NCERT Solutions For Class 9 Maths Chapter 6 - Lines and Angles
(Page No: 96) Exercise: 6.1

1. In Fig. 6.13, lines $A B$ and $C D$ intersect at O. If $\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$, find \angle BOE and reflex $\angle C O E$.

Fig. 6.13

Solution:

From the diagram,
$\angle A O C+\angle B O E+\angle C O E$ and $\angle C O E+\angle B O D+\angle B O E$ forms a straight line.
So, $\angle \mathrm{AOC}+\angle \mathrm{BOE}+\angle \mathrm{COE}=\angle \mathrm{COE}+\angle \mathrm{BOD}+\angle \mathrm{BOE}=180^{\circ}$
Now, by putting the values of $\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$ we get
$\angle C O E=110^{\circ}$ and
$\angle B O E=30^{\circ}$
(Page No: 97)
2. In Fig. 6.14, lines $X Y$ and $M N$ intersect at O. If $\angle P O Y=90^{\circ}$ and $a: b=2: 3$, find c.

Fig. 6.14

Solution:

We know that the sum of linear pair are always equal to 180°
So,
$\angle P O Y+a+b=180^{\circ}$
Putting the value of $\angle \mathrm{POY}=90^{\circ}$ (as given in the question) we get,
$a+b=90^{\circ}$
Now, it is given that $\mathrm{a}: \mathrm{b}=2: 3$ so,
Let a be $2 x$ and b be $3 x$
$\therefore 2 x+3 x=90^{\circ}$
Solving this we get
$5 x=90^{\circ}$
So, $x=18^{\circ}$
$\therefore \mathrm{a}=2 \times 18^{\circ}=36^{\circ}$
Similarly b can be calculated and the value will be b
$=3 \times 18^{\circ}=54^{\circ}$

From the diagram, $b+c$ also forms a straight angle so, b
$+\mathrm{c}=180^{\circ}$
$\Rightarrow c+54^{\circ}=180^{\circ}$
$\therefore \mathrm{c}=126^{\circ}$
3. In Fig. $6.15, \angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$.

Fig. 6.15

Solution:

Since ST is a straight line so,
$\angle P Q S+\angle P A R=180^{\circ}$ (linear pair) and
$\angle P R T+\angle P R Q=180^{\circ}$ (linear pair)

Now, $\angle P Q S+\angle P A R=\angle P R T+\angle P R Q=180^{\circ}$
Since $\angle P Q R=\angle P R Q$ (as
given in the question)
$\angle P Q S=\angle P R T$. (Hence proved).
4. In Fig. 6.16, if $x+y=w+z$, then prove that $A O B$ is a line.

Fig. 6.16

Solution:

For proving AOB is a straight line, we will have to prove $x+y$ is a linear pair i.e.
$x+y=180^{\circ}$
We know that the angles around a point are 360° so, x
$+y+w+z=360^{\circ}$
In the question, it is given that, x
$+y=w+z$
So, $(x+y)+(x+y)=360^{\circ}$
$\Rightarrow 2(x+y)=360^{\circ}$
$\therefore(\mathrm{x}+\mathrm{y})=180^{\circ}$ (Hence proved).
5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle R O S=1 / 2(\angle Q O S-\angle P O S)$.

EDUGRロSS

Fig. 6.17

Solution:

In the question, it is given that ($\mathrm{OR} \perp \mathrm{PQ}$) and $\angle \mathrm{POQ}=180^{\circ}$
So, $\angle P O S+\angle R O S+\angle R O Q=180^{\circ}$
Now, $\angle \mathrm{POS}+\angle \mathrm{ROS}=180^{\circ}-90^{\circ}\left(\right.$ Since $\left.\angle \mathrm{POR}=\angle \mathrm{ROQ}=90^{\circ}\right)$
$\therefore \angle P O S+\angle R O S=90^{\circ}$
Now, $\angle \mathrm{QOS}=\angle \mathrm{ROQ}+\angle \mathrm{ROS}$
It is given that $\angle R O Q=90^{\circ}$,
$\therefore \angle Q O S=90^{\circ}+\angle R O S$
Or, $\angle Q O S+\angle R O S=90^{\circ}$
As $\angle P O S+\angle R O S=90^{\circ}$ and $\angle Q O S+\angle R O S=90^{\circ}$, we get
$\angle P O S+\angle R O S=\angle Q O S+\angle R O S$
$=>2 \angle \mathrm{ROS}+\angle \mathrm{POS}=\angle \mathrm{QOS}$
Or, $\angle R O S=1 / 2(\angle Q O S-\angle P O S)$ (Hence proved).
6. It is given that $\angle X Y Z=64^{\circ}$ and $X Y$ is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle Z Y P$, find $\angle X Y Q$ and reflex $\angle Q Y P$.

Solution:

Y

Here, $X P$ is a straight line
So, $\angle X Y Z+\angle Z Y P=180^{\circ}$
Putting the valye of $\angle X Y Z=64^{\circ}$ we get,
$64^{\circ}+\angle Z Y P=180^{\circ}$
$\therefore \angle Z Y P=116^{\circ}$
From the diagram, we also know that $\angle Z Y P=\angle Z Y Q+\angle Q Y P$
Now, as YQ bisects $\angle Z Y P$,
$\angle Z Y Q=\angle Q Y P$
Or, $\angle Z Y P=2 \angle Z Y Q$
$\therefore \angle Z Y Q=\angle Q Y P=58^{\circ}$

Again, $\angle X Y Q=\angle X Y Z+\angle Z Y Q$
By putting the value of $\angle X Y Z=64^{\circ}$ and $\angle Z Y Q=58^{\circ}$ we get.
$\angle X Y Q=64^{\circ}+58^{\circ}$
$\mathrm{Or}, \angle X Y Q=122^{\circ}$
Now, reflex $\angle Q Y P=180^{\circ}+\angle X Y Q$
We computed that the value of $\angle X Y Q=122^{\circ}$. So,
$\angle Q Y P=180^{\circ}+122^{\circ}$
$\therefore \angle \mathrm{QYP}=302^{\circ}$
(Page No: 103)

Exercise: 6.2

1. In Fig. 6.28, find the values of x and y and then show that $A B|\mid C D$.

Fig. 6.28

Solution:

We know that a linear pair is equal to 180°.
So, $x+50^{\circ}=180^{\circ}$
$\therefore \mathrm{x}=130^{\circ}$
We also know that vertically opposite angles are equal.
So, $y=130^{\circ}$
In two parallel lines, the alternate interior angles are equal. In this, x $=y=130^{\circ}$
This proves that alternate interior angles are equal and so, $\mathrm{AB} \| \mathrm{CD}$.
(Page No: 104)
2. In Fig. 6.29, if $A B$ ||
$C D, C D| | E F$ and $y: z=3: 7$, find x.

Fig. 6.29

Solution:

It is known that $A B \| C D$ and $C D \| E F$
As the angles on the same side of a transversal line sums up to $180^{\circ}, x$
$+y=180^{\circ}$
Also,
$\angle \mathrm{O}=\mathrm{z}$ (Since they are corresponding angles)
and, $y+\angle O=180^{\circ}$ (Since they are a linear pair)
So, $y+z=180^{\circ}$
Now, let $y=3 w$ and hence, $z=7 w($ As $y: z=3: 7$)
$\therefore 3 w+7 w=180^{\circ}$
Or, $10 \mathrm{w}=180^{\circ}$
So, $w=18^{\circ}$ Now, $y=3$
$\times 18^{\circ}=54^{\circ}$ and, $\mathrm{z}=7$
$\times 18^{\circ}=126^{\circ}$

NCERT Solutions For Class 9 Maths Chapter 6 - Lines and Angles

Now, angle x can be calculated from equation (i) x
$+y=180^{\circ}$
Or, $x+54^{\circ}=180^{\circ}$
$\therefore \mathrm{x}=126^{\circ}$
3. In Fig. 6.30, if $A B\left|\mid C D, E F \perp C D\right.$ and $\angle G E D=126^{\circ}$, find $\angle A G E, \angle G E F$ and $\angle F G E$.

Fig. 6.30

Solution:

Since $A B|\mid C D G E$ is a transversal.
It is given that $\angle \mathrm{GED}=126^{\circ}$
So, $\angle \mathrm{GED}=\angle \mathrm{AGE}=126^{\circ} \quad$ (As they are alternate interior angles)
Also,
$\angle \mathrm{GED}=\angle \mathrm{GEF}+\angle \mathrm{FED}$
As
$\mathrm{EF} \perp \mathrm{CD}, \angle \mathrm{FED}=90^{\circ}$
$\therefore \angle \mathrm{GED}=\angle \mathrm{GEF}+90^{\circ}$
Or, $\angle \mathrm{GEF}=126-90^{\circ}=36^{\circ}$
Again, $\angle \mathrm{FGE}+\angle \mathrm{GED}=180^{\circ}$ (Transversal)
Putting the value of $\angle \mathrm{GED}=126^{\circ}$ we get,
$\angle F G E=54^{\circ}$
So,
$\angle A G E=126^{\circ}$
$\angle G E F=36^{\circ}$ and
$\angle F G E=54^{\circ}$
4. In Fig. 6.31, if $P Q\left|\mid S T, \angle P Q R=110^{\circ}\right.$ and $\angle R S T=130^{\circ}$, find $\angle Q R S$.
[Hint : Draw a line parallel to ST through point R.]

Fig. 6.31

Solution:

First, construct a line XY parallel to PQ.

We know that the angles on the same side of transversal is equal to 180°.
So, $\angle P Q R+\angle Q R X=180^{\circ}$
Or, $\angle \mathrm{QRX}=180^{\circ}-110^{\circ}$
$\therefore \angle Q R X=70^{\circ}$
Similarly,
$\angle \mathrm{RST}+\angle \mathrm{SRY}=180^{\circ}$
Or, \angle SRY $=180^{\circ}-130^{\circ}$
$\therefore \angle \mathrm{SRY}=50^{\circ}$
Now, for the linear pairs on the line XY-
$\angle Q R X+\angle Q R S+\angle S R Y=180^{\circ}$
Putting their respective values we get,
$\angle Q R S=180^{\circ}-70^{\circ}-50^{\circ}$
Or, $\angle \mathrm{QRS}=60^{\circ}$
5. In Fig. 6.32, if $A B\left|\mid C D, \angle A P Q=50^{\circ}\right.$ and $\angle P R D=127^{\circ}$, find x and y.

EDUGRロSS

NCERT Solutions For Class 9 Maths Chapter 6 - Lines and Angles

Fig. 6.32

Solution:

From the diagram,
$\angle A P Q=\angle P Q R \quad$ (Alternate interior angles)
Now, putting the value of $\angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PQR}=x$ we get,
$\mathrm{x}=50^{\circ}$
Also,
$\angle A P R=\angle P R D \quad$ (Alternate interior angles)
Or, $\angle A P R=127^{\circ} \quad\left(\right.$ As it is given that $\left.\angle P R D=127^{\circ}\right)$
We know that
$\angle A P R=\angle A P Q+\angle Q P R$
Now, putting values of $\angle \mathrm{QPR}=\mathrm{y}$ and $\angle \mathrm{APR}=127^{\circ}$ we get,
$127^{\circ}=50^{\circ}+y$
Or, $y=77^{\circ}$
Thus, the values of x and y are calculated as:
$x=50^{\circ}$ and $y=77^{\circ}$
6. In Fig. 6.33, $P Q$ and $R S$ are two mirrors placed parallel to each other. An incident ray $A B$ strikes the mirror PQ at B, the reflected ray moves along the path $B C$ and strikes the mirror RS at C and again reflects back along CD. Prove that $A B|\mid C D$.

Fig. 6.33

Solution:

NCERT Solutions For Class 9 Maths Chapter 6 - Lines and Angles

First, draw two lines BE and CF such that BE T PQ and CF 0 RS.
Now, since PQ || RS,
So, $\mathrm{BE} \| \mathrm{CF}$

We know that,
Angle of incidence $=$ Angle of reflection \quad (By the law of reflection)
So,
$\angle 1=\angle 2$ and
$\angle 3=\angle 4$
We also know that alternate interior angles are equal. Here, $\mathrm{BE} \perp \mathrm{CF}$ and the transversal line BC cuts them at B and C

So, $\angle 2=\angle 3 \quad$ (As they are alternate interior angles)
Now, $\angle 1+\angle 2=\angle 3+\angle 4$
Or, $\angle A B C=\angle D C B$
So, $A B \| C D \quad$ (alternate interior angles are equal)
(Page No: 107)
Exercise: 6.3

1. In Fig. 6.39, sides $Q P$ and $R Q$ of $\triangle P Q R$ are produced to points S and T respectively. If $\angle S P R=$ 135° and $\angle P Q T=110^{\circ}$, find $\angle P R Q$.

Fig. 6.39

Solution:

It is given the TQR is a straight line and so, the linear pairs (i.e. $\angle T Q P$ and $\angle P Q R$) will add up to 180°

So, $\angle T Q P+\angle P Q R=180^{\circ}$
Now, putting the value of $\angle \mathrm{TQP}=110^{\circ}$ we get,
$\angle P Q R=70^{\circ}$
Consider the $\triangle P Q R$,
Here, the side QP is extended to S and so, $\angle S P R$ forms the exterior angle.
Thus, $\angle \mathrm{SPR}\left(\angle \mathrm{SPR}=135^{\circ}\right)$ is equal to the sum of interior opposite angles. (triangle property)

Or, $\angle P Q R+\angle P R Q=135^{\circ}$
Now, putting the value of $\angle P Q R=70^{\circ}$ we get,
$\angle P R Q=135^{\circ}-70^{\circ}$
Or, $\angle \mathrm{PRQ}=65^{\circ}$
2. In Fig. 6.40, $\angle X=62^{\circ}, \angle X Y Z=54^{\circ}$. If $Y O$ and $Z O$ are the bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively of $\triangle X Y Z$, find $\angle O Z Y$ and $\angle Y O Z$.

Fig. 6.40

Solution:

We know that the sum of the interior angles of the triangle.

So, $\angle X+\angle X Y Z+\angle X Z Y=$
180°
Putting the values as given in the question we get,
$62^{\circ}+54^{\circ}+\angle X Z Y=180^{\circ}$
Or, $\angle X Z Y=64^{\circ}$
Now, we know that ZO is the bisector so,
$\angle O Z Y=1 / 2 \angle X Z Y$
$\therefore \angle O Z Y=32^{\circ}$
Similarly, YO is a bisector and so,
$\angle O Y Z=1 / 2 \angle X Y Z$
Or, $\angle O Y Z=27^{\circ}$ (As $\angle X Y Z=54^{\circ}$)
Now, as the sum of the interior angles of the triangle,
$\angle O Z Y+\angle O Y Z+\angle O=180^{\circ}$
Putting their respective values we get,
$\angle O=180^{\circ}-32^{\circ}-27^{\circ}$
Or, $\angle \mathrm{O}=121^{\circ}$
3. In Fig. 6.41, if $A B\left|\mid D E, \angle B A C=35^{\circ}\right.$ and $\angle C D E=53^{\circ}$, find $\angle D C E$.

Fig. 6.41

Solution:

We know that $A E$ is a transversal since $A B$ || DE Here
$\angle B A C$ and $\angle A E D$ are alternate interior angles.
Hence, $\angle B A C=\angle A E D$
It is given that $\angle B A C=35^{\circ}$
$\Rightarrow \angle A E D=35^{\circ}$
Now consider the triangle CDE. We know that the sum of the interior angles of a triangle is 180°.
$\therefore \angle D C E+\angle C E D+\angle C D E=180^{\circ}$
Putting the values we get
4. In Fig. 6.42, if lines $P Q$ and RS intersect at point T, such that $\angle P R T=40^{\circ}, \angle R P T=95^{\circ}$ and $\angle T S Q=75^{\circ}$, find $\angle S Q T$.

Fig. 6.42

Solution:

Consider triangle PRT.
$\angle \mathrm{PRT}+\angle \mathrm{RPT}+\angle \mathrm{PTR}=180^{\circ}$
So, $\angle \mathrm{PTR}=45^{\circ}$
Now $\angle P T R$ will be equal to $\angle S T Q$ as they are vertically opposite angles.
So, $\angle \mathrm{PTR}=\angle \mathrm{STQ}=45^{\circ}$
Again in triangle $S T Q$,
$\angle T S Q+\angle P T R+\angle S Q T=180^{\circ}$
Solving this we get,
$\angle S Q T=60^{\circ}$
(Page No: 108)
5. In Fig. 6.43, if $P Q \perp P S, P Q| | S R, \angle S Q R=28^{\circ}$ and $\angle Q R T=65^{\circ}$, then find the values of x and y.

Fig. 6.43

Solution:
$\mathrm{x}+\angle \mathrm{SQR}=\angle \mathrm{QRT} \quad$ (As they are alternate angles since QR is transversal)
So, $x+28^{\circ}=65^{\circ}$
$\therefore \mathrm{x}=37^{\circ}$
It is also known that alternate interior angles are same and so,
$\angle Q S R=x=37^{\circ}$
also,
Now,
$\angle Q R S+\angle Q R T=180^{\circ} \quad$ (As they are a Linear pair)
Or, $\angle Q R S+65^{\circ}=180^{\circ}$
So, $\angle \mathrm{QRS}=115^{\circ}$
Now, we know that the sum of the angles in a quadrilateral is 360°. So,
$\angle P+\angle Q+\angle R+\angle S=360^{\circ}$
Putting their respective values we get,
$\angle \mathrm{S}=360^{\circ}-90^{\circ}-65^{\circ}-115^{\circ}$
Or, $\angle Q S R+y=360^{\circ}$
$\Rightarrow>y=360^{\circ}-90^{\circ}-65^{\circ}-115^{\circ}-37^{\circ}$
Or, $y=53^{\circ}$
6. In Fig. 6.44, the side QR of $\triangle P Q R$ is produced to a point S . If the bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T, then prove that $\angle Q T R=1 / 2 \angle Q P R$.

Fig. 6.44

Solution:

Consider the $\triangle P Q R$. $\angle P R S$ is the exterior angle and $\angle Q P R$ and $\angle P Q R$ are interior angles.
So, $\angle P R S=\angle Q P R+\angle P Q R \quad$ (According to triangle property)
Or, $\angle P R S-\angle P Q R=\angle Q P R$
(i)

Now, consider the $\triangle Q R T$,
$\angle T R S=\angle T Q R+\angle Q T R$
Or, $\angle Q T R=\angle T R S-\angle T Q R$
We know that QT and RT bisect $\angle P Q R$ and $\angle P R S$ respectively.
So, $\angle P R S=2 \angle T R S$ and $\angle P Q R=2 \angle T Q R$
Now, $\angle Q T R=1 / 2 \angle P R S-1 / 2 \angle P Q R$
Or, $\angle Q T R=1 / 2(\angle P R S-\angle P Q R)$
From (i) we know that $\angle P R S-\angle P Q R=\angle Q P R$
So, $\angle Q T R=1 / 2 \angle Q P R$ (hence proved).

