1. If a line makes angles $90^{\circ}, 135^{\circ}, \mathbf{4 5}^{\circ}$ with the x, y and z -axes respectively, find its direction cosines.

Solution:

Let the direction cosines of the line be $1, \mathrm{~m}$ and n .
Here let $\alpha=90^{\circ}, \beta=135^{\circ}$ and $\gamma=45^{\circ}$ So,
$\mathrm{l}=\cos \alpha, \mathrm{m}=\cos \beta$ and $\mathrm{n}=\cos \gamma$
So direction cosines are 1
$=\cos 90^{\circ}=0$
$\mathrm{m} \quad=\cos 135^{\circ}=\cos \left(180^{\circ}-45^{\circ}\right)=-\cos 45^{\circ}=-1 / \sqrt{2} \mathrm{n}=\cos 45^{\circ}=$ $1 / \sqrt{ } 2$
\therefore The direction cosines of the line are $0,-1 / \sqrt{ } 2,1 / \sqrt{ } 2$
2. Find the direction cosines of a line which makes equal angles with the coordinate axes.

Solution:

Given:
Angles are equal.
So let the angles be α, β, γ
Let the direction cosines of the line be $1, \mathrm{~m}$ and n
$1=\cos \alpha, m=\cos \beta$ and $n=\cos \gamma$
Here given $\alpha=\beta=\gamma$ (Since, line makes equal angles with the coordinate axes) ... (1)
The direction cosines are $1=\cos \alpha, \mathrm{m}=\cos \beta$ and $\mathrm{n}=\cos \gamma$ We have, $1^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=$ 1
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
From (1) we have,
$\cos ^{2}{ }_{2} \alpha+\cos ^{2} \alpha+\cos ^{2} \alpha$
$=1$
$3 \cos \alpha=1$
$\operatorname{Cos} \alpha= \pm \sqrt{ }(1 / 3)$
\therefore The direction cosines are $1= \pm$

$$
\sqrt{ }(1 / 3), \mathrm{m}= \pm \sqrt{ }(1 / 3), \mathrm{n}= \pm \sqrt{ }(1 / 3)
$$

3. If a line has the direction ratios $\mathbf{- 1 8}, \mathbf{1 2 ,}-\mathbf{4}$, then what are its direction cosines? Solution:

Given
Direction ratios as $-18,12,-4$
Where, $\mathrm{a}=-18, \mathrm{~b}=12, \mathrm{c}=-4$
Let us consider the direction ratios of the line as a, b and c Then the direction cosines are
$\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$

Where,

$$
\begin{aligned}
\sqrt{a^{2}+b^{2}+c^{2}} & =\sqrt{(-18)^{2}+12^{2}+(-4)^{2}} \\
& =\sqrt{324+144+16} \\
& =\sqrt{484} \\
& =22
\end{aligned}
$$

\therefore The direction cosines are $-18 / 22,12 / 22,-4 / 22$ => -9/11, 6/11, -2/11
4. Show that the points $(2,3,4),(-1,-2,1),(5,8,7)$ are collinear.

Solution:

If the direction ratios of two lines segments are proportional, then the lines are collinear. Given:
$\mathrm{A}(2,3,4), \mathrm{B}(-1,-2,1), \mathrm{C}(5,8,7)$
Direction ratio of line joining $\mathrm{A}(2,3,4)$ and $\mathrm{B}(-1,-2,1)$, are
$(-1-2),(-2-3),(1-4)=(-3,-5,-3)$
Where, $\mathrm{a}_{1}=-3, \mathrm{~b}_{1}=-5, \mathrm{c}_{1}=-3$
Direction ratio of line joining B $(-1,-2,1)$ and $C(5,8,7)$ are
$(5-(-1)),(8-(-2)),(7-1)=(6,10,6)$
Where, $\mathrm{a}_{2}=6, \mathrm{~b}_{2}=10$ and $\mathrm{c}_{2}=6$
Hence it is clear that the direction ratios of AB and BC are of same proportions By

$$
\begin{aligned}
& \frac{a_{1}}{a_{2}}=\frac{-3}{6}=-2 \\
& \frac{b_{1}}{b_{2}}=\frac{-5}{10}=-2
\end{aligned}
$$

And
$\frac{c_{1}}{c_{2}}=\frac{-3}{6}=-2$
$\therefore \mathrm{A}, \mathrm{B}, \mathrm{C}$ are collinear.

5. Find the direction cosines of the sides of the triangle whose vertices are (3,5,-4),

 $(-1,1,2)$ and ($-5,-5,-2$).Solution:
Given:
The vertices are $(3,5,-4),(-1,1,2)$ and $(-5,-5,-2)$.

$B(-1,1,2) \quad C(-5,-5,-2)$
The direction cosines of the two points passing through $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ is given by $\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right),\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right),\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)$

Firstly let us find the direction ratios of AB
Where, $\mathrm{A}=(3,5,-4)$ and $\mathrm{B}=(-1,1,2)$
Ratio of $A B=\left[\left(x_{2}-x_{1}\right)^{2},\left(y_{2}-y_{1}\right)^{2},\left(z_{2}-z_{1}\right)^{2}\right]$

$$
=(-1-3),(1-5),(2-(-4))=-4,-4,6
$$

Then by using the formula,

$$
\begin{aligned}
& \sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right] \\
& \left.\left.\begin{array}{rl}
\sqrt{ }\left[(-4)^{2}+(-4)^{2}+(6)^{2}\right]=\sqrt{ }(& 6
\end{array}\right)+16+36\right) \\
& \\
& =\sqrt{ } 68 \\
& \\
& =2 \sqrt{ } 17
\end{aligned}
$$

Now let us find the direction cosines of the line $A B$ By using the formula,

$$
\frac{\left(x_{2}-x_{1}\right)}{A B}, \frac{\left(y_{2}-y_{1}\right)}{A B}, \frac{\left(z_{2}-z_{1}\right)}{A B}
$$

$-4 / 2 \sqrt{ } 17,-4 / 2 \sqrt{ } 17,6 / 2 \sqrt{ } 17$
Or $-2 / \sqrt{ } 17,-2 / \sqrt{ } 17,3 / \sqrt{ } 17$

Similarly,
Let us find the direction ratios of BC
Where, $\mathrm{B}=(-1,1,2)$ and $\mathrm{C}=(-5,-5,-2)$
Ratio of $A B=\left[\left(x_{2}-x_{1}\right)^{2},\left(y_{2}-y_{1}\right)^{2},\left(z_{2}-z_{1}\right)^{2}\right]$

$$
=(-5+1),(-5-1),(-2-2)=-4,-6,-4
$$

Then by using the formula,

$$
\begin{aligned}
& \sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right] \\
& \sqrt{\sqrt{\left[(-4)^{2}+(-6)^{2}+(-4)^{2}\right]}=\sqrt{ }(16+36+16)} \\
& =\sqrt{68} \\
& =2 \sqrt{ } 17
\end{aligned}
$$

Now let us find the direction cosines of the line AB By using the formula,

$$
\frac{\left(x_{2}-x_{1}\right)}{A B}, \frac{\left(y_{2}-y_{1}\right)}{A B}, \frac{\left(z_{2}-z_{1}\right)}{A B}
$$

$-4 / 2 \sqrt{ } 17,-6 / 2 \sqrt{ } 17,-4 / 2 \sqrt{ } 17$
Or $-2 / \sqrt{ } 17,-3 / \sqrt{ } 17,-2 / \sqrt{ } 17$
Similarly,
Let us find the direction ratios of CA
Where, $\mathrm{C}=(-5,-5,-2)$ and $\mathrm{A}=(3,5,-4)$
Ratio of $A B=\left[\left(x_{2}-x_{1}\right)^{2},\left(y_{2}-y_{1}\right)^{2},\left(z_{2}-z_{1}\right)^{2}\right]$

$$
=(3+5),(5+5),(-4+2)=8,10,-2
$$

Then by using the formula,

$$
\begin{aligned}
& \sqrt{ }\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right] \\
& \begin{aligned}
\sqrt{ }\left[(8)^{2}+(10)^{2}+(-2)^{2}\right]=\sqrt{ }(& 64+100+4) \\
& =\sqrt{ } 168 \\
& =2 \sqrt{ } 42
\end{aligned}
\end{aligned}
$$

Now let us find the direction cosines of the line AB By using the formula,

$$
\frac{\left(x_{2}-x_{1}\right)}{A B}, \frac{\left(y_{2}-y_{1}\right)}{A B}, \frac{\left(z_{2}-z_{1}\right)}{A B}
$$

$8 / 2 \sqrt{ } 42,10 / 2 \sqrt{ } 42,-2 / 2 \sqrt{ } 42$
Or $4 / \sqrt{ } 42,5 / \sqrt{ } 42,-1 / \sqrt{ } 42$

1. Show that the three lines with direction cosines

$$
\frac{12}{13}, \frac{-3}{13}, \frac{-4}{13} ; \frac{4}{13}, \frac{12}{13}, \frac{3}{13} ; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13} \text { Are mutually perpendicular. }
$$

Solution:

Let us consider the direction cosines of $\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} be $\mathrm{l}_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1} ; \mathrm{l}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ and $\mathrm{l}_{3}, \mathrm{~m}_{3}, \mathrm{n}_{3}$.
We know that
If $\mathrm{l}_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1}$ and $\mathrm{l}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2}$ are the direction cosines of two lines;
And θ is the acute angle between the two lines;
Then $\cos \theta=\left|l_{1} l_{2}+m_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right|$

If two lines are perpendicular, then the angle between the two is $\theta=90^{\circ}$
For perpendicular lines, $\left|l_{1} 1_{2}+m_{1} m_{2}+n_{1} \mathrm{n}_{2}\right|=\cos 90^{\circ}=0$, i.e. $\left|1_{1} 1_{2}+m_{1} m_{2}+n_{1} n_{2}\right|=0$
So, in order to check if the three lines are mutually perpendicular, we compute $\mid 1_{1} 1_{2}+$ $m_{1} m_{2}+n_{1} n_{2} \mid$ for all the pairs of the three lines.

Firstly let us compute, $\left|\mathrm{l}_{1} \mathrm{l}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right|$

$$
\begin{aligned}
\left|1_{1} 1_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right| & =\left|\left(\frac{12}{13} \times \frac{4}{13}\right)+\left(\frac{-3}{13} \times \frac{12}{13}\right)+\left(\frac{-4}{13} \times \frac{3}{13}\right)\right|=\frac{48}{13}+\left(\frac{-36}{13}\right)+\left(\frac{-12}{13}\right) \\
& =\frac{48+(-48)}{13}=0
\end{aligned}
$$

So, $\mathrm{L}_{1} \perp \mathrm{~L}_{2} \ldots \ldots$ (1)

Similarly,
Let us compute, $\left|\mathrm{l}_{2} \mathrm{l}_{3}+\mathrm{m}_{2} \mathrm{~m}_{3}+\mathrm{n}_{2} \mathrm{n}_{3}\right|$

$$
\begin{align*}
\left|1_{2} 1_{3}+\mathrm{m}_{2} \mathrm{~m}_{3}+\mathrm{n}_{2} \mathrm{n}_{3}\right| & =\left|\left(\frac{4}{13} \times \frac{3}{13}\right)+\left(\frac{12}{13} \times \frac{-4}{13}\right)+\left(\frac{3}{13} \times \frac{12}{13}\right)\right|=\frac{12}{13}+\left(\frac{-48}{13}\right)+\frac{36}{13} \\
& =\frac{(-48)+48}{13}=0 \tag{2}
\end{align*}
$$

So, $\mathrm{L}_{2} \perp \mathrm{~L}_{3} \ldots .$.
Similarly,
Let us compute, $\left|l_{3} l_{1}+m_{3} m_{1}+n_{3} n_{1}\right|$

$$
\begin{aligned}
\left|1_{3} 1_{1}+m_{3} m_{1}+n_{3} n_{1}\right| & =\left|\left(\frac{3}{13} \times \frac{12}{13}\right)+\left(\frac{-4}{13} \times \frac{-3}{13}\right)+\left(\frac{12}{13} \times \frac{-4}{13}\right)\right|=\frac{36}{13}+\frac{12}{13}+\left(\frac{-48}{13}\right) \\
& =\frac{48+(-48)}{13}=0
\end{aligned}
$$

So, $\mathrm{L}_{1} \perp \mathrm{~L}_{3} \ldots \ldots$ (3)
$\therefore \mathrm{By}(1),(2)$ and (3), the lines are perpendicular. L_{1},
L_{2} and L_{3} are mutually perpendicular.
2. Show that the line through the points $(1,-1,2),(3,4,-2)$ is perpendicular to the line through the points $(0,3,2)$ and $(3,5,6)$.

Solution:

Given:
The points $(1,-1,2),(3,4,-2)$ and $(0,3,2),(3,5,6)$.

Let us consider AB be the line joining the points, $(1,-1,2)$ and $(3,4,-2)$, and CD be the line through the points $(0,3,2)$ and $(3,5,6)$.
Now,
The direction ratios, a_{1}, b_{1}, c_{1} of $A B$ are (3
$-1),(4-(-1)),(-2-2)=2,5,-4$.
Similarly,
The direction ratios, a_{2}, b_{2}, c_{2} of CD are (3
$-0),(5-3),(6-2)=3,2,4$.
Then, $A B$ and CD will be perpendicular to each other, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 a_{1} a_{2}$ $+b_{1} b_{2}+c_{1} c_{2}=2(3)+5(2)+4(-4)$

$$
\begin{aligned}
& =6+10-16 \\
& =0
\end{aligned}
$$

$\therefore \mathrm{AB}$ and CD are perpendicular to each other.
3. Show that the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1),(1,2,5)$.

Solution:

Given:
The points $(4,7,8),(2,3,4)$ and $(-1,-2,1),(1,2,5)$.
Let us consider AB be the line joining the points, $(4,7,8),(2,3,4)$ and CD be the line through the points $(-1,-2,1),(1,2,5)$.
Now,
The direction ratios, $\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}$ of AB are (2
$-4),(3-7),(4-8)=-2,-4,-4$.
The direction ratios, $\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}$ of CD are (1
$-(-1)),(2-(-2)),(5-1)=2,4,4$.
Then $A B$ will be parallel to $C D$, if
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
So, $a_{1} / a_{2}=-2 / 2=-1$
$b_{1} / b_{2}=-4 / 4=-1 c_{1} / c_{2}$
$=-4 / 4=-1$
\therefore We can say that,
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
$-1=-1=-1$
Hence, AB is parallel to CD where the line through the points $(4,7,8),(2,3,4)$ is parallel to the line through the points $(-1,-2,1),(1,2,5)$
4. Find the equation of the line which passes through the point $(1,2,3)$ and is parallel to the vector $3 \hat{i}+2 \hat{j}-2 \hat{k}$.
Solution:
Given:
Line passes through the point $(1,2,3)$ and is parallel to the vector.
We know that
Vector equation of a line that passes through a given point whose position vector is \vec{a} and parallel to a given vector \vec{b} is

$$
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}} .
$$

So, here the position vector of the point $(1,2,3)$ is given by

$$
\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k} \text { and the parallel vector is } 3 \hat{i}+2 \hat{j}-2 \hat{k}
$$

\therefore The vector equation of the required line is:

$$
\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})
$$

Where λ is constant.

5. Find the equation of the line in vector and in Cartesian form that passes through

 the point with position vector $2 \hat{i}-\hat{j}+4 \hat{k}$ and $\hat{i}+2 \hat{j}-\hat{k}$. is in the direction Solution:It is given that
Vector equation of a line that passes through a given point whose position
vector is \vec{a} and parallel to a given vector \vec{b} is $\vec{r}=\vec{a}+\lambda \vec{b}$
Here let, $\overrightarrow{\mathrm{a}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}$
So, the vector equation of the required line is:

$$
\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+4 \hat{\mathrm{k}}+\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})
$$

Now the Cartesian equation of a line through a point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direction cosines $1, \mathrm{~m}, \mathrm{n}$ is given by

$$
\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{l}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~m}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{n}}
$$

We know that if the direction ratios of the line are a, b, c, then

$$
1=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, n=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

The Cartesian equation of a line through a point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direction ratios $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is

$$
\frac{\mathrm{x}-\mathrm{x}_{1}}{\mathrm{a}}=\frac{\mathrm{y}-\mathrm{y}_{1}}{\mathrm{~b}}=\frac{\mathrm{z}-\mathrm{z}_{1}}{\mathrm{c}}
$$

Here, $\mathrm{x}_{1}=2, \mathrm{y}_{1}=-1, \mathrm{z}_{1}=4$ and $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=-1$
\therefore The Cartesian equation of the required line is:

$$
\frac{x-2}{1}=\frac{y-(-1)}{2}=\frac{z-4}{-1} \Rightarrow \frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{-1}
$$

6. Find the Cartesian equation of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by

$$
\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}
$$

Solution:

Given:
The points $(-2,4,-5)$

We know that
The Cartesian equation of a line through a point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direction ratios a, b, c is

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

Here, the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ is $(-2,4,-5)$ and the direction ratio is given by:

$$
a=3, b=5, c=6
$$

\therefore The Cartesian equation of the required line is:

$$
\frac{x-(-2)}{3}=\frac{y-4}{5}=\frac{z-(-5)}{6} \Rightarrow \frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}
$$

7. The Cartesian equation of a line is

$$
\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2} . \text { Write its vector form. }
$$

Solution:

Given:

The Cartesian equation is

$$
\begin{equation*}
\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2} \tag{1}
\end{equation*}
$$

We know that
The Cartesian equation of a line passing through a point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and having direction cosines $1, \mathrm{~m}, \mathrm{n}$ is
$\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$
So when comparing this standard form with the given equation, we get
$\mathrm{x}_{1}=5, \mathrm{y}_{1}=-4, \mathrm{z}_{1}=6$ and $\mathrm{l}=3, \mathrm{~m}=7, \mathrm{n}=2$

The point through which the line passes has the position vector $\overrightarrow{\mathrm{a}}=5 \mathrm{i}-4 \mathrm{j}+6 \mathrm{k}$ and
The vector parallel to the line is given by $\vec{b}=3 \hat{i}+7 \hat{j}+2 \hat{k}$
Since, vector equation of a line that passes through a given point whose position vector is \vec{a} and parallel to a given vector \vec{b} is $\vec{r}=\vec{a}+\lambda \vec{b}$
\therefore The required line in vector form is given as:

$$
\overrightarrow{\mathrm{r}}=(5 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})+\lambda(3 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})
$$

8. Find the vector and the Cartesian equations of the lines that passes through the origin and $(5,-2,3)$. Solution:

Given:
The origin $(0,0,0)$ and the point $(5,-2,3)$
We know that
The vector equation of as line which passes through two points whose position vectors are \vec{a} and \vec{b} is $\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$

Here, the position vectors of the two points $(0,0,0)$ and $(5,-2,3)$ are $\overrightarrow{\mathrm{a}}=0 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$, respectively.
\therefore The vector equation of the required line is given as:
$\overrightarrow{\mathrm{r}}=0 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}+\lambda[(5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})-(0 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}+0 \hat{\mathrm{k}})]$
$\overrightarrow{\mathrm{r}}=\lambda(5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$
Now, by using the formula,
Cartesian equation of a line that passes through two points ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and (x_{2}, $\mathrm{y}_{2}, \mathrm{z}_{2}$) is given as
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
So, the Cartesian equation of the line that passes through the origin $(0,0,0)$ and $(5,-2,3)$ is
$\frac{x-0}{5-0}=\frac{y-0}{-2-0}=\frac{z-0}{3-0} \Rightarrow \frac{x}{5}=\frac{y}{-2}=\frac{z}{3}$
\therefore The vector equation is

$$
\overrightarrow{\mathrm{r}}=\lambda(5 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})
$$

The Cartesian equation is

$$
\frac{x}{5}=\frac{y}{-2}=\frac{z}{3}
$$

9. Find the vector and the Cartesian equations of the line that passes through the points (3, $-2,-5$), ($3,-2,6$).

Solution:

Given:

The points $(3,-2,-5)$ and $(3,-2,6)$
Firstly let us calculate the vector form:
The vector equation of as line which passes through two points whose position vectors are \vec{a} and \vec{b} is $\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$

Here, the position vectors of the two points $(3,-2,-5)$ and $(3,-2,6)$ are $\vec{a}=3 \hat{i}-2 \hat{j}-5 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+6 \hat{k}$ respectively.
\therefore The vector equation of the required line is:

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}+\lambda[(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})-(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})] \\
& \overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}+\lambda(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}-3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}) \\
& \overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}+\lambda(11 \hat{\mathrm{k}})
\end{aligned}
$$

Now,
By using the formula,
Cartesian equation of a line that passes through two points ($\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}$) and (x_{2}, $\mathrm{y}_{2}, \mathrm{z}_{2}$) is
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
So, the Cartesian equation of the line that passes through the origin $(3,-2,-5)$ and $(3,-2,6)$ is
$\frac{x-3}{3-3}=\frac{y-(-2)}{(-2)-(-2)}=\frac{z-(-5)}{6-(-5)}$
$\frac{x-3}{0}=\frac{y+2}{0}=\frac{z+5}{11}$
\therefore The vector equation is
$\overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}+\lambda(11 \hat{\mathrm{k}})$
The Cartesian equation is
$\frac{x-3}{0}=\frac{y+2}{0}=\frac{z+5}{11}$
10. Find the angle between the following pairs of lines:
(i) $\vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k})$ and
$\overrightarrow{\mathrm{r}}=7 \hat{\mathrm{i}}-6 \hat{\mathrm{k}}+\mu(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
(ii) $\overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$ and
$\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-\overrightarrow{\mathrm{j}}-56 \hat{\mathrm{k}}+\mu(3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})$
Solution:

Let us consider θ be the angle between the given lines.
If θ is the acute angle between $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ then
$\cos \theta=\left|\frac{\overrightarrow{b_{1}} \overrightarrow{b_{2}}}{\left|\overrightarrow{b_{1}}\right|\left|\overrightarrow{b_{2}}\right|}\right|$
(i) $\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}+\hat{\mathrm{k}}+\lambda(3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$ and
$\overrightarrow{\mathrm{r}}=7 \hat{\mathrm{i}}-6 \hat{\mathrm{k}}+\mu(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
Here $\overrightarrow{\mathrm{b}_{1}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}_{2}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
So, from equation (1), we have

$$
\begin{equation*}
\cos \theta=\left|\frac{(3 \hat{i}+2 \hat{j}+6 \hat{k}) \cdot(\hat{i}+2 \hat{j}+2 \hat{k})}{|3 \hat{i}+2 \hat{j}+6 \hat{k}| \cdot|\hat{i}+2 \hat{j}+2 \hat{k}|}\right| \tag{2}
\end{equation*}
$$

We know that,

$$
|a \hat{i}+b \hat{j}+c \hat{k}|=\sqrt{a^{2}+b^{2}+c^{2}}
$$

So,

$$
|3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}|=\sqrt{3^{2}+2^{2}+6^{2}}=\sqrt{9+4+36}=\sqrt{49}=7
$$

And

$$
|\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}|=\sqrt{1^{2}+2^{2}+2^{2}}=\sqrt{1+4+4}=\sqrt{9}=3
$$

Now, we know that

$$
\left(a_{1} \hat{\mathrm{i}}+\mathrm{b}_{1} \hat{\mathrm{j}}+\mathrm{c}_{1} \hat{\mathrm{k}}\right) \cdot\left(\mathrm{a}_{2} \hat{\mathrm{i}}+\mathrm{b}_{2} \hat{\mathrm{j}}+\mathrm{c}_{2} \hat{\mathrm{k}}\right)=\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}
$$

So,

$$
(3 \hat{i}+2 \hat{j}+6 \hat{k}) \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})=3 \times 1+2 \times 2+6 \times 2=3+4+12=19
$$

By (2), we have

$$
\begin{aligned}
& \cos \theta=\frac{19}{7 \times 3}=\frac{19}{21} \\
& \theta=\cos ^{-1}\left(\frac{19}{21}\right)
\end{aligned}
$$

(ii) $\overrightarrow{\mathrm{r}}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}-\overrightarrow{\mathrm{j}}-56 \hat{\mathrm{k}}+\mu(3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})$
Here, $\overrightarrow{\mathrm{b}_{1}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}_{2}}=3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
So, from (1), we have

$$
\begin{equation*}
\cos \theta=\left|\frac{(\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \cdot(3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})}{|\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}||3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}|}\right| \tag{3}
\end{equation*}
$$

We know that,

$$
|a \hat{i}+b \hat{j}+c \hat{k}|=\sqrt{a^{2}+b^{2}+c^{2}}
$$

So,
$|\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}|=\sqrt{1^{2}+(-1)^{2}+2^{2}}=\sqrt{1+1+4}=\sqrt{6}=\sqrt{3} \times \sqrt{2}$
And

$$
|3 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}|=\sqrt{3^{2}+(-5)^{2}+(-4)^{2}}=\sqrt{9+25+16}=\sqrt{50}=5 \sqrt{2}
$$

Now, we know that

$$
\begin{aligned}
& \left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} \\
& \therefore(\hat{i}-\hat{j}-2 \hat{k}) \cdot(3 \hat{i}-5 \hat{j}-4 \hat{k})=1 \times 3+(-1) \times(-5)+(-2) \times(-4)=3+5+8=16
\end{aligned}
$$

By (3), we have

$$
\begin{aligned}
& \cos \theta=\frac{16}{\sqrt{3} \times \sqrt{2} \times 5 \sqrt{2}}=\frac{16}{5 \times 2 \sqrt{3}}=\frac{8}{5 \sqrt{3}} \\
& \theta=\cos ^{-1}\left(\frac{8}{5 \sqrt{3}}\right)
\end{aligned}
$$

11. Find the angle between the following pair of lines:
(i) $\frac{x-2}{2}=\frac{y-1}{5}-\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}-\frac{z-5}{4}$
(ii) $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}$ and $\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$

Solution:

We know that
If

$$
\frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}} \text { and } \frac{x-x_{2}}{l_{2}}=\frac{y-y_{2}}{m_{2}}=\frac{z-z_{2}}{n_{2}} \text { are the equations of }
$$

two lines, then the acute angle between the two lines is given by
$\cos \theta=\left|\mathrm{l}_{1} \mathrm{l}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right| \ldots \ldots$ (1)
(i) $\frac{x-2}{2}=\frac{y-1}{5}-\frac{z+3}{-3}$ and $\frac{x+2}{-1}=\frac{y-4}{8}-\frac{z-5}{4}$

Here, $a_{1}=2, b_{1}=5, c_{1}=-3$ and
$\mathrm{a}_{2}=-1, \mathrm{~b}_{2}=8, \mathrm{c}_{2}=4$
Now,

$$
\begin{equation*}
1=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, m=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \mathrm{n}=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} \tag{2}
\end{equation*}
$$

Here, we know that

$$
\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}}=\sqrt{2^{2}+5^{2}+(-3)^{2}}=\sqrt{4+25+9}=\sqrt{38}
$$

And

$$
\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}=\sqrt{(-1)^{2}+8^{2}+4^{2}}=\sqrt{1+64+16}=\sqrt{81}=9
$$

So, from equation (2), we have

$$
\begin{aligned}
l_{1}=\frac{a_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\frac{2}{\sqrt{38}}, m_{1}=\frac{b_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\frac{5}{\sqrt{38}}, n_{1} & =\frac{c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}} \\
& =\frac{-3}{\sqrt{38}}
\end{aligned}
$$

And

$$
l_{2}=\frac{a_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}=\frac{-1}{9}, m_{2}=\frac{b_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}=\frac{8}{9}, n_{2}=\frac{c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}=\frac{4}{9}
$$

\therefore From equation (1), we have

$$
\begin{aligned}
& \cos \theta=\left|\left(\frac{2}{\sqrt{38}}\right) \times\left(\frac{-1}{9}\right)+\left(\frac{5}{\sqrt{38}}\right) \times\left(\frac{8}{9}\right)+\left(\frac{-3}{\sqrt{38}}\right) \times\left(\frac{4}{9}\right)\right| \\
& =\left|\frac{-2+40-12}{9 \sqrt{38}}\right|=\left|\frac{40-12}{9 \sqrt{38}}\right|=\frac{26}{9 \sqrt{38}} \\
& \theta=\cos ^{-1}\left(\frac{26}{9 \sqrt{38}}\right) \\
& \text { (ii) } \frac{x}{2}=\frac{y}{2}=\frac{z}{1} \text { and } \frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}
\end{aligned}
$$

Here, $a_{1}=2, b_{1}=2, c_{1}=1$ and
$\mathrm{a}_{2}=4, \mathrm{~b}_{2}=1, \mathrm{c}_{2}=8$
Here, we know that

$$
\sqrt{\mathrm{a}_{1}^{2}+\mathrm{b}_{1}^{2}+\mathrm{c}_{1}^{2}}=\sqrt{2^{2}+2^{2}+1^{2}}=\sqrt{4+4+1}=\sqrt{9}=3
$$

And
$\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}=\sqrt{4^{2}+1^{2}+8^{2}}=\sqrt{16+1+64}=\sqrt{81}=9$
So, from equation (2), we have

$$
l_{1}=\frac{a_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\frac{2}{3}, m_{1}=\frac{b_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\frac{2}{3}, n_{1}=\frac{c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\frac{1}{3}
$$

And

$$
1_{2}=\frac{\mathrm{a}_{2}}{\sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}^{2}}}=\frac{4}{9}, \mathrm{~m}_{2}=\frac{\mathrm{b}_{2}}{\sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}^{2}}}=\frac{1}{9}, \mathrm{n}_{2}=\frac{\mathrm{c}_{2}}{\sqrt{\mathrm{a}_{2}^{2}+\mathrm{b}_{2}^{2}+\mathrm{c}_{2}^{2}}}=\frac{8}{9}
$$

\therefore From equation (1), we have

$$
\begin{aligned}
& \cos \theta=\left|\left(\frac{2}{3} \times \frac{4}{9}\right)+\left(\frac{2}{3} \times \frac{1}{9}\right)+\left(\frac{1}{3} \times \frac{8}{9}\right)\right|=\left|\frac{8+2+8}{27}\right|=\frac{18}{27}=\frac{2}{3} \\
& \theta=\cos ^{-1}\left(\frac{2}{3}\right)
\end{aligned}
$$

12. Find the values of p so that the lines

$$
\frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2} \text { and } \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}
$$

are at right angles.

Solution:

The standard form of a pair of Cartesian lines is:

$$
\begin{equation*}
\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \text { and } \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}} \tag{1}
\end{equation*}
$$

So the given equations can be written according to the standard form, i.e.

$$
\begin{align*}
& \frac{-(x-1)}{3}=\frac{7(y-2)}{2 p}=\frac{z-3}{2} \quad \frac{-7(x-1)}{3 p}=\frac{y-5}{1}=\frac{-(z-6)}{5} \\
& \frac{x-1}{-3}=\frac{y-2}{2 p / 7}=\frac{z-3}{2} \quad \frac{x-1}{-3 p / 7}=\frac{y-5}{1}=\frac{z-6}{-5} \tag{2}
\end{align*}
$$

Now, comparing equation (1) and (2), we get

$$
\mathrm{a}_{1}=-3, \mathrm{~b}_{1}=\frac{2 \mathrm{p}}{7}, \mathrm{c}_{1}=2 \text { and } \mathrm{a}_{2}=\frac{-3 \mathrm{p}}{7}, \mathrm{~b}_{2}=1, \mathrm{c}_{2}=-5
$$

So the direction ratios of the lines are
$-3,2 \mathrm{p} / 7,2$ and $-3 \mathrm{p} / 7,1,-5$
Now, as both the lines are at right angles,
So, $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$

$$
(-3)(-3 \mathrm{p} / 7)+(2 \mathrm{p} / 7)(1)+2(-5)=0
$$

$9 \mathrm{p} / 7+2 \mathrm{p} / 7-10=0$
$(9 p+2 p) / 7=10$
$11 \mathrm{p} / 7=10$
$11 \mathrm{p}=70 \mathrm{p}$
$=70 / 11$
\therefore The value of p is $70 / 11$

13. Show that the lines

$$
\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \text { and } \frac{x}{1}=\frac{y}{2}=\frac{z}{3} \text { are perpendicular to each other. }
$$

Solution:
The equations of the given lines are

$$
\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \text { and } \frac{x}{1}=\frac{y}{2}=\frac{z}{3}
$$

Two lines with direction ratios is given as
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
So the direction ratios of the given lines are $7,-5,1$ and $1,2,3$
i.e., $a_{1}=7, b_{1}=-5, c_{1}=1$ and $a_{2}=1, b_{2}=2, c_{2}=3$ Now,

Considering

$$
\begin{aligned}
\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2} & =7 \times 1+(-5) \times 2+1 \times 3 \\
& =7-10+3 \\
& =-3+3 \\
& =0
\end{aligned}
$$

\therefore The two lines are perpendicular to each other.

14. Find the shortest distance between the lines

$$
\begin{aligned}
& \vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and } \\
& \vec{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

Solution:

We know that the shortest distance between two
lines $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}_{2}}$ is given as:

$$
\begin{equation*}
\mathrm{d}=\left|\frac{\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)}{\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|}\right| \tag{1}
\end{equation*}
$$

Here by comparing the equations we get,

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}_{1}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{~b}_{1}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}} \text { and } \\
& \overrightarrow{\mathrm{a}_{2}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{~b}_{2}}=2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{k}
\end{aligned}
$$

Now,

$$
\begin{align*}
& \left(x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}\right)-\left(x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}\right)=\left(x_{1}-x_{2}\right) \hat{i}+\left(y_{1}-y_{2}\right) \hat{j}+\left(z_{1}-z_{2}\right) \hat{k} \\
& \overrightarrow{a_{2}}-\overrightarrow{a_{1}}=(2 \hat{i}-\hat{j}-\hat{k})-(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-3 \hat{j}-2 \hat{k} \tag{2}
\end{align*}
$$

Now,
$\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}) \times(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})$

$$
\begin{align*}
& \quad=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
1 & -1 & 1 \\
2 & 1 & 2
\end{array}\right| \\
& =-3 \hat{\mathrm{i}}+3 \hat{\mathrm{k}} \\
& \Rightarrow \overrightarrow{\mathrm{~b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=-3 \hat{\mathrm{i}}+3 \hat{\mathrm{k}} \ldots \ldots \ldots(3) \tag{3}\\
& \Rightarrow\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|=\sqrt{(-3)^{2}+3^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2} \tag{4}
\end{align*}
$$

Now,

$$
\begin{align*}
& \left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} \\
& \left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)=(-3 \hat{i}+3 \hat{k}) \cdot(\hat{i}-3 \hat{j}-2 \hat{k})=-3-6=-9 \tag{5}
\end{align*}
$$

Now, by substituting all the values in equation (1), we get
The shortest distance between the two lines,

$$
\begin{aligned}
d & =\left|\frac{-9}{3 \sqrt{2}}\right| \\
& =\frac{9}{3 \sqrt{2}} \\
& =\frac{3}{\sqrt{2}}
\end{aligned}
$$

\therefore The shortest distance is $3 \sqrt{ } 2 / 2$
15. Find the shortest distance between the lines
$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$
Solution:
We know that the shortest distance between two lines

$$
\begin{align*}
& \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \text { and } \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} \text { is given as: } \\
& d=\frac{\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|}{\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}} \tag{1}
\end{align*}
$$

The standard form of a pair of Cartesian lines is:

$$
\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \text { and } \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}
$$

And the given equations are:

$$
\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \text { and } \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
$$

Now let us compare the given equations with the standard form we get,
$\mathrm{x}_{1}=-1, \mathrm{y}_{1}=-1, \mathrm{z}_{1}=-1$;
$\mathrm{x}_{2}=3, \mathrm{y}_{2}=5, \mathrm{z}_{2}=7$
$a_{1}=7, b_{1}=-6, c_{1}=1$;
$\mathrm{a}_{2}=1, \mathrm{~b}_{2}=-2, \mathrm{c}_{2}=1$
Now, consider

$$
\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=\left|\begin{array}{ccc}
3-(-1) & 5-(-1) & 7-(-1) \\
7 & -6 & 1 \\
1 & -2 & 1
\end{array}\right|=\left|\begin{array}{ccc}
3+1 & 5+1 & 7+1 \\
7 & -6 & 1 \\
1 & -2 & 1
\end{array}\right|
$$

$$
=\left|\begin{array}{ccc}
4 & 6 & 8 \\
7 & -6 & 1 \\
1 & -2 & 1
\end{array}\right|
$$

$=4(-6+2)-6(7-1)+8(-14+6)$
$=4(4)-6(6)+8(-8)$
$=-16-36-64$
$=-116$
Now we shall consider

$$
\begin{aligned}
& \sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}} \\
& =\sqrt{((-6 \times 1)-(-2 \times 1))^{2}+((1 \times 1)-(1 \times 7))^{2}+((7 \times-2)-(1 \times-6))^{2}} \\
& =\sqrt{(-6+2)^{2}+(1-7)^{2}+(-14+6)^{2}}=\sqrt{(-4)^{2}+(-6)^{2}+(-8)^{2}} \\
& =\sqrt{16+36+64}=\sqrt{116}
\end{aligned}
$$

By substituting all the values in equation (1), we get
The shortest distance between the two lines,

$$
d=\left|\frac{-116}{\sqrt{116}}\right|=\frac{116}{\sqrt{116}}=\sqrt{116}=2 \sqrt{29}
$$

\therefore The shortest distance is $2 \sqrt{ } 29$
16. Find the shortest distance between the lines whose vector equations are

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}) \text { and } \\
& \overrightarrow{\mathrm{r}}=4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}})
\end{aligned}
$$

Solution:

We know that shortest distance between two lines $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}_{2}}$ is given as:
$\mathrm{d}=\left|\frac{\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)}{\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|}\right|$

Here by comparing the equations we get,

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}_{1}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{~b}_{1}}=\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}} \text { and } \\
& \overrightarrow{\mathrm{a}_{2}}=4 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}, \overrightarrow{\mathrm{~b}_{2}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}
\end{aligned}
$$

Now let us subtract the above equations we get,

$$
\begin{align*}
& \left(x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}\right)-\left(x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}\right)=\left(x_{1}-x_{2}\right) \hat{\mathrm{i}}+\left(y_{1}-y_{2}\right) \hat{j}+\left(z_{1}-z_{2}\right) \hat{k} \\
& \overrightarrow{a_{2}}-\overrightarrow{a_{1}}=(4 \hat{i}+5 \hat{j}+6 \hat{k})-(\hat{\mathrm{i}}+2 \hat{j}+3 \hat{k})=3 \hat{\mathrm{i}}+3 \hat{j}+3 \hat{k} \tag{2}
\end{align*}
$$

And,

$$
\left.\begin{array}{rl}
\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}} & =(\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}) \times(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}) \\
& =\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{k} \\
1 & -3 & 2 \\
2 & 3 & 1
\end{array}\right| \\
& =-9 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+9 \hat{\mathrm{k}}
\end{array}\right] \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=-9 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+9 \hat{\mathrm{k}} \ldots \ldots \ldots .(3) \mathrm{C}=\sqrt{81+9+81}=\sqrt{171}=3 \sqrt{19} .
$$

Now by multiplying equation (2) and (3) we get,

$$
\begin{align*}
& \left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} \\
& \left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)=(-9 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+9 \hat{k}) \cdot(3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=-27+9+27=9 \tag{5}
\end{align*}
$$

By substituting all the values in equation (1), we obtain
The shortest distance between the two lines,

$$
\mathrm{d}=\left|\frac{9}{3 \sqrt{19}}\right|=\frac{9}{3 \sqrt{19}}=\frac{3}{\sqrt{19}}
$$

\therefore The shortest distance is $3 \sqrt{ } 19$
17. Find the shortest distance between the lines whose vector equations are

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}=(1-\mathrm{t}) \hat{\mathrm{i}}+(\mathrm{t}-2) \hat{\mathrm{j}}+(3-2 \mathrm{t}) \hat{\mathrm{k}} \text { and } \\
& \overrightarrow{\mathrm{r}}=(\mathrm{s}+1) \hat{\mathrm{i}}+(2 \mathrm{~s}-1) \hat{\mathrm{j}}-(2 \mathrm{~s}+1) \hat{\mathrm{k}}
\end{aligned}
$$

Solution:

Firstly let us consider the given equations

$$
\begin{aligned}
& \Rightarrow \overrightarrow{\mathrm{r}}=(1-\mathrm{t}) \hat{\mathrm{i}}+(\mathrm{t}-2) \hat{\mathrm{j}}+(3-2 \mathrm{t}) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-\mathrm{t} \hat{\mathrm{i}}+\mathrm{t} \hat{\mathrm{j}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}-2 \mathrm{t} \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\mathrm{t}(-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \\
& \Rightarrow \overrightarrow{\mathrm{r}}=(\mathrm{s}+1) \hat{\mathrm{i}}+(2 \mathrm{~s}-1) \hat{\mathrm{j}}-(2 \mathrm{~s}+1) \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{r}}=s \hat{\mathrm{i}}+\hat{\mathrm{i}}+2 \mathrm{~s} \mathrm{j}-\hat{\mathrm{j}}-2 s \hat{\mathrm{k}}-\hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}+\mathrm{s}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})
\end{aligned}
$$

So now we need to find the shortest distance between

$$
\overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}+\mathrm{t}(-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \text { and } \overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}+\mathrm{s}(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})
$$

We know that shortest distance between two lines
$\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ is given as:

$$
\begin{equation*}
\mathrm{d}=\left|\frac{\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\overrightarrow{\mathrm{b}_{2}}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)}{\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|}\right| \tag{1}
\end{equation*}
$$

Here by comparing the equations we get,

$$
\begin{aligned}
& \overrightarrow{\mathrm{a}_{1}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{k}, \overrightarrow{\mathrm{~b}_{1}}=-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}} \text { and } \\
& \overrightarrow{\mathrm{a}_{2}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}, \overrightarrow{\mathrm{~b}_{2}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{k}
\end{aligned}
$$

Since,
$\left(x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}\right)-\left(x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{k}\right)=\left(x_{1}-x_{2}\right) \hat{i}+\left(y_{1}-y_{2}\right) \hat{j}+\left(z_{1}-z_{2}\right) \hat{k}$
So,

$$
\overrightarrow{a_{2}}-\overrightarrow{a_{1}}=(\hat{i}-\hat{j}-\hat{k})-(\hat{i}-2 \hat{j}+3 \hat{k})=\hat{j}-4 \hat{k}
$$

And,

$$
\left.\begin{array}{rl}
\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}} & =(-\hat{\mathrm{i}}+\hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \times(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}) \\
& =\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
-1 & 1 & -2 \\
1 & 2 & -2
\end{array}\right| \\
& =2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}
\end{array}\right] \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} \ldots \ldots \ldots(3) .
$$

Now by multiplying equation (2) and (3) we get,

$$
\begin{align*}
& \left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} \\
& \left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)=(2 \hat{i}-4 \hat{j}-3 \hat{k}) \cdot(\hat{j}-4 \hat{k})=-4+12=8 \tag{5}
\end{align*}
$$

By substituting all the values in equation (1), we obtain The shortest distance between the two lines,

$$
\mathrm{d}=\left|\frac{8}{\sqrt{29}}\right|=\frac{8}{\sqrt{29}}
$$

\therefore The shortest distance is $8 \sqrt{ } 29$

1. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
(a) $\mathrm{z}=2$
(b) $x+y+z=1$
(c) $2 \mathrm{x}+\mathbf{3 y}-\mathrm{z}=\mathbf{5}$ (d) $\mathbf{5 y}+\mathbf{8}=\mathbf{0}$ Solution: (a) $\mathrm{z}=2$ Given:

The equation of the plane, $\mathrm{z}=2$ or $0 \mathrm{x}+0 \mathrm{y}+\mathrm{z}=2 \ldots$. (1)
Direction ratio of the normal $(0,0,1)$
By using the formula,

$$
\begin{aligned}
\left.\sqrt{[}(0)^{2}+(0)^{2}+(1)^{2}\right] & =\sqrt{ } 1 \\
& =1
\end{aligned}
$$

Now,
Divide both the sides of equation (1) by 1 , we get
$0 x /(1)+0 y /(1)+z / 1=2$
So this is of the form $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{d}$
Where, $1, \mathrm{~m}, \mathrm{n}$ are the direction cosines and d is the distance :
The direction cosines are $0,0,1$
Distance (d) from the origin is 2 units
(b) $x+y+z=1$

Given:
The equation of the plane, $x+y+z=1 \ldots$ (1)
Direction ratio of the normal $(1,1,1)$
By using the formula,
$\sqrt{ }\left[(1)^{2}+(1)^{2}+(1)^{2}\right]=\sqrt{3}$
Now,
Divide both the sides of equation (1) by $\sqrt{ } 3$, we get
$x /(\sqrt{3})+y /(\sqrt{3})+z /(\sqrt{3})=1 / \sqrt{3}$ So this is of the
form $1 \mathrm{x}+\mathrm{my}+\mathrm{nz}=\mathrm{d}$
Where, $1, \mathrm{~m}, \mathrm{n}$ are the direction cosines and d is the distance
\therefore The direction cosines are $1 / \sqrt{ } 3,1 / \sqrt{ } 3,1 / \sqrt{3}$

Distance (d) from the origin is $1 / \sqrt{3}$ units
(c) $2 x+3 y-z=5$

Given:
The equation of the plane, $2 \mathrm{x}+3 \mathrm{y}-\mathrm{z}=5 \ldots$ (1)
Direction ratio of the normal ($2,3,-1$)
By using the formula,
$\sqrt{ }\left[(2)^{2}+(3)^{2}+(-1)^{2}\right]=\sqrt{ } 14$
Now,
Divide both the sides of equation (1) by $\sqrt{ } 14$, we get
$2 x /(\sqrt{ } 14)+3 y /(\sqrt{ } 14)-z /(\sqrt{ } 14)=5 / \sqrt{ } 14$
So this is of the form $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{d}$
Where, $1, \mathrm{~m}, \mathrm{n}$ are the direction cosines and d is the distance
\therefore The direction cosines are $2 / \sqrt{ } 14,3 / \sqrt{ } 14,-1 / \sqrt{ } 14$
Distance (d) from the origin is $5 / \sqrt{ } 14$ units
(d) $5 y+8=0$ Given:

The equation of the plane, $5 \mathrm{y}+8=0$
$-5 y=8$ or
$0 x-5 y+0 z=8$
Direction ratio of the normal $(0,-5,0)$
By using the formula,

$$
\begin{aligned}
\left.\sqrt{[}(0)^{2}+(-5)^{2}+(0)^{2}\right] & =\sqrt{ } 25 \\
& =5
\end{aligned}
$$

Now,
Divide both the sides of equation (1) by 5 , we get
$0 x /(5)-5 y /(5)-0 z /(5)=8 / 5$
So this is of the form $1 \mathrm{x}+\mathrm{my}+\mathrm{nz}=\mathrm{d}$
Where, $1, \mathrm{~m}, \mathrm{n}$ are the direction cosines and d is the distance
\therefore The direction cosines are $0,-1,0$
Distance (d) from the origin is $8 / 5$ units
2. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector
$3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}$.

Solution:

Given:
The vector $3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}$.
Vector eq. of the plane with position vector $\overrightarrow{\mathrm{r}}$ is
$\overrightarrow{\mathrm{r}} . \hat{\mathrm{n}}=\mathrm{d} \ldots$ (1)
So,

$$
\begin{aligned}
\hat{\mathrm{n}}=\frac{\overrightarrow{\mathrm{n}}}{|\overrightarrow{\mathrm{n}}|} & =\frac{3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}}{\sqrt{9+25+36}} \\
& =\frac{3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}}{\sqrt{70}}
\end{aligned}
$$

Substituting in equation (1), we get
$\overrightarrow{\mathrm{r}} \cdot \frac{3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}}{\sqrt{70}}=7$
$\overrightarrow{\mathrm{r}} .3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}=7 \sqrt{70}$
\therefore The required vector equation is $\overrightarrow{\mathrm{r}} \cdot 3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-6 \hat{\mathrm{k}}=7 \sqrt{70}$
3. Find the Cartesian equation of the following planes:
(a) $\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})=2$

Solution:

Given:
The equation of the plane.

Let $\overrightarrow{\mathrm{r}}$ be the position vector of $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is given by

$$
\overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}
$$

So,
$\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})=2$
Substituting the value of \vec{r}, we get
$(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}+\hat{j}-\hat{k})=2$
\therefore The Cartesian equation is
$x+y-z=2$
(b) $\vec{r} \cdot(2 \widehat{i}+3 \widehat{j}-4 \widehat{k})=1$

Solution:

Let $\overrightarrow{\mathrm{r}}$ be the position vector of $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is given by

$$
\overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}
$$

So,
$\overrightarrow{\mathrm{r}} .(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{4} \mathrm{k})=1$
Substituting the value of $\overrightarrow{\mathrm{r}}$, we get

$$
(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(2 \hat{i}+3 \hat{j}-4 \hat{k})=1
$$

\therefore The Cartesian equation is
$2 x+3 y-4 z=1$
(c) $\overrightarrow{\mathrm{r}} .[(\mathrm{s}-2 \mathrm{t}) \hat{\mathrm{i}}+(3-\mathrm{t}) \hat{\mathrm{j}}+(2 \mathrm{~s}+\mathrm{t}) \hat{\mathrm{k}}]=15$

Solution:

Let $\overrightarrow{\mathrm{r}}$ be the position vector of $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ is given by

$$
\overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}
$$

So,
$\overrightarrow{\mathrm{r}} \cdot[(\mathrm{s}-2 \mathrm{t}) \hat{\mathrm{i}}+(3-\mathrm{t}) \hat{\mathrm{j}}+(2 \mathrm{~s}+\mathrm{t}) \hat{\mathrm{k}}]=15$
Substituting the value of $\overrightarrow{\mathrm{r}}$, we get

$$
(x \hat{i}+y \hat{j}+z \hat{k}) \cdot[(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15
$$

\therefore The Cartesian equation is
$(s-2 t) x+(3-t) y+(2 s+t) z=15$
4. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin. (a) $2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}-12=0$
(b) $3 y+4 z-6=0$
(c) $x+y+z=1$ (d) $5 y+8=0$ Solution:
(a) $2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}-12=0$

Let the coordinate of the foot of $\perp \mathrm{P}$ from the origin to the given plane be $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
$2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}=12 \ldots$ (1)
Direction ratio are ($2,3,4$)

$$
\begin{aligned}
\sqrt{ }\left[(2)^{2}+(3)^{2}+(4)^{2}\right] & =\sqrt{ }(4+9+16) \\
& =\sqrt{ } 29
\end{aligned}
$$

Now,
Divide both the sides of equation (1) by $\sqrt{ } 29$, we get
$2 \mathrm{x} /(\sqrt{ } 29)+3 \mathrm{y} /(\sqrt{29})+4 \mathrm{z} /(\sqrt{ } 29)=12 / \sqrt{ } 29$
So this is of the form $1 \mathrm{x}+\mathrm{my}+\mathrm{nz}=\mathrm{d}$
Where, $1, \mathrm{~m}, \mathrm{n}$ are the direction cosines and d is the distance
\therefore The direction cosines are $2 / \sqrt{ } 29,3 / \sqrt{ } 29,4 / \sqrt{ } 29$
Coordinate of the foot $(\mathrm{ld}, \mathrm{md}, \mathrm{nd})=$

$$
\begin{aligned}
& =[(2 / \sqrt{ } 29)(12 / \sqrt{ } 29),(3 / \sqrt{ } 29)(12 / \sqrt{ } 29),(4 / \sqrt{ } 29)(12 / \sqrt{ } 29)] \\
& =24 / 29,36 / 29,48 / 29
\end{aligned}
$$

(b) $3 y+4 z-6=0$

Let the coordinate of the foot of $\perp \mathrm{P}$ from the origin to the given plane be $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
$0 x+3 y+4 z=6$
Direction ratio are $(0,3,4)$

$$
\begin{align*}
\sqrt{ }\left[(0)^{2}+(3)^{2}+(4)^{2}\right] & =\sqrt{ }(0+9+16) \tag{1}\\
& =\sqrt{ } 25 \\
& =5
\end{align*}
$$

Now,
Divide both the sides of equation (1) by 5 , we get
$0 x /(5)+3 y /(5)+4 z /(5)=6 / 5$
So this is of the form $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{d}$
Where, $1, \mathrm{~m}, \mathrm{n}$ are the direction cosines and d is the distance
\therefore The direction cosines are $0 / 5,3 / 5,4 / 5$
Coordinate of the foot $(\mathrm{ld}, \mathrm{md}, \mathrm{nd})=$

$$
\begin{aligned}
& =[(0 / 5)(6 / 5),(3 / 5)(6 / 5),(4 / 5)(6 / 5)] \\
& =0,18 / 25,24 / 25
\end{aligned}
$$

(c) $\mathrm{x}+\mathrm{y}+\mathrm{z}=1$

Let the coordinate of the foot of $\perp \mathrm{P}$ from the origin to the given plane be $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$. $x+y+z=1 \ldots$ (1) Direction
ratio are $(1,1,1)$

$$
\begin{aligned}
\sqrt{ }\left[(1)^{2}+(1)^{2}+(1)^{2}\right] & =\sqrt{ }(1+1+1) \\
& =\sqrt{ } 3
\end{aligned}
$$

Now,
Divide both the sides of equation (1) by $\sqrt{ } 3$, we get

$$
1 \mathrm{x} /(\sqrt{3})+1 \mathrm{y} /(\sqrt{3})+1 \mathrm{z} /(\sqrt{3})=1 / \sqrt{3}
$$

So this is of the form $1 x+m y+n z=d$
Where, $1, \mathrm{~m}, \mathrm{n}$ are the direction cosines and d is the distance
\therefore The direction cosines are $1 / \sqrt{ } 3,1 / \sqrt{ } 3,1 / \sqrt{ } 3$
Coordinate of the foot $(\mathrm{ld}, \mathrm{md}, \mathrm{nd})=$

$$
=[(1 / \sqrt{ } 3)(1 / \sqrt{ } 3),(1 / \sqrt{ } 3)(1 / \sqrt{ } 3),(1 / \sqrt{ } 3)(1 / \sqrt{ } 3)]
$$

$=1 / 3,1 / 3,1 / 3$
(d) $5 y+8=0$

Let the coordinate of the foot of $\perp \mathrm{P}$ from the origin to the given plane be $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.
$0 \mathrm{x}-5 \mathrm{y}+0 \mathrm{z}=8$
Direction ratio are $(0,-5,0)$
$\sqrt{ }\left[(0)^{2}+(-5)^{2}+(0)^{2}\right]=\sqrt{ }(0+25+0)$

$$
\begin{aligned}
& =\sqrt{ } 25 \\
& =5
\end{aligned}
$$

Now,
Divide both the sides of equation (1) by 5 , we get

$$
0 x /(5)-5 y /(5)+0 z /(5)=8 / 5
$$

So this is of the form $\mathrm{lx}+\mathrm{my}+\mathrm{nz}=\mathrm{d}$
Where, $1, \mathrm{~m}, \mathrm{n}$ are the direction cosines and d is the distance
\therefore The direction cosines are $0,-1,0$
Coordinate of the foot $(\mathrm{ld}, \mathrm{md}, \mathrm{nd})=$

$$
\begin{aligned}
& =[(0 / 5)(8 / 5),(-5 / 5)(8 / 5),(0 / 5)(8 / 5)] \\
& =0,-8 / 5,0
\end{aligned}
$$

5. Find the vector and Cartesian equations of the planes
(a) that passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{i}+\hat{j}-\hat{k}$.
(b) that passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$.

Solution:

(a) That passes through the point $(1,0,-2)$ and the normal to the plane is $\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$.
Let the position vector of the point $(1,0,-2)$ be
$\overrightarrow{\mathrm{a}}=(1 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})$
We know that Normal $\overrightarrow{\mathrm{N}} \perp$ to the plane is given as:
$\overrightarrow{\mathrm{N}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$
Vector equation of the plane is given as:

$$
(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{a}}) \cdot \overrightarrow{\mathrm{N}}=0
$$

Now,
$\mathrm{x}-1-2 \mathrm{y}+8+\mathrm{z}-6=0$
$\mathrm{x}-2 \mathrm{y}+\mathrm{z}+1=0 \mathrm{x}$
$-2 y+z=-1$
\therefore The required Cartesian equation of the plane is $\mathrm{x}-2 \mathrm{y}+\mathrm{z}=-1$

$$
\begin{equation*}
(\overrightarrow{\mathrm{r}}-(\hat{\mathrm{i}}-2 \hat{k})) \cdot \hat{i}+\hat{j}-\hat{k}=0 \tag{1}
\end{equation*}
$$

Since,

$$
\overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}
$$

So equation (1) becomes,
$(x \hat{i}+y \hat{j}+z \hat{k}-\hat{i}+2 \hat{k}) \cdot \hat{i}+\hat{j}-\hat{k}=0$
$[(x-1) \hat{\mathrm{i}}+\mathrm{yj}+(z+2) \hat{\mathrm{k}}] \cdot \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}=0$
$x-1+y-z-2=0$
$x+y-z-3=0$
\therefore The required Cartesian equation of the plane is $\mathrm{x}+\mathrm{y}-\mathrm{z}=3$
(b) That passes through the point $(1,4,6)$ and the normal vector to the plane is $\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$.
Let the position vector of the point $(1,0,-2)$ be

$$
\overrightarrow{\mathrm{a}}=(\hat{\mathrm{i}}+4 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})
$$

We know that Normal $\overrightarrow{\mathrm{N}} \perp$ to the plane is given as:
$\vec{N}=\hat{i}-2 \hat{j}+\hat{k}$
Vector equation of the plane is given as:
$(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{a}}) \cdot \overrightarrow{\mathrm{N}}=0$
Now,

$$
\begin{equation*}
(\overrightarrow{\mathrm{r}}-(\hat{\mathrm{i}}+4 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})) \cdot \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}=0 \tag{1}
\end{equation*}
$$

Since,

$$
\overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}
$$

So equation (1) becomes,

$$
\begin{aligned}
& (x \hat{i}+y \hat{j}+z \hat{k}-\hat{i}-4 \hat{j}-6 \hat{k}) \cdot \hat{i}-2 \hat{j}+\hat{k}=0 \\
& {[(x-1) \hat{i}+(y-4) \hat{j}+(z-6) \hat{k}] \cdot \hat{i}-2 \hat{j}+\hat{k}=0}
\end{aligned}
$$

$\mathrm{x}-1-2 \mathrm{y}+8+\mathrm{z}-6=0$
$\mathrm{x}-2 \mathrm{y}+\mathrm{z}+1=0 \mathrm{x}-2 \mathrm{y}$
$+z=-1$
\therefore The required Cartesian equation of the plane is $\mathrm{x}-2 \mathrm{y}+\mathrm{z}=-1$
6. Find the equations of the planes that passes through three points.
(a) $(1,1,-1),(6,4,-5),(-4,-2,3)(b)(1,1,0),(1,2,1),(-2,2$, -1) Solution:
Given:
The points are $(1,1,-1),(6,4,-5),(-4,-2,3)$.
Let,
$=\left|\begin{array}{ccc}1 & 1 & -1 \\ 6 & 4 & -5 \\ -4 & -2 & 3\end{array}\right|$
$=1(12-10)-1(18-20)-1(-12+16)$
$=2+2-4$
$=0$
Since, the value of determinant is 0 .
\therefore The points are collinear as there will be infinite planes passing through the given 3 points.
(b) $(1,1,0),(1,2,1),(-2,2,-1)$

The given points are $(1,1,0),(1,2,1),(-2,2,-1)$.
Let,
$=\left|\begin{array}{ccc}1 & 1 & 0 \\ 1 & 2 & 1 \\ -2 & 2 & -1\end{array}\right|$
$=1(-2-2)-1(-1+2)$
$=-4-1$
$=-5 \neq 0$
Since, there passes a unique plane from the given 3 points.
Equation of the plane passing through the points, $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ and $\left(\mathrm{x}_{3}\right.$, y_{3}, z_{3}), i.e.,

$$
=\left|\begin{array}{ccc}
\mathrm{x}-\mathrm{x}_{1} & \mathrm{y}-\mathrm{y}_{1} & \mathrm{z}-\mathrm{z}_{1} \\
\mathrm{x}_{2}-\mathrm{x}_{1} & \mathrm{y}_{2}-\mathrm{y}_{1} & \mathrm{z}_{2}-\mathrm{z}_{1} \\
\mathrm{x}_{3}-\mathrm{x}_{1} & \mathrm{y}_{3}-\mathrm{y}_{1} & \mathrm{z}_{3}-\mathrm{z}_{1}
\end{array}\right|
$$

Let us substitute the values and simplify

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
x-1 & y-1 & z \\
x_{2}-1 & y_{2}-1 & z_{2} \\
x_{3}-1 & y_{3}-1 & z_{3}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
x-1 & y-1 & z \\
1-1 & 2-1 & 1 \\
-2-1 & 2-1 & -1
\end{array}\right| \\
& =\left|\begin{array}{ccc}
x-1 & y-1 & z \\
0 & 1 & 1 \\
-3 & 1 & -1
\end{array}\right| \\
& =(x-1)(-2)-(y-1)(3)+3 z=0 \\
& =-2 x+2-3 y+3+3 z=0 \\
& =2 x+3 y-3 z=5
\end{aligned}
$$

\therefore The required equation of the plane is $2 x+3 y-3 z=5$.
7. Find the intercepts cut off by the plane $2 x+y-z=5$.

Solution:

Given:
The plane $2 \mathrm{x}+\mathrm{y}-\mathrm{z}=5$
Let us express the equation of the plane in intercept form x / a
$+y / b+z / c=1$
Where a, b, c are the intercepts cut-off by the plane at x, y and z axes respectively.
$2 x+y-z=5$ \qquad
Now divide both the sides of equation (1) by 5 , we get
$2 \mathrm{x} / 5+\mathrm{y} / 5-\mathrm{z} / 5=5 / 52 \mathrm{x} / 5$
$+y / 5-z / 5=1 x /(5 / 2)+$
$y / 5+z /(-5)=1$
Here, $a=5 / 2, b=5$ and $c=-5$
\therefore The intercepts cut-off by the plane are $5 / 2,5$ and -5 .
8. Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane. Solution:
We know that the equation of the plane $Z O X$ is $y=0$
So, the equation of plane parallel to ZOX is of the form, $\mathrm{y}=\mathrm{a}$
Since the y-intercept of the plane is $3, a=3$
\therefore The required equation of the plane is $y=3$
9. Find the equation of the plane through the intersection of the planes $3 x-y+$ $2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.

Solution:

Given:
Equation of the plane passes through the intersection of the plane is given by
$(3 \mathrm{x}-\mathrm{y}+2 \mathrm{z}-4)+\lambda(\mathrm{x}+\mathrm{y}+\mathrm{z}-2)=0$ and the plane passes through the points $(2,2,1)$.
So, $(3 \times 2-2+2 \times 1-4)+\lambda(2+2+1-2)=0$
$2+3 \lambda=03 \lambda$
$=-2 \lambda=-2 / 3$
.... (1)
Upon simplification, the required equation of the plane is given as
$(3 x-y+2 z-4)-2 / 3(x+y+z-2)=0$
$(9 x-3 y+6 z-12-2 x-2 y-2 z+4) / 3=0$
$7 \mathrm{x}-5 \mathrm{y}+4 \mathrm{z}-8=0$
\therefore The required equation of the plane is $7 x-5 y+4 z-8=0$
10. Find the vector equation of the plane passing through the intersection of the
planes $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})=7, \overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=9$
and through the point $(2,1,3)$. Solution:
Let the vector equation of the plane passing through the intersection of the planes are
$\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})=7$ and $\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})=9$
Here,

$$
\begin{equation*}
\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})-7=0 \tag{1}
\end{equation*}
$$

$\overrightarrow{\mathrm{r}} .(2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})-9=0$
The equation of any plane through the intersection of the planes given in equations (1) and (2) is given by,

$$
\begin{align*}
& {[\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})-7]+\lambda[\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})-9]=0} \\
& \overrightarrow{\mathrm{r}}[(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})+(2 \lambda \hat{\mathrm{i}}+5 \lambda \hat{\mathrm{j}}+3 \lambda \hat{\mathrm{k}})]-7-9 \lambda=0 \\
& \overrightarrow{\mathrm{r}} \cdot[(2+2 \lambda) \hat{\mathrm{i}}+(2+5 \lambda) \hat{\mathrm{j}}+(-3+3 \lambda) \hat{\mathrm{k}}]-7-9 \lambda=0 \tag{3}
\end{align*}
$$

Since the plane passes through points $(2,1,3)$

$$
\begin{aligned}
& (2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \cdot[(2+2 \lambda) \hat{\mathrm{i}}+(2+5 \lambda) \hat{\mathrm{j}}+(-3+3 \lambda) \hat{\mathrm{k}}]-7-9 \lambda=0 \\
& 4+4 \lambda+2+5 \lambda-9+9 \lambda-7-9 \lambda=0 \\
& 9 \lambda=10 \\
& \lambda=10 / 9
\end{aligned}
$$

Sow, substituting $\lambda=10 / 9$ in equation (1) we get,

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}} \cdot\left[\left(2+\frac{20}{9}\right) \hat{\mathrm{i}}+\left(2+\frac{50}{9}\right) \hat{\mathrm{j}}+\left(-3+\frac{30}{9}\right) \hat{\mathrm{k}}\right]-7-9 \frac{10}{9}=0 \\
& \overrightarrow{\mathrm{r}} \cdot\left[\left(2+\frac{20}{9}\right) \hat{\mathrm{i}}+\left(2+\frac{50}{9}\right) \hat{\mathrm{j}}+\left(-3+\frac{30}{9}\right) \hat{\mathrm{k}}\right]-17=0 \\
& \overrightarrow{\mathrm{r}} \cdot\left[\left(2+\frac{20}{9}\right) \hat{\mathrm{i}}+\left(2+\frac{50}{9}\right) \hat{\mathrm{j}}+\left(-3+\frac{30}{9}\right) \hat{\mathrm{k}}\right]=17 \\
& \overrightarrow{\mathrm{r}}\left[\frac{38}{9} \hat{\mathrm{i}}+\frac{68}{9} \hat{\mathrm{j}}+\frac{3}{9} \hat{\mathrm{k}}\right]=17 \\
& \overrightarrow{\mathrm{r}}[38 \hat{\mathrm{i}}+68 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}]=153
\end{aligned}
$$

\therefore The required equation of the plane is $\overrightarrow{\mathrm{r}}[38 \hat{\mathrm{i}}+68 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}]=153$
11. Find the equation of the plane through the line of intersection of the planes $x+y$ $+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$.

Solution:

Let the equation of the plane that passes through the two-given planes
$x+y+z=1$ and $2 x+3 y+4 z=5$ is $(x+y+z-1)+\lambda(2 x+3 y+$
$4 z-5)=0$
$(2 \lambda+1) \mathrm{x}+(3 \lambda+1) \mathrm{y}+(4 \lambda+1) \mathrm{z}-1-5 \lambda=0 \ldots \ldots$ (1)
So the direction ratio of the plane is $(2 \lambda+1,3 \lambda+1,4 \lambda+1)$
And direction ratio of another plane is $(1,-1,1)$
Since, both the planes are \perp
So by substituting in $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$(2 \lambda+1 \times 1)+(3 \lambda+1 \times(-1))+(4 \lambda+1 \times 1)=0$
$2 \lambda+1-3 \lambda-1+4 \lambda+1=0$
$3 \lambda+1=0 \lambda$
$=-1 / 3$
Substitute the value of λ in equation (1) we get,

$$
\begin{aligned}
& \left(2 \frac{(-1)}{3}+1\right) x+\left(3 \frac{(-1)}{3}+1\right) y+\left(4 \frac{(-1)}{3}+1\right) z-1-5 \frac{(-1)}{3}=0 \\
& \frac{1}{3} x-\frac{1}{3} z+\frac{2}{3}=0
\end{aligned}
$$

\therefore The required equation of the plane is $\mathrm{x}-\mathrm{z}+2=0$
12. Find the angle between the planes whose vector equations are

$$
\overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})=5, \overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})=3 .
$$

Solution:

Given:

The equation of the given planes are

$$
\overrightarrow{\mathrm{r}}(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})=5 \text { and } \overrightarrow{\mathrm{r}}(3 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})=5
$$

If n_{1} and n_{2} are normal to the planes, then

$$
\overrightarrow{\mathrm{r}_{1}} \cdot \overrightarrow{\mathrm{n}_{1}}=\mathrm{d}_{2} \text { and } \overrightarrow{\mathrm{r}_{2}} \cdot \overrightarrow{\mathrm{n}_{2}}=\mathrm{d}_{2}
$$

Angle between two planes is given as

$$
\begin{aligned}
& \begin{aligned}
\cos \theta & =\left|\frac{\overrightarrow{\mathrm{n}_{1}} \cdot \overrightarrow{\mathrm{n}_{2}}}{\left|\overrightarrow{\mathrm{n}_{1}}\right|\left|\overrightarrow{\mathrm{n}_{2}}\right|}\right| \\
& =\left|\frac{6-6-15}{\sqrt{4+4+9} \sqrt{9+9+25}}\right| \\
& =\left|\frac{-15}{\sqrt{17} \sqrt{43}}\right| \\
\theta & =\cos ^{-1}\left(\frac{15}{\sqrt{17} \sqrt{43}}\right) \\
& =\cos ^{-1}\left(\frac{15}{\sqrt{731}}\right)
\end{aligned}
\end{aligned}
$$

\therefore The angle is $\cos ^{-1}(15 / \sqrt{ } 731)$
13. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
(a) $7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
(b) $2 x+y+3 z-2=0$ and $x-2 y+5=0$
(c) $2 \mathrm{x}-2 \mathrm{y}+4 \mathrm{z}+5=0$ and $3 \mathrm{x}-3 \mathrm{y}+6 \mathrm{z}-1=0$
(d) $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$ (e) $4 x+8 y+z-8=0$ and $y+z-4=$ 0 Solution:
(a) $7 \mathrm{x}+5 \mathrm{y}+6 \mathrm{z}+30=0$ and $3 \mathrm{x}-\mathrm{y}-10 \mathrm{z}+4=0$ Given:

The equation of the given planes are
$7 x+5 y+6 z+30=0$ and $3 x-y-10 z+4=0$
Two planes are \perp if the direction ratio of the normal to the plane is
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=021$
$-5-60$
$-44 \neq 0$
Both the planes are not \perp to each other.
Now, two planes are $\|$ to each other if the direction ratio of the normal to the plane is
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
$\frac{7}{3} \neq \frac{5}{-1} \neq \frac{6}{-10}$
Now, the angle between them is given by

$$
\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|
$$

$$
\cos \theta=\frac{-44}{\sqrt{49+25+36} \sqrt{9+1+100}}
$$

$$
=\frac{-44}{\sqrt{110} \sqrt{110}}
$$

$$
=\frac{-44}{110}
$$

$$
\theta=\cos ^{-1} \frac{2}{5}
$$

\therefore The angle is $\cos ^{-1}(2 / 5)$
(b) $2 x+y+3 z-2=0$ and $x-2 y+5=0$ Given:

The equation of the given planes are
$2 x+y+3 z-2=0$ and $x-2 y+5=0$
Two planes are \perp if the direction ratio of the normal to the plane is
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=02 \times 1+1 \times(-2)+3 \times 0$
$=0$
\therefore The given planes are \perp to each other.
(c) $2 x-2 y+4 z+5=0$ and $3 x-3 y+6 z-1=0$

Given:
The equation of the given planes are
$2 x-2 y+4 z+5=0$ and $x-2 y+5=0$
We know that, two planes are \perp if the direction ratio of the normal to the plane is $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=06+6+2436 \neq 0$
\therefore Both the planes are not \perp to each other.
Now let us check, both planes are $\|$ to each other if the direction ratio of the normal to the plane is

$$
\begin{aligned}
& \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}} \\
& \frac{2}{3}=\frac{-2}{-3}=\frac{4}{6} \\
& \frac{2}{3}=\frac{2}{3}=\frac{2}{3}
\end{aligned}
$$

\therefore The given planes are $\|$ to each other.
(d) $2 \mathrm{x}-2 \mathrm{y}+4 \mathrm{z}+5=0$ and $3 \mathrm{x}-3 \mathrm{y}+6 \mathrm{z}-1=0$ Given:

The equation of the given planes are
$2 \mathrm{x}-\mathrm{y}+3 \mathrm{z}-1=0$ and $2 \mathrm{x}-\mathrm{y}+3 \mathrm{z}+3=0$
We know that, two planes are \perp if the direction ratio of the normal to the plane is $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=02 \times 2+(-1) \times(-1)+3 \times 3$
$14 \neq 0$
\therefore Both the planes are not \perp to each other.
Now, let us check two planes are \| to each other if the direction ratio of the normal to the plane is

$$
\begin{aligned}
& \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}} \\
& \frac{2}{2}=\frac{-1}{-1}=\frac{3}{3} \\
& \frac{1}{1}=\frac{1}{1}=\frac{1}{1}
\end{aligned}
$$

\therefore The given planes are $\|$ to each other.
(e) $4 x+8 y+z-8=0$ and $y+z-4=0$ Given:

The equation of the given planes are
$4 \mathrm{x}+8 \mathrm{y}+\mathrm{z}-8=0$ and $\mathrm{y}+\mathrm{z}-4=0$
We know that, two planes are \perp if the direction ratio of the normal to the plane is $\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=00+8+19 \neq 0$
\therefore Both the planes are not \perp to each other.
Now let us check, two planes are \| to each other if the direction ratio of the normal to the plane is
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}$
$\frac{4}{0} \neq \frac{8}{1} \neq \frac{1}{1}$
\therefore Both the planes are not $\|$ to each other.
Now let us find the angle between them which is given as

$$
\begin{aligned}
& \begin{aligned}
& \cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right| \\
& \cos \theta=\frac{4 \times 0+8 \times 1+1 \times 1}{\sqrt{16+64+1} \sqrt{0+1+1}} \\
&=\frac{9}{9 \sqrt{2}} \\
& \theta=\cos ^{-1} \frac{9}{9 \sqrt{2}} \\
&= \cos ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
&=45^{\circ}
\end{aligned}
\end{aligned}
$$

\therefore The angle is 45°.
14. In the following cases, find the distance of each of the given points from the corresponding given plane.

Point

(a) $(0,0,0)$
(b) $(3,-2,1)$
(c) $(2,3,-5)$

Plane

$3 x-4 y+12 z=3$
$2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}+3=0$
$x+2 y-2 z=9(d)(-6,0,0)$

$$
2 x-3 y+6 z-2=0
$$

Solution:

(a) Point
Plane
($0,0,0$)
$3 x-4 y+12 z=3$

We know that, distance of point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ from the plane $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}-\mathrm{D}=0$ is given as:

$$
\mathrm{d}=\left|\frac{\mathrm{Ax} x_{1}+\mathrm{By}_{1}+\mathrm{Cz}_{1}-\mathrm{D}}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|
$$

Given point is $(0,0,0)$ and the plane is $3 x-4 y+12 z=3$

$$
\begin{aligned}
d & =\left|\frac{0+0+0+3}{\sqrt{9+16+144}}\right| \\
& =|3 / \sqrt{ } 169| \\
& =3 / 13
\end{aligned}
$$

\therefore The distance is $3 / 13$.
(b) Point
(3, -2, 1)

Plane

$$
2 x-y+2 z+3=0
$$

We know that, distance of point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ from the plane $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}-\mathrm{D}=0$ is given as:

$$
\mathrm{d}=\left|\frac{\mathrm{Ax}_{1}+\mathrm{By}_{1}+\mathrm{Cz}_{1}-\mathrm{D}}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|
$$

Given point is $(3,-2,1)$ and the plane is $2 \mathrm{x}-\mathrm{y}+2 \mathrm{z}+3=0$

$$
\begin{aligned}
\mathrm{d} & =\left|\frac{6+2+2+3}{\sqrt{4+1+4}}\right| \\
& =|13 / \sqrt{ } 9| \\
& =13 / 3
\end{aligned}
$$

\therefore The distance is $13 / 3$.
(c) Point

Plane
(2, 3, -5)

$$
x+2 y-2 z=9
$$

We know that, distance of point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ from the plane $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}-\mathrm{D}=0$ is given as:

$$
\mathrm{d}=\left|\frac{\mathrm{Ax}_{1}+\mathrm{By}_{1}+\mathrm{Cz} z_{1}-\mathrm{D}}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|
$$

Given point is $(2,3,-5)$ and the plane is $\mathrm{x}+2 \mathrm{y}-2 \mathrm{z}=9$

$$
\begin{aligned}
\mathrm{d} & =\left|\frac{2+6+10-9}{\sqrt{1+4+4}}\right| \\
& =|9 / \sqrt{ } 9| \\
& =9 / 3 \\
& =3
\end{aligned}
$$

\therefore The distance is 3 .
(d) Point
$(-6,0,0)$

$$
2 x-3 y+6 z-2=0
$$

We know that, distance of point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ from the plane $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}-\mathrm{D}=0$ is given as:

$$
\mathrm{d}=\left|\frac{\mathrm{Ax} \mathrm{x}_{1}+\mathrm{By}_{1}+\mathrm{C} z_{1}-\mathrm{D}}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|
$$

Given point is $(-6,0,0)$ and the plane is $2 x-3 y+6 z-2=0$

$$
\begin{aligned}
\mathrm{d} & =\left|\frac{-12-0+0-2}{\sqrt{4+9+36}}\right| \\
& =|14 / \sqrt{ } 49| \\
& =14 / 7 \\
& =2
\end{aligned}
$$

\therefore The distance is 2 .

MISCELLANEOUS EXERCISE

1. Show that the line joining the origin to the point $(2,1,1)$ is perpendicular to the line determined by the points $(3,5,-1),(4,3,-1)$.

Solution:

Let us consider OA be the line joining the origin $(0,0,0)$ and the point $\mathrm{A}(2,1,1)$.
And let BC be the line joining the points $\mathrm{B}(3,5,-1)$ and $\mathrm{C}(4,3,-1)$
So the direction ratios of $\mathrm{OA}=\left(\mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{c}_{1}\right) \equiv[(2-0),(1-0),(1-0)] \equiv(2,1,1)$ And the direction ratios of $\mathrm{BC}=\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}\right) \equiv[(4-3),(3-5),(-1+1)] \equiv(1,-2,0)$
Given:
OA is \perp to BC
Now we have to prove that:
$\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
Let us consider LHS: $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}$
$a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=2 \times 1+1 \times(-2)+1 \times 0$

$$
\begin{aligned}
& =2-2 \\
& =0
\end{aligned}
$$

We know that R.H.S is 0
So LHS = RHS
$\therefore \mathrm{OA}$ is \perp to BC Hence
proved.
2. If $\mathbf{l}_{1}, m_{1}, n_{1}$ and $\mathbf{l}_{2}, m_{2}, n_{2}$ are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are $\left(m_{1} \mathbf{n}_{2}-m_{2} n_{1}\right),\left(\mathbf{n}_{1} \mathbf{l}_{2}-\mathbf{n}_{2} \mathbf{l}_{1}\right),\left(\mathbf{l}_{1} \mathbf{m}_{2}-\mathbf{l}_{\mathbf{2}} \mathbf{m}_{1}\right)$ Solution:
Let us consider $1, m, n$ be the direction cosines of the line perpendicular to each of the given lines.

Then, $\mathrm{ll}_{1}+\mathrm{mm}_{1}+\mathrm{nn}_{1}=0 \ldots$ (1)
And $\mathrm{ll}_{2}+\mathrm{mm}_{2}+\mathrm{nn}_{2}=0 \ldots$ (2)
Upon solving (1) and (2) by using cross - multiplication, we get
$\frac{1}{\mathrm{~m}_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}}=\frac{\mathrm{m}}{\mathrm{n}_{1} \mathrm{l}_{2}-\mathrm{n}_{2} \mathrm{l}_{1}}=\frac{\mathrm{n}}{\mathrm{l}_{1} \mathrm{~m}_{2}-\mathrm{l}_{2} \mathrm{~m}_{1}}$
Thus, the direction cosines of the given line are proportional to $\left(m_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}\right),\left(\mathrm{n}_{1} \mathrm{l}_{2}-\mathrm{n}_{2} \mathrm{l}_{1}\right),\left(\mathrm{l}_{1} \mathrm{~m}_{2}-\mathrm{l}_{2} \mathrm{~m}_{1}\right)$
So, its direction cosines are

$$
\frac{\mathrm{m}_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}}{\lambda}, \frac{\mathrm{n}_{1} \mathrm{l}_{2}-\mathrm{n}_{2} \mathrm{l}_{1}}{\lambda}, \frac{1_{1} \mathrm{~m}_{2}-1_{2} \mathrm{~m}_{1}}{\lambda}
$$

Where,

$$
\lambda=\sqrt{\left(\mathrm{m}_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}\right)^{2}+\left(\mathrm{n}_{1} \mathrm{l}_{2}-\mathrm{n}_{2} \mathrm{l}_{1}\right)^{2}+\left(\mathrm{l}_{1} \mathrm{~m}_{2}-\mathrm{l}_{2} \mathrm{~m}_{1}\right)^{2}}
$$

We know that

$$
\begin{aligned}
\left(l_{1}^{2}+m_{1}^{2}+n_{1}^{2}\right) & \left(l_{2}^{2}+m_{2}^{2}+n_{2}^{2}\right)-\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)^{2} \\
& =\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} 1_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2} \ldots(3) \text { It }
\end{aligned}
$$

is given that the given lines are perpendicular to each other.
So, $\mathrm{l}_{1} \mathrm{l}_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}=0$
Also, we have $1_{1}{ }^{2}+m_{1}{ }^{2}$
$+\mathrm{n}_{1}{ }^{2}=1$ And, $\mathrm{l}_{2}{ }^{2}+\mathrm{m}_{2}{ }^{2}$
$+\mathrm{n}_{2}{ }^{2}=1$
Substituting these values in equation (3), we get
$\left(m_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}\right)^{2}+\left(\mathrm{n}_{1} \mathrm{l}_{2}-\mathrm{n}_{2} \mathrm{l}_{1}\right)^{2}+\left(\mathrm{l}_{1} \mathrm{~m}_{2}-\mathrm{l}_{2} \mathrm{~m}_{1}\right)^{2}=1 \lambda$
$=1$
Hence, the direction cosines of the given line are $\left(m_{1} n_{2}-m_{2} n_{1}\right),\left(n_{1} 1_{2}-n_{2} l_{1}\right),\left(l_{1} m_{2}-l_{2} m_{1}\right)$

3. Find the angle between the lines whose direction ratios are $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and $\mathbf{b}-\mathbf{c}, \mathbf{c}$ -

 $\mathbf{a}, \mathbf{a}-\mathbf{b}$.
Solution:

Angle between the lines with direction ratios a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} is given by

$$
\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}}}\right|
$$

Given:
$\mathrm{a}_{1}=\mathrm{a}, \mathrm{b}_{1}=\mathrm{b}, \mathrm{c}_{1}=\mathrm{c}$
$\mathrm{a}_{2}=\mathrm{b}-\mathrm{c}, \mathrm{b}_{2}=\mathrm{c}-\mathrm{a}, \mathrm{c}_{2}=\mathrm{a}-\mathrm{b}$
Let us substitute the values in the above equation we get,

$$
\begin{aligned}
\cos \theta & =\left|\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}}\right| \\
& =0
\end{aligned}
$$

$\operatorname{Cos} \theta=0$
So, $\theta=90^{\circ}$ [Since, $\cos 90=0$]
Hence, Angle between the given pair of lines is 90°.
4. Find the equation of a line parallel to $x-a x i s$ and passing through the origin. Solution:
We know that, equation of a line passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and parallel to a line with direction ratios $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
Given: the line passes through origin i.e. $(0,0,0) \mathrm{x}_{1}$
$=0, \mathrm{y}_{1}=0, \mathrm{z}_{1}=0$
Since line is parallel to x - axis, a
$=1, b=0, \mathrm{c}=0$
\therefore Equation of Line is given by

$$
\begin{aligned}
& \frac{x-0}{1}=\frac{y-0}{0}=\frac{z-0}{0} \\
& \frac{x}{1}=\frac{y}{0}=0
\end{aligned}
$$

5. If the coordinates of the points A, B, C, D be $(1,2,3),(4,5,7),(-4,3,-6)$ and $(2,9,2)$ respectively, then find the angle between the lines $A B$ and CD.

Solution:

We know that the angle between the lines with direction ratios a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} is given by

$$
\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|
$$

So now, a line passing through $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ has direction ratios $\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)$, $\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right),\left(\mathrm{z}_{1}-\mathrm{z}_{2}\right)$
The direction ratios of line joining the points $\mathrm{A}(1,2,3)$ and $\mathrm{B}(4,5,7)$

$$
\begin{aligned}
& =(4-1),(5-2),(7-3) \\
& =(3,3,4) \therefore
\end{aligned}
$$

$\mathrm{a}_{1}=3, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=4$
The direction ratios of line joining the points $C(-4,3,-6)$ and $B(2,9,2)$

$$
\begin{aligned}
& =(2-(-4)),(9-3),(2-(-6)) \\
& =(6,6,8) \therefore
\end{aligned}
$$

$\mathrm{a}_{2}=6, \mathrm{~b}_{2}=6, \mathrm{c}_{2}=8$
Now let us substitute the values in the above equation we get,

$$
\begin{aligned}
\cos \theta & =\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}}}\right| \\
\cos \theta & =\left|\frac{3 \times 6+3 \times 6+4 \times 8}{\sqrt{3^{2}+3^{2}+4^{2}} \sqrt{6^{2}+6^{2}+8^{2}}}\right| \\
& =\left|\frac{18+18+32}{\sqrt{9+9+16} \sqrt{36+36+64}}\right| \\
& =\left|\frac{68}{\sqrt{34} \sqrt{136}}\right| \\
& =\left|\frac{68}{\sqrt{34} \sqrt{4 \times 34}}\right| \\
& =\left|\frac{68}{34 \times 2}\right|
\end{aligned}
$$

$\cos \theta=1$
So, $\theta=0^{\circ}$ [since, $\cos 0$ is 1]
Hence, Angle between the lines AB and CD is 0°.

6. If the lines

$$
\frac{x-1}{3 k}=\frac{y-2}{1}=\frac{z-3}{-5} \text { and } \frac{x-1}{3 k}=\frac{y-2}{1}=\frac{z-3}{-5}
$$

of k.

Solution:

We know that the two lines

$$
\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \text { and } \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}} \text { which are }
$$

perpendicular to each other if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
It is given that:

$$
\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}
$$

Let us compare with
$\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$
We get -
$\mathrm{x}_{1}=1, \mathrm{y}_{1}=2, \mathrm{z}_{1}=3$
And $\mathrm{a}_{1}=-3, \mathrm{~b}_{1}=2 \mathrm{k}, \mathrm{c}_{1}=2$
Similarly,
We have,

$$
\frac{x-1}{3 k}=\frac{y-2}{1}=\frac{z-3}{-5}
$$

Let us compare with

$$
\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}
$$

We get -
$\mathrm{x}_{2}=1, \mathrm{y}_{2}=2, \mathrm{z}_{2}=3$ And
$\mathrm{a}_{2}=3 \mathrm{k}, \mathrm{b}_{2}=1, \mathrm{c}_{2}=-5$

Since the two lines are perpendicular, $a_{1} a_{2}$
$+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
$(-3) \times 3 \mathrm{k}+2 \mathrm{k} \times 1+2 \times(-5)=0$
$-9 \mathrm{k}+2 \mathrm{k}-10=0$
$-7 \mathrm{k}=10 \mathrm{k}=-$
10/7
7
\therefore The value of k is $-10 / 7$.
7. Find the vector equation of the line passing through $(1,2,3)$ and perpendicular to the plane
$\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})+9=0$

Solution:

The vector equation of a line passing through a point with position vector \vec{a} and parallel to vector \vec{b} is given as

$$
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}
$$

It is given that the line passes through $(1,2,3)$

So, $\vec{a}=1 \hat{i}+2 \hat{j}+3 \hat{k}$
Let us find the normal of plane

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})+9=0 \\
& \overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})=-9 \\
& -\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}})=9 \\
& \overrightarrow{\mathrm{r}} \cdot(-1 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}})+9=0
\end{aligned}
$$

Now compare it with $\vec{r} \cdot \vec{n}=\mathrm{d}$ $\overrightarrow{\mathrm{n}}=-\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
Since line is perpendicular to plane, the line will be parallel of the plane
$\therefore \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{n}}=-\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
Hence,

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}}=(1 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(-\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}) \\
& \vec{r}=(1 \hat{i}+2 \hat{j}+3 \hat{k})-\lambda(\hat{i}+2 \hat{j}-5 \hat{k})
\end{aligned}
$$

\therefore The required vector equation of line is $\vec{r}=(1 \hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}+3 \hat{\boldsymbol{k}})-\lambda(\hat{\boldsymbol{i}}+2 \hat{\boldsymbol{j}}-5 \hat{\boldsymbol{k}})$

8. Find the equation of the plane passing through (a, b, c) and parallel to the plane

$$
\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=2
$$

Solution:

The equation of a plane passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and perpendicular to a line with direction ratios A, B, C is given as $A\left(x-x_{1}\right)+B\left(y-y_{1}\right)+C\left(z-z_{1}\right)=0$
It is given that, the plane passes through (a, b, c)
So, $\mathrm{x}_{1}=\mathrm{a}, \mathrm{y}_{1}=\mathrm{b}, \mathrm{z}_{1}=\mathrm{c}$
Since both planes are parallel to each other, their normal will be parallel
\therefore Direction ratios of normal of $\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=2$
Direction ratios of normal $=(1,1,1)$
So, $\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1$
The Equation of plane in Cartesian form is given as

$$
\begin{aligned}
& A\left(x-x_{1}\right)+B\left(y-y_{1}\right)+C\left(z-z_{1}\right)=0 \\
& 1(x-a)+1(y-b)+1(z-c)=0 \\
& x+y+z-(a+b+c)=0 x+y \\
& +z=a+b+c
\end{aligned}
$$

\therefore The required equation of plane is $\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
9. Find the shortest distance between lines

$$
\overrightarrow{\mathrm{r}}=(6 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})+\lambda(1 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{2}) \text { and } \overrightarrow{\mathrm{r}}=(-4 \hat{\mathrm{i}}-\hat{\mathrm{k}})+\mu(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})
$$

Solution:

We know that the shortest distance between lines with vector equations $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}}$ and $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{2}}+\lambda \overrightarrow{\mathrm{b}_{2}}$ is given as
$\left|\frac{\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)}{\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|}\right|$

It is given that:

$$
\overrightarrow{\mathrm{r}}=(6 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})+\lambda(1 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{2})
$$

Now let us compare it with $\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}}$, we get
$\overrightarrow{\mathrm{a}_{1}}=(6 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$ and $\overrightarrow{\mathrm{b}_{1}}=(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2)$

Similarly,

$$
\overrightarrow{\mathrm{r}}=(-4 \hat{\mathrm{i}}-\hat{\mathrm{k}})+\mu(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-2 \hat{\mathrm{k}})
$$

Let us compare it with $\vec{r}=\overrightarrow{a_{2}}+\lambda \overrightarrow{\mathrm{b}_{2}}$, we get

$$
\overrightarrow{\mathrm{a}_{2}}=(-4 \hat{\mathrm{i}}-\hat{\mathrm{k}}) \text { and } \overrightarrow{\mathrm{b}_{2}}=(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-\hat{2})
$$

Now,

$$
\begin{aligned}
\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) & =(-4 \hat{i}-\hat{k})-(6 \hat{i}+2 \hat{j}+2 \hat{k}) \\
& =((-4-6) \hat{i}+(0-2) \hat{j}+(-1-2) \hat{k}) \\
& =(-10 \hat{i}-2 \hat{j}-3 \hat{k})
\end{aligned}
$$

And,

$$
\begin{aligned}
& \left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right)=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
1 & -2 & 2 \\
3 & -2 & -2
\end{array}\right| \\
& =\hat{\mathrm{i}}[(-2 \times-2)-(-2 \times 2)]-\hat{\mathrm{j}}[(1 \times-2)-(3 \times 2)]+\hat{\mathrm{k}}[(1 \times-2)-(3 \times-2)] \\
& =\hat{\mathrm{i}}[4+4]-\hat{\mathrm{j}}[-2-6]+\hat{\mathrm{k}}[-2+6] \\
& =8 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+4 \hat{\mathrm{k}} \\
& \begin{aligned}
& \text { So }, \text { Magnitude of } \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|=\sqrt{8^{2}+8^{2}+4^{2}}=\sqrt{64+64+16} \\
&= \sqrt{144} \\
&=
\end{aligned}
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right) & =(8 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}) \cdot(-10 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}) \\
& =-80+(-16)+(-12) \\
& =-108
\end{aligned}
$$

Hence the shortest distance is given as

$$
=\left|\frac{\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)}{\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|}\right|=\left|\frac{-108}{12}\right|=|-9|
$$

\therefore The shortest distance between the given two lines is 9 .
10. Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the YZ - plane. Solution:
We know that the vector equation of a line passing through two points with position vectors \vec{a} and \vec{b} is given as
$\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}})$
So the position vector of point $\mathrm{A}(5,1,6)$ is given as
$\overrightarrow{\mathrm{a}}=5 \hat{\mathrm{i}}+\hat{\mathrm{j}}+6 \hat{\mathrm{k}}$
And the position vector of point $\mathrm{B}(3,4,1)$ is given as

$$
\begin{equation*}
\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}} \tag{2}
\end{equation*}
$$

So subtract equation (2) and (1) we get

$$
\begin{align*}
&(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}})=(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}})-(5 \hat{\mathrm{i}}+\hat{\mathrm{j}}+6 \hat{\mathrm{k}}) \\
&=(3-5) \hat{\mathrm{i}}+(4-1) \hat{\mathrm{j}}+(1-6) \hat{\mathrm{k}} \\
&=(-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}) \\
& \vec{r}=(5 \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+6 \hat{\boldsymbol{k}})+\lambda(-2 \hat{\boldsymbol{i}}+3 \hat{j}-5 \hat{k}) \tag{3}
\end{align*}
$$

Let the coordinates of the point where the line crosses the YZ plane be $(0, \mathrm{y}, \mathrm{z})$ So,

$$
\begin{equation*}
\vec{r}=(0 \hat{\boldsymbol{i}}+y \hat{\boldsymbol{j}}+z \hat{\boldsymbol{k}}) \tag{4}
\end{equation*}
$$

Since the point lies in line, it satisfies its equation, Now substituting equation (4) in equation (3) we get,

$$
\begin{aligned}
(0 \hat{\boldsymbol{i}}+\boldsymbol{y} \hat{\boldsymbol{j}}+\boldsymbol{z} \hat{\boldsymbol{k}}) & =(5 \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+6 \hat{\boldsymbol{k}})+\lambda(-2 \hat{\boldsymbol{i}}+3 \hat{\boldsymbol{j}}-5 \hat{\boldsymbol{k}}) \\
& =(5-2 \lambda) \hat{\boldsymbol{i}}+(1+3 \lambda) \hat{\boldsymbol{j}}+(6-5 \lambda) \hat{\boldsymbol{k}}
\end{aligned}
$$

We know that, two vectors are equal if their corresponding components are equal So,
$0=5-2 \lambda$
$5=2 \lambda \lambda$
$=5 / 2$
$y=1+3 \lambda \ldots$ (5) And,
$\mathrm{z}=6-5 \lambda \ldots$ (6)
Substitute the value of λ in equation (5) and (6), we get -

$$
\begin{aligned}
& y=1+3 \lambda=1+3 \times(5 / 2) \\
&=1+(15 / 2) \\
&=17 / 2 \\
& \text { And } \\
& z=6-5 \lambda=6 \\
&-5 \times(5 / 2) \\
&=6-(25 / 2) \\
&=-13 / 2
\end{aligned}
$$

\therefore The coordinates of the required point is $(0,17 / 2,-13 / 2)$.
11. Find the coordinates of the point where the line through $(5,1,6)$ and $(3,4,1)$ crosses the $\mathbf{Z X}$ - plane. Solution:
We know that the vector equation of a line passing through two points with position vectors \vec{a} and \vec{b} is given as
$\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}})$
So the position vector of point $\mathrm{A}(5,1,6)$ is given as
$\overrightarrow{\mathrm{a}}=5 \hat{\mathrm{i}}+\hat{\mathrm{j}}+6 \hat{\mathrm{k}}$
And the position vector of point $B(3,4,1)$ is given as
$\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$
So subtract equation (2) and (1) we get

$$
\begin{align*}
&(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}})=(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}})-(5 \hat{\mathrm{i}}+\hat{\mathrm{j}}+6 \hat{\mathrm{k}}) \\
&=(3-5) \hat{\mathrm{i}}+(4-1) \hat{\mathrm{j}}+(1-6) \hat{\mathrm{k}} \\
&=(-2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}) \\
& \vec{r}=(5 \hat{i}+\hat{j}+6 \hat{k})+\lambda(-2 \hat{i}+3 \hat{j}-5 \hat{k}) \tag{3}
\end{align*}
$$

Let the coordinates of the point where the line crosses the ZX plane be $(0, \mathrm{y})$ So,

$$
\begin{equation*}
\vec{r}=(x \hat{i}+0 \hat{j}+z \hat{k}) \tag{4}
\end{equation*}
$$

Since the point lies in line, it satisfies its equation,
Now substituting equation (4) in equation (3) we get,

$$
\begin{aligned}
(x \hat{\boldsymbol{i}}+0 \hat{\boldsymbol{j}}+z \hat{\boldsymbol{k}}) & =(5 \hat{\boldsymbol{i}}+\hat{\boldsymbol{j}}+6 \hat{\boldsymbol{k}})+\lambda(-2 \hat{\boldsymbol{i}}+3 \hat{\boldsymbol{j}}-5 \hat{\boldsymbol{k}}) \\
& =(5-2 \lambda) \hat{\boldsymbol{i}}+(1+3 \lambda) \hat{\boldsymbol{j}}+(6-5 \lambda) \hat{\boldsymbol{k}}
\end{aligned}
$$

We know that, two vectors are equal if their corresponding components are equal So,
$0=1+3 \lambda$
$-1=3 \lambda$
$\lambda=-1 / 3$ And,
$\mathrm{z}=6-5 \lambda \ldots$
Substitute the value of λ in equation (5) and (6), we get -

$$
\begin{aligned}
\mathrm{x} & =5-2 \lambda=5-2 \times(-1 / 3) \\
& =5+(2 / 3) \\
& =17 / 3
\end{aligned}
$$

And
$\mathrm{z}=6-5 \lambda=6$
$-5 \times(-1 / 3)$
$=6+(5 / 3)$
$=23 / 3$
\therefore The coordinates of the required point is $(17 / 3,0,23 / 3)$.
12. Find the coordinates of the point where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 \mathrm{x}+\mathrm{y}+\mathrm{z}=7$.

Solution:

We know that the equation of a line passing through two points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}\right.$, $\mathrm{y}_{2}, \mathrm{z}_{2}$) is given as

$$
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

It is given that the line passes through the points A $(3,-4,-5)$ and $\mathrm{B}(2,-3,1)$
So, $\mathrm{x}_{1}=3, \mathrm{y}_{1}=-4, \mathrm{z}_{1}=-5$
And, $x_{2}=2, y_{2}=-3, z_{2}=1$
Then the equation of line is

$$
\begin{aligned}
& \frac{x-3}{2-3}=\frac{y-(-4)}{-3-(-4)}=\frac{z-(-5)}{1-(-5)} \\
& \frac{x-3}{-1}=\frac{y+4}{1}=\frac{z+5}{6}=k
\end{aligned}
$$

So, $x=-k+3|, y=k-4|, z=6 k-5 \ldots$ (1)
Now let ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) be the coordinates of the point where the line crosses the given plane 2 x $+\mathrm{y}+\mathrm{z}+7=0$

By substituting the value of x, y, z in equation (1) in the equation of plane, we get
$2 \mathrm{x}+\mathrm{y}+\mathrm{z}+7=0$
$2(-k+3)+(k-4)+(6 k-5)=7$
$5 \mathrm{k}-3=7$
$5 \mathrm{k}=10 \mathrm{k}$
$=2$
Now substitute the value of k in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ we get,
$\mathrm{x}=-\mathrm{k}+3=-2+3=1 \mathrm{y}=\mathrm{k}-4=2-4=-2$
$\mathrm{z}=6 \mathrm{k}-5=12-5=7$
\therefore The coordinates of the required point are ($1,-2,7$).

13. Find the equation of the plane passing through the point $(-1,3,2)$ and perpendicular to each of the planes $x+2 y+3 z=5$ and $3 x+3 y+z=0$.

Solution:

We know that the equation of a plane passing through $\left(x_{1}, y_{1}, z_{1}\right)$ is given by
$A\left(x-x_{1}\right)+B\left(y-y_{1}\right)+C\left(z-z_{1}\right)=0$
Where, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the direction ratios of normal to the plane.
It is given that the plane passes through $(-1,3,2)$
So, equation of plane is given by
$A(x+1)+B(y-3)+C(z-2)=0$
Since this plane is perpendicular to the given two planes. So, their normal to the plane would be perpendicular to normal of both planes.
We know that $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b}
So, required normal is cross product of normal of planes x

$$
+2 y+3 z=5 \text { and } 3 x+3 y+z=0
$$

$$
\begin{aligned}
\text { Required Normal } & =\left|\begin{array}{lll}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
1 & 2 & 3 \\
3 & 3 & 1
\end{array}\right| \\
& =\hat{\mathrm{i}}[2(1)-3(3)]-\hat{\mathrm{j}}[1(1)-3(3)]+\hat{\mathrm{k}}[1(3)-3(2)] \\
& =\hat{\mathrm{i}}[2-9]-\hat{\mathrm{j}}[1-9]+\hat{\mathrm{k}}[3-6] \\
& =-7 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}
\end{aligned}
$$

Hence, the direction ratios are $=-7,8,-3$
$\therefore \mathrm{A}=-7, \mathrm{~B}=8, \mathrm{C}=-3$
Substituting the obtained values in equation (1), we get
$A(x+1)+B(y-3)+C(z-2)=0$
$-7(x+1)+8(y-3)+(-3)(z-2)=0$
$-7 x-7+8 y-24-3 z+6=0$
$-7 \mathrm{x}+8 \mathrm{y}-3 \mathrm{z}-25=0$
$7 x-8 y+3 z+25=0$
\therefore The equation of the required plane is $7 x-8 y+3 z+25=0$.
14. If the points $(1,1, p)$ and $(-3,0,1)$ be equidistant from the plane

$$
\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-12 \hat{\mathrm{k}})+13=0 \text {, then find the value of } \mathbf{p} .
$$

Solution:

We know that the distance of a point with position vector \vec{a} from the plane $\overrightarrow{\mathrm{r}} . \overrightarrow{\mathrm{n}}=\mathrm{d}$ is given as

$$
\left|\frac{\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{n}}-\mathrm{d}}{|\overrightarrow{\mathrm{n}}|}\right|
$$

Now, the position vector of point $(1,1, p)$ is given as
$\overrightarrow{a_{1}}=1 \hat{\mathrm{i}}+1 \hat{\mathrm{j}}+\mathrm{p} \hat{\mathrm{k}}$
And, the position vector of point $(-3,0,1)$ is given as

$$
\overrightarrow{\mathrm{a}_{2}}=-3 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}+1 \hat{\mathrm{k}}
$$

It is given that the points $(1,1, p)$ and $(-3,0,1)$ are equidistant from the plane

$$
\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-12 \hat{\mathrm{k}})+13=0
$$

So,

$$
\begin{aligned}
& \left|\frac{(1 \hat{\mathrm{i}}+1 \hat{\mathrm{j}}+\mathrm{p} \hat{\mathrm{k}}) \cdot(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-12 \hat{\mathrm{k}})+13}{\sqrt{3^{2}+4^{2}+(-12)^{2}}}\right|=\left|\frac{(-3 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}+1 \hat{\mathrm{k}}) \cdot(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-12 \hat{\mathrm{k}})+13}{\sqrt{3^{2}+4^{2}+(-12)^{2}}}\right| \\
& \left|\frac{3+4-12 \mathrm{p}+13}{\sqrt{9+16+144}}\right|=\left|\frac{-9+0-12+13}{\sqrt{9+16+144}}\right| \\
& \left|\frac{20-12 p}{\sqrt{169}}\right|=\left|\frac{-8}{\sqrt{169}}\right| \\
& |20-12 p|=8
\end{aligned}
$$

$20-12 \mathrm{p}= \pm 8$
$20-12 p=8$ or, $20-12 p=-8$
$12 \mathrm{p}=12$ or, $12 \mathrm{p}=28$
$\mathrm{p}=1$ or, $\mathrm{p}=7 / 3$
\therefore The possible values of p are 1 and $7 / 3$.
15. Find the equation of the plane passing through the line of intersection of the
planes

$$
\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=1 \text { and } \overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}})+4=0
$$

Solution:

We know that,
The equation of any plane through the line of intersection of the planes

$$
\overrightarrow{\mathrm{r}} \cdot \overrightarrow{n_{1}}=d_{1} \text { and } \overrightarrow{\mathrm{r}} \cdot \overrightarrow{n_{2}}=d_{2} \text { is given by }\left(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{n_{1}}-d_{1}\right)+\lambda\left(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{n_{2}}-d_{2}\right)=0
$$

So, the equation of any plane through the line of intersection of the given planes is

$$
\begin{align*}
& {[\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})-1]+\lambda[\overrightarrow{\mathrm{r}} \cdot(-2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}})-4]=0} \\
& \overrightarrow{\mathrm{r}} \cdot((1-2 \lambda) \hat{\mathrm{i}}+(1-3 \lambda) \hat{\mathrm{j}}+(1+\lambda) \hat{\mathrm{k}})-1-4 \lambda=0 \\
& \vec{r} \cdot((1-2 \lambda) \hat{i}+(1-3 \lambda) \hat{j}+(1+\lambda) \hat{k})=1+4 \lambda \tag{1}
\end{align*}
$$

Since this plane is parallel to x -axis.
So, the normal vector of the plane (1) will be perpendicular to x -axis. The direction ratios of Normal $\left(a_{1}, b_{1}, c_{1}\right) \equiv[(1-2 \lambda),(1-3 \lambda),(1+)]$
The direction ratios of x -axis $\left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}\right) \equiv(1,0,0)$

Since the two lines are perpendicular, $\mathrm{a}_{1} \mathrm{a}_{2}$
$+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0$
$(1-2 \lambda) \times 1+(1-3 \lambda) \times 0+(1+\lambda) \times 0=0$
$(1-2 \lambda)=0 \lambda$
$=1 / 2$
Substituting the value of λ in equation (1), we get

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}} \cdot((1-2 \lambda) \hat{\mathrm{i}}+(1-3 \lambda) \hat{\mathrm{j}}+(1+\lambda) \hat{\mathrm{k}})=1+4 \lambda \\
& \overrightarrow{\mathrm{r}} \cdot\left(\left(1-2\left(\frac{1}{2}\right)\right) \hat{\mathrm{i}}+\left(1-3\left(\frac{1}{2}\right)\right) \hat{\mathrm{j}}+\left(1+\frac{1}{2}\right) \hat{\mathrm{k}}\right)=1+4\left(\frac{1}{2}\right)
\end{aligned}
$$

$\overrightarrow{\mathrm{r}} .(0 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})=6$
\therefore The equation of the required plane is $\overrightarrow{\mathrm{r}} \cdot(0 \hat{\mathrm{i}}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}})=6$
16. If O be the origin and the coordinates of P be $(1,2,-3)$, then find the equation of the plane passing through P and perpendicular to $O P$.

Solution:

We know that the equation of a plane passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and perpendicular to a line with direction ratios A, B, C is given as
$\mathrm{A}\left(\mathrm{x}-\mathrm{x}_{1}\right)+\mathrm{B}\left(\mathrm{y}-\mathrm{y}_{1}\right)+\mathrm{C}\left(\mathrm{z}-\mathrm{z}_{1}\right)=0$
It is given that the plane passes through $\mathrm{P}(1,2,3)$
So, $\mathrm{x}_{1}=1, \mathrm{y}_{1}=2, \mathrm{z}_{1}=-3$
Normal vector to plane is $=\overrightarrow{\mathrm{OP}}$
Where $\mathrm{O}(0,0,0), \mathrm{P}(1,2,-3)$
So, direction ratios of $\overrightarrow{\mathrm{OP}}_{\text {is }}=(1-0),(2-0),(-3-0)$

$$
=(1,2,-3)
$$

Where, $\mathrm{A}=1, \mathrm{~B}=2, \mathrm{C}=-3$
Equation of plane in Cartesian form is given as
$1(x-1)+2(y-2)-3(z-(-3))=0$
$\mathrm{x}-1+2 \mathrm{y}-4-3 \mathrm{z}-9=0 \mathrm{x}+2 \mathrm{y}$ -
$3 z-14=0$
\therefore The equation of the required plane is $\mathrm{x}+2 \mathrm{y}-3 \mathrm{z}-14=0$

17. Find the equation of the plane which contains the line of intersection of

 the planes $\overrightarrow{1} .(\hat{i}+2 \hat{j}+3 \hat{k})-4=0$ and $\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})+5=0$And which is perpendicular to the plane $\overrightarrow{\mathrm{r}} .(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0$

Solution:

We know,
The equation of any plane through the line of intersection of the planes $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}_{1}}=\mathrm{d}_{1}$ and $\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}_{2}}=\mathrm{d}_{2}$ is given by $\left(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}_{1}}-\mathrm{d}_{1}\right)+\lambda\left(\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}_{2}}-\mathrm{d}_{2}\right)=0$

So, the equation of any plane through the line of intersection of the given planes is

$$
\begin{align*}
& {[\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})-4]+\lambda[\overrightarrow{\mathrm{r}} \cdot(-2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})-5]=0} \\
& \overrightarrow{\mathrm{r}} \cdot((1-2 \lambda) \hat{\mathrm{i}}+(2-\lambda) \hat{\mathrm{j}}+(3+\lambda) \hat{\mathrm{k}})-4-5 \lambda=0 \\
& \vec{r} \cdot((1-2 \lambda) \hat{i}+(2-\lambda) \hat{j}+(3+\lambda) \hat{k})=4+5 \lambda \tag{1}
\end{align*}
$$

Since this plane is perpendicular to the plane

$$
\begin{align*}
& \overrightarrow{\mathrm{r}} \cdot(5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}})+8=0 \\
& \overrightarrow{\mathrm{r}} \cdot(5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}})=-8 \\
& -\overrightarrow{\mathrm{r}} \cdot(5 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-6 \hat{\mathrm{k}})=8 \\
& \vec{r} \cdot(-5 \hat{i}-3 \hat{j}+6 \hat{k})=8 \tag{2}
\end{align*}
$$

So, the normal vector of the plane (1) will be perpendicular to the normal vector of plane (2).

Direction ratios of Normal of plane $(1)=\left(a_{1}, b_{1}, c_{1}\right) \equiv[(1-2 \lambda),(2-\lambda),(3+\lambda)]$ Direction ratios of Normal of plane $(2)=\left(a_{2}, b_{2}, c_{2}\right) \equiv(-5,-3,6)$

Since the two lines are perpendicular, $a_{1} a_{2}$

$$
\begin{aligned}
& +b_{1} b_{2}+c_{1} c_{2}=0 \\
& (1-2 \lambda) \times(-5)+(2-\lambda) \times(-3)+(3+\lambda) \times 6=0 \\
& -5+10 \lambda-6+3 \lambda+18+6 \lambda=0 \\
& 19 \lambda+7=0 \lambda \\
& =-7 / 19
\end{aligned}
$$

By substituting the value of λ in equation (1), we get

$$
\begin{aligned}
& \overrightarrow{\mathrm{r}} \cdot((1-2 \lambda) \hat{\mathrm{i}}+(2-\lambda) \hat{\mathrm{j}}+(3+\lambda) \hat{\mathrm{k}})=4+5 \lambda \\
& \overrightarrow{\mathrm{r}} \cdot\left(\left(1-2\left(\frac{-7}{19}\right)\right) \hat{\mathrm{i}}+\left(2-\left(\frac{-7}{19}\right)\right) \hat{\mathrm{j}}+\left(3+\left(\frac{-7}{19}\right)\right) \hat{\mathrm{k}}\right)=4+5\left(\frac{-7}{19}\right) \\
& \overrightarrow{\mathrm{r}} \cdot\left(\frac{33}{19} \hat{\mathrm{i}}+\frac{45}{19} \hat{\mathrm{j}}+\frac{50}{19} \hat{\mathrm{k}}\right)=\frac{41}{19} \\
& \vec{r} \cdot(33 \hat{i}+45 \hat{j}+50 \hat{k})=41
\end{aligned}
$$

\therefore The equation of the required plane is $\overrightarrow{\boldsymbol{r}} \cdot(33 \hat{\boldsymbol{i}}+45 \hat{\boldsymbol{j}}+50 \hat{\boldsymbol{k}})=41$
18. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line

$$
\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})+\lambda(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}) \text { and the plane } \overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})=5 .
$$

Solution:

Given:
The equation of line is
$\overrightarrow{\mathrm{r}}=(2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})+\lambda(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})$
And the equation of the plane is given by
$\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})=5$
Now to find the intersection of line and plane, substituting the value of $\overrightarrow{\mathrm{r}}$ from equation (1) of line into equation of plane (2), we get
$[(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})] \cdot(\hat{i}-\hat{j}+\hat{k})=5$
$[(2+3 \lambda) \hat{\mathrm{i}}+(-1+4 \lambda) \hat{\mathrm{j}}+(2+2 \lambda) \hat{\mathrm{k}}] \cdot(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})=5$
$(2+3 \lambda) \times 1+(-1+4 \lambda) \times(-1)+(2+2 \lambda) \times 1=5$
$2+3 \lambda+1-4 \lambda+2+2 \lambda=5$
$\lambda=0$
So, the equation of line is

$$
\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})
$$

Let the point of intersection be $(\mathrm{x}, \mathrm{y}, \mathrm{z})$
So,

$$
\begin{aligned}
& \vec{r}=x \hat{i}+y \hat{j}+z \hat{k} \\
& x \hat{i}+y \hat{j}+z \hat{k}=2 \hat{i}-\hat{j}+2 \hat{k}
\end{aligned}
$$

Where, $x=2, y=$
$-1, \mathrm{z}=2$
So, the point of intersection is $(2,-1,2)$.
Now, the distance between points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ is given by

$$
\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}} \text { Units }
$$

Distance between the points $\mathrm{A}(2,-1,2)$ and $\mathrm{B}(-1,-5,-10)$ is given by

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(2-(-1))^{2}+(-1-(-5))^{2}+(2-(-10))^{2}} \\
& =\sqrt{(3)^{2}+(4)^{2}+(12)^{2}} \\
= & \sqrt{9+16+144} \\
= & \sqrt{169} \\
= & 13 \text { units }
\end{aligned}
$$

\therefore The distance is 13 units.

19. Find the vector equation of the line passing through $(1,2,3)$ and

 parallel to the planes $\overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})=5$ and $\overrightarrow{\mathrm{r}} \cdot(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{k})=6$Solution:
The vector equation of a line passing through a point with position vector \vec{a} and parallel to a vector \vec{b} is
$\vec{r}=\vec{a}+\lambda \vec{b}$
It is given that the line passes through $(1,2,3)$
So,
$\vec{a}=1 \hat{i}+2 \hat{j}+3 \hat{k}$
It is also given that the line is parallel to both planes.
So line is perpendicular to normal of both planes.
i.e \vec{b} is perpendicular to normal of both planes.

We know that
$\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b}
So, \vec{b} is cross product of normal of plane $\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5$ and $\vec{r} \cdot(3 \hat{i}+\hat{j}+\hat{k})=6$
Required Normal $=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 3 & 1 & 1\end{array}\right|$

$$
=\hat{\mathrm{i}}[(-1)(1)-1(2)]-\hat{\mathrm{j}}[1(1)-3(2)]+\hat{\mathrm{k}}[1(1)-3(-1)]
$$

$$
=\hat{\mathrm{i}}[-1-2]-\hat{\mathrm{j}}[1-6]+\hat{\mathrm{k}}[1+3]
$$

$$
=-3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}
$$

So,
$\overrightarrow{\mathrm{b}}=-3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$
Now, substitute the value of \vec{a} \& \vec{b} in the formula, we get
$\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}$

$$
=(1 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(-3 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}+4 \hat{\mathrm{k}})
$$

\therefore The equation of the line is

$$
\vec{r}=(1 \hat{i}+2 \hat{\boldsymbol{j}}+3 \hat{\boldsymbol{k}})+\lambda(-3 \hat{\boldsymbol{i}}+5 \hat{\boldsymbol{j}}+4 \hat{\boldsymbol{k}})
$$

20. Find the vector equation of the line passing through the point $(1,2,-4)$ and perpendicular to the two lines:
$\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.

Solution:

The vector equation of a line passing through a point with position vector \vec{a} and parallel to a vector \vec{b} is $\vec{r}=\vec{a}+\lambda \vec{b}$
It is given that, the line passes through $(1,2,-4)$
So,
$\overrightarrow{\mathrm{a}}=1 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
It is also given that, line is parallel to both planes.
So we can say that the line is perpendicular to normal of both planes.
i.e \vec{b} is perpendicular to normal of both planes.

We know that
$\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} \& \vec{b}
So, \vec{b} is cross product of normal of planes

$$
\begin{aligned}
& \frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \text { and } \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5} \\
& \text { Required Normal }=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
3 & -16 & 7 \\
3 & 8 & -5
\end{array}\right| \\
& =\hat{\mathrm{i}}[(-16)(-5)-8(7)]-\hat{\mathrm{j}}[3(-5)-3(7)]+\hat{\mathrm{k}}[3(8)-3(-16)] \\
& =\hat{\mathrm{i}}[80-56]-\hat{\mathrm{j}}[-15-21]+\hat{\mathrm{k}}[24+48] \\
& =24 \hat{\mathrm{i}}+36 \hat{\mathrm{j}}+72 \hat{\mathrm{k}}
\end{aligned}
$$

So,

$$
\overrightarrow{\mathrm{b}}=24 \hat{\mathrm{i}}+36 \hat{\mathrm{j}}+72 \hat{\mathrm{k}}
$$

Now, by substituting the value of \vec{a} \& \vec{b} in the formula, we get

$$
\begin{aligned}
\overrightarrow{\mathrm{r}} & =\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}} \\
& =(1 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})+\lambda(24 \hat{\mathrm{i}}+36 \hat{\mathrm{j}}+72 \hat{\mathrm{k}}) \\
& =(1 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})+12 \lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}}) \\
& =(1 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})
\end{aligned}
$$

\therefore The equation of the line is

$$
\vec{r}=(1 \hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})
$$

21. Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin, then
$\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}=\frac{1}{\mathrm{p}^{2}}$
Solution:

We know that the distance of the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ from the plane $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}$ $=\mathrm{D}$ is given as

$$
\left|\frac{\mathrm{Ax}_{1}+\mathrm{By}_{1}+\mathrm{C} z_{1}-\mathrm{D}}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|
$$

The equation of a plane having intercepts a, b, c on the $x-, y-, z-a x i s$ respectively is given as
$\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}+\frac{\mathrm{z}}{\mathrm{c}}=1$
Let us compare it with $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D}$, we get
$\mathrm{A}=1 / \mathrm{a}, \mathrm{B}=1 / \mathrm{b}, \mathrm{C}=1 / \mathrm{c}, \mathrm{D}=1$
It is given that, the plane is at a distance of ' p ' units from the origin.
So, the origin point is $\mathrm{O}(0,0,0)$
Where, $\mathrm{x}_{1}=0, \mathrm{y}_{1}=0, \mathrm{z}_{1}=0$
Now,

Distance $=\left|\frac{A x_{1}+\mathrm{By}_{1}+C z_{1}-D}{\sqrt{A^{2}+B^{2}+C^{2}}}\right|$
By substituting all values in above equation, we get
$p=\left|\frac{\frac{1}{a} \times 0+\frac{1}{b} \times 0+\frac{1}{c} \times 0-1}{\sqrt{\left(\frac{1}{\mathrm{a}}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}}\right|$
$p=\left|\frac{0+0+0-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}\right|$
$p=\left|\frac{-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}\right|$
$p=\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}$
$\frac{1}{\mathrm{p}}=\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}+\frac{1}{\mathrm{c}^{2}}}$
Now let us square on both sides, we get
$\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}$
Hence Proved.
22. Distance between the two planes: $2 x+3 y+4 z=4$ and $4 x+6 y+8 z=12$ is A. 2 units

B. 4 units

C. 8 units
D. $2 / \sqrt{ } 29$ units Solution:

We know that the distance between two parallel planes $A x+B y+C z=d_{1}$ and $A x+B y+$ $\mathrm{Cz}=\mathrm{d}_{2}$ is given as

$$
\left|\frac{\mathrm{d}_{1}-\mathrm{d}_{2}}{\sqrt{\mathrm{~A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|
$$

It is given that:
First Plane:
$2 x+3 y+4 z=4$
Let us compare with $\mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{d}_{1}$, we get
$A=2, B=3, C=4, d_{1}=4$
Second Plane:
$4 x+6 y+8 z=12$ [Divide the equation by 2]
We get,
$2 x+3 y+4 z=6$
Now comparing with $A x+B y+C z=d_{1}$, we get
$\mathrm{A}=2, \mathrm{~B}=3, \mathrm{C}=4, \mathrm{~d}_{2}=6$
So,
Distance between two planes is given as

$$
\begin{aligned}
& =\left|\frac{4-6}{\sqrt{2^{2}+3^{2}+4^{2}}}\right| \\
& =\left|\frac{-2}{\sqrt{4+9+16}}\right| \\
& =2 / \sqrt{29} \\
& \therefore \text { Option (D) is the correct option. }
\end{aligned}
$$

23. The planes: $2 x-y+4 z=5$ and $5 x-2.5 y+10 z=6$ are

A. Perpendicular

B. Parallel

C. intersect \mathbf{y}-axis D. passes through Solution:

It is given that:
First Plane:
$2 \mathrm{x}-\mathrm{y}+4 \mathrm{z}=5$ [Multiply both sides by 2.5]
We get,
$5 \mathrm{x}-2.5 \mathrm{y}+10 \mathrm{z}=12.5 \ldots$ (1)
Given second Plane:
$5 \mathrm{x}-2.5 \mathrm{y}+10 \mathrm{z}=6 \ldots$ (2)
So,

$$
\frac{a_{1}}{a_{2}}=\frac{2}{5}
$$

$$
\frac{b_{1}}{b_{2}}=\frac{2}{5}
$$

$$
\frac{c_{1}^{2}}{c_{2}}=\frac{4}{10}=\frac{2}{5}
$$

Hence,
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
It is clear that the direction ratios of normal of both the plane (1) and (2) are same. \therefore Both the given planes are parallel.

