \frac{3}{30} = \frac{1}{10}$