EXERCISE 7.1

Find an anti-derivative (or integral) of the following functions by the method of inspection. 1. $\sin 2 x$
2. $\cos 3 \mathrm{x}$
3. $\mathrm{e}^{2 \mathrm{x}}$
4. $(a x+b)^{2}$ 5. $\sin 2 x-4 e^{3 x}$ Solution:

1. $\sin 2 x$

The anti-derivative of $\sin 2 \mathrm{x}$ is a function of x whose derivative is $\sin 2 \mathrm{x}$ We know that,

$$
\frac{d}{d x}(\cos 2 x)=-2 \sin 2 x
$$

We get,

$$
\sin 2 x=-\frac{1}{2} \frac{d}{d x}(\cos 2 x)
$$

On further calculation, we get

$$
\sin 2 x=\frac{d}{d x}\left(-\frac{1}{2} \cos 2 x\right)
$$

Hence, the anti derivative of $\sin 2 x$ is $-1 / 2 \cos 2 x$
2. $\cos 3 x$

The anti-derivative of $\cos 3 \mathrm{x}$ is a function of x whose derivative is $\cos 3 \mathrm{x}$ We know that,

$$
\frac{d}{d x}(\sin 3 x)=3 \cos 3 x
$$

We get,

$$
\cos 3 x=\frac{1}{3} \frac{d}{d x}(\sin 3 x)
$$

On further calculation, we get

$$
\cos 3 x=\frac{d}{d x}\left(\frac{1}{3} \sin 3 x\right)
$$

Hence, the anti derivative of $\cos 3 x$ is $1 / 3 \sin 3 x$
3. $e^{2 x}$

The anti-derivative of $\mathrm{e}^{2 \mathrm{x}}$ is the function of x whose derivative is $\mathrm{e}^{2 \mathrm{x}}$ We know that,

$$
\frac{d}{d x}\left(e^{2 x}\right)=2 e^{2 x}
$$

We get,
$e^{2 x}=\frac{1}{2} \frac{d}{d x}\left(e^{2 x}\right)$
On further calculation, we get

$$
e^{2 x}=\frac{d}{d x}\left(\frac{1}{2} e^{2 x}\right)
$$

Hence, the anti derivative of $\mathrm{e}^{2 \mathrm{x}}$ is $1 / 2 \mathrm{e}^{2 \mathrm{x}}$
4. $(a x+b)^{2}$

The anti-derivative of $(a x+b)^{2}$ is the function of x whose derivative is $(a x+b)^{2}$
We know that,

$$
\frac{d}{d x}(a x+b)^{3}=3 a(a x+b)^{2}
$$

On further multiplication, we get

$$
(a x+b)^{2}=\frac{1}{3 a} \frac{d}{d x}(a x+b)^{3}
$$

Hence,

$$
(a x+b)^{2}=\frac{d}{d x}\left(\frac{1}{3 a}(a x+b)^{3}\right)
$$

Thus, the anti derivative of $(a x+b)^{2}$ is $1 / 3 a(a x+b)^{3}$
5. $\sin 2 x-4 e^{3 x}$

The anti-derivative of $\left(\sin 2 x-4 e^{3 x}\right)$ is the function of x whose derivative of $\left(\sin 2 x-4 e^{3 x}\right)$
We know that,

$$
\frac{d}{d x}\left(-\frac{1}{2} \cos 2 x-\frac{4}{3} e^{3 x}\right)=\sin 2 x-4 e^{3 x}
$$

Hence, the anti derivative of $\left(\sin 2 x-43^{3 x}\right)$ is $\left(-1 / 2 \cos 2 x-4 / 3 e^{3 x}\right)$

Find the following integrals in Exercises 6 to 20:
6. $\int\left(4 e^{3 x}+1\right) d x$

Solution:

We get,

$$
=4 \int e^{3 x} d x+\int 1 d x
$$

On further calculation, we obtain,

$$
=4\left(\frac{e^{3 x}}{3}\right)+x+\mathrm{C}
$$

Therefore,

$$
=\frac{4}{3} e^{3 x}+x+\mathrm{C}
$$

7.

$$
\int x^{2}\left(1-\frac{1}{x^{2}}\right) d x
$$

Solution:

We get,

$$
=\int\left(x^{2}-1\right) d x
$$

On further calculation, we obtain,

$$
=\int x^{2} d x-\int 1 d x
$$

Hence,

$$
=\frac{x^{3}}{3}-x+\mathrm{C}
$$

$\int\left(a x^{2}+b x+c\right) d x$

Solution:

By taking the terms separately, we get,

$$
=a \int x^{2} d x+b \int x d x+c \int 1 \cdot d x
$$

On further calculation, we obtain,

$$
=a\left(\frac{x^{3}}{3}\right)+b\left(\frac{x^{2}}{2}\right)+c x+\mathrm{C}
$$

So, we get,

$$
=\frac{a x^{3}}{3}+\frac{b x^{2}}{2}+c x+\mathrm{C}
$$

$\int\left(2 x^{2}+e^{x}\right) d x$
Solution:

EDUGRロSS

By taking the terms separately, we get,

$$
=2 \int x^{2} d x+\int e^{x} d x
$$

On further calculation, we get,

$$
=2\left(\frac{x^{3}}{3}\right)+e^{x}+\mathrm{C}
$$

Therefore,

$$
=\frac{2}{3} x^{3}+e^{x}+\mathrm{C}
$$

10.

$$
\int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x
$$

Solution:

We get,

$$
=\int\left(x+\frac{1}{x}-2\right) d x
$$

By taking the terms separately, we get,

$$
=\int x d x+\int \frac{1}{x} d x-2 \int 1 \cdot d x
$$

Hence, we get,

$$
=\frac{x^{2}}{2}+\log |x|-2 x+\mathrm{C}
$$

11. $\int \frac{x^{3}+5 x^{2}-4}{x^{2}} d x$

Solution:
We get,

$$
=\int\left(x+5-4 x^{-2}\right) d x
$$

By taking the terms separately, we get,
$=\int x d x+5 \int 1 \cdot d x-4 \int x^{-2} d x$
On further calculation, we obtain,

$$
=\frac{x^{2}}{2}+5 x-4\left(\frac{x^{-1}}{-1}\right)+\mathrm{C}
$$

Hence, we get,
$=\frac{x^{2}}{2}+5 x+\frac{4}{x}+\mathrm{C}$

EDUGRロSS

12. $\int \frac{x^{3}+3 x+4}{\sqrt{x}} d x$

Solution:
We get,
$=\int\left(x^{\frac{5}{2}}+3 x^{\frac{1}{2}}+4 x^{-\frac{1}{2}}\right) d x$
On further calculation, we get,
$=\frac{x^{\frac{7}{2}}}{\frac{7}{2}}+\frac{3\left(x^{\frac{3}{2}}\right)}{\frac{3}{2}}+\frac{4\left(x^{\frac{1}{2}}\right)}{\frac{1}{2}}+\mathrm{C}$
So,

$$
=\frac{2}{7} x^{\frac{7}{2}}+2 x^{\frac{3}{2}}+8 x^{\frac{1}{2}}+\mathrm{C}
$$

Hence,

$$
=\frac{2}{7} x^{\frac{7}{2}}+2 x^{\frac{3}{2}}+8 \sqrt{x}+\mathrm{C}
$$

13. $\int \frac{x^{3}-x^{2}+x-1}{x-1} d x$

Solution:

By dividing, we get,
$=\int\left(x^{2}+1\right) d x$
By taking the terms separately, we get,
$=\int x^{2} d x+\int 1 d x$
Therefore, we obtain,

$$
=\frac{x^{3}}{3}+x+\mathrm{C}
$$

14. $\int(1-x) \sqrt{x} d x$

Solution:

EDUGRロSS

We get,
$=\int\left(\sqrt{x}-x^{\frac{3}{2}}\right) d x$
On further calculation, we get,

$$
=\int x^{\frac{1}{2}} d x-\int x^{\frac{3}{2}} d x
$$

So,

$$
=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{\frac{5}{2}}}{\frac{5}{2}}+\mathrm{C}
$$

Hence, we get,

$$
=\frac{2}{3} x^{\frac{3}{2}}-\frac{2}{5} x^{\frac{5}{2}}+\mathrm{C}
$$

15. $\int \sqrt{x}\left(3 x^{2}+2 x+3\right) d x$

Solution:

We get,

$$
=\int\left(3 x^{\frac{5}{2}}+2 x^{\frac{3}{2}}+3 x^{\frac{1}{2}}\right) d x
$$

By taking the terms separately, we get,
$=3 \int x^{\frac{5}{2}} d x+2 \int x^{\frac{3}{2}} d x+3 \int x^{\frac{1}{2}} d x$
On further calculation, we get

$$
=3\left(\frac{x^{\frac{7}{2}}}{\frac{7}{2}}\right)+2\left(\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right)+3 \frac{\left(x^{\frac{3}{2}}\right)}{\frac{3}{2}}+\mathrm{C}
$$

Therefore, we get,

$$
=\frac{6}{7} x^{\frac{7}{2}}+\frac{4}{5} x^{\frac{5}{2}}+2 x^{\frac{3}{2}}+\mathrm{C}
$$

16. $\int\left(2 x-3 \cos x+e^{x}\right) d x$

Solution:

EDUGRロSS

By taking the terms separately, we get,
$=2 \int x d x-3 \int \cos x d x+\int e^{x} d x$
On further calculation, we get,

$$
=\frac{2 x^{2}}{2}-3(\sin x)+e^{x}+\mathrm{C}
$$

Hence, we get,

$$
=x^{2}-3 \sin x+e^{x}+\mathrm{C}
$$

17. $\int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x$

Solution:

By taking the terms separately, we get,

$$
=2 \int x^{2} d x-3 \int \sin x d x+5 \int x^{\frac{1}{2}} d x
$$

On further calcualtion, we get,

$$
=\frac{2 x^{3}}{3}-3(-\cos x)+5\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}
$$

Therefore, we get,

$$
=\frac{2}{3} x^{3}+3 \cos x+\frac{10}{3} x^{\frac{3}{2}}+\mathrm{C}
$$

18.

Solution:
On multiplication, we get,
$=\int\left(\sec ^{2} x+\sec x \tan x\right) d x$
By taking separately, we get,

$$
=\int \sec ^{2} x d x+\int \sec x \tan x d x
$$

We get,

$$
=\tan x+\sec x+C
$$

19. $\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x$

Solution:

EDUGRロSS

We get,

$$
=\int \frac{\frac{1}{\cos ^{2} x}}{\frac{1}{\sin ^{2} x}} d x
$$

So,

$$
=\int \frac{\sin ^{2} x}{\cos ^{2} x} d x
$$

We get,

$$
=\int \tan ^{2} x d x
$$

On further calculation, we get,

$$
=\int\left(\sec ^{2} x-1\right) d x
$$

By taking separately, we get,

$$
=\int \sec ^{2} x d x-\int 1 d x
$$

Therefore, we get,

$$
=\tan x-x+\mathrm{C}
$$

20.

$$
\int \frac{2-3 \sin x}{\cos ^{2} x} d x
$$

Solution:
By separating the terms, we get,

$$
=\int\left(\frac{2}{\cos ^{2} x}-\frac{3 \sin x}{\cos ^{2} x}\right) d x
$$

On further calculation, we get,

$$
=\int 2 \sec ^{2} x d x-3 \int \tan x \sec x d x
$$

Hence, we obtain,

$$
=2 \tan x-3 \sec x+C
$$

Choose the correct answer in Exercises 21 and 22
21. The anti-derivative of $\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x$ equals
(A) $(1 / 3) x^{1 / 3}+(2) x^{1 / 2}+C(B)$
$(2 / 3) x^{2 / 3}+(1 / 2) x^{2}+C$
(C) $(2 / 3) x^{3 / 2}+(2) x^{1 / 2}+C(D)$
$(3 / 2) x^{3 / 2}+(1 / 2) x^{1 / 2}+C$
Solution:

Given

$$
\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x
$$

We get,

$$
=\int x^{\frac{3}{2}} d x+\int x^{-\frac{1}{2}} d x
$$

On further calcualtion, we get,

$$
=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+\mathrm{C}
$$

Therefore, we get,

$$
=\frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+\mathrm{C}
$$

Here, the correct answer is option (C)
22. If $d / d x f(x)=4 x^{3}-3 / x^{4}$ such that $f(2)=0$. Then $f(x)$ is (A) $\mathrm{x}^{4}+1 / \mathrm{x}^{3}-129 / 8$ (B) $x^{3}+1 / x^{4}+129 / 8$
(C) $\mathrm{x}^{4}+1 / \mathrm{x}^{3}+129 / 8$ (D)
$\mathrm{x}^{3}+1 / \mathrm{x}^{4}-129 / 8$

Solution:

Given

$d / d x f(x)=4 x^{3}-3 / x^{4}$
The anti derivative of $4 x^{3}-3 / x^{4}=f(x)$
Hence,
$f(x)=\int 4 x^{3}-\frac{3}{x^{4}} d x$
By taking separately, we get,

$$
f(x)=4 \int x^{3} d x-3 \int\left(x^{-4}\right) d x
$$

We get,

$$
f(x)=4\left(\frac{x^{4}}{4}\right)-3\left(\frac{x^{-3}}{-3}\right)+\mathrm{C}
$$

EDUGRロSS

Now, we get,

$$
f(x)=x^{4}+\frac{1}{x^{3}}+\mathrm{C}
$$

Also, $\mathrm{f}(2)=0$
By substituting $x=2$, we get,
$f(2)=(2)^{4}+\frac{1}{(2)^{3}}+\mathrm{C}=0$
$16+\frac{1}{8}+\mathrm{C}=0$

On further calculation, we get,
$C=-\left(16+\frac{1}{8}\right)$
By taking L.C.M, we get,
$\mathrm{C}=\frac{-129}{8}$
Hence, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}+1 / \mathrm{x}^{3}-129 / 8$
Therefore, the correct answer is option (A).

EXERCISE 7.2

Integrate the functions in Exercises 1 to 37:

1. $2 \mathrm{x} / 1+\mathrm{x}^{2}$

Solution:
Let us take $1+\mathrm{x}^{2}=\mathrm{t}$
So, we get,
$2 \mathrm{x} \mathrm{dx}=\mathrm{dt}$
$\int \frac{2 x}{1+x^{2}} d x$
We get,
$=\int_{t}^{1} d t$
On further calculation, we get,

$$
=\log |t|+C
$$

Now, substituting $\mathrm{t}=1+\mathrm{x}^{2}$ we get,

$$
\begin{aligned}
& =\log \left|1+x^{2}\right|+C \\
& =\log \left(1+\mathrm{x}^{2}\right)+\mathrm{C}
\end{aligned}
$$

2. $\quad(\log x)^{2} / x$

Solution:

EDUGRロSS

Let us take,
$\log |x|=t$
On differentiating, we get,
$\frac{1}{x} d x=d t$
$\int \frac{(\log |x|)^{2}}{x} d x$
We get,
$=\int t^{2} d t$
On further calcualtion, we get,

$$
=\frac{t^{3}}{3}+\mathrm{C}
$$

By substituting $\mathrm{t}=\log |x|$ we get,

$$
=\frac{(\log |x|)^{3}}{3}+\mathrm{C}
$$

3. $1 /(x+x \log x)$

Solution:

Given

$$
\frac{1}{x+x \log x}
$$

This can be written as
$=\frac{1}{x(1+\log x)}$
Let us take,
$1+\log x=t$
We get,
$1 / \mathrm{xdx}=\mathrm{dt}$
So,
$\int \frac{1}{x(1+\log x)} d x$

We get,
$=\int \frac{1}{t} d t$
On calcualting further, we get

$$
=\log |t|+C
$$

Hence, we get,

$$
=\log |1+\log x|+C
$$

4. $\quad \sin x \sin (\cos x)$

Solution:

Let us take $\cos \mathrm{x}=\mathrm{t}$
By differentiating, we get
$-\sin \mathrm{xdx}=\mathrm{dt}$
Now,
$\int \sin x \cdot \sin (\cos x) d x$
We obtain,

$$
=-\int \sin t d t
$$

On further calculation, we get

$$
\begin{aligned}
& =-[-\cos t]+\mathrm{C} \\
& =\cos t+\mathrm{C}
\end{aligned}
$$

By substituting $t=\cos x$, we get

$$
=\cos (\cos x)+C
$$

5. $\quad \operatorname{Sin}(a x+b) \cos$
(ax +b) Solution:

EDUGRロSS

Given

$$
\sin (a x+b) \cos (a x+b)
$$

On integrating the above function, we get

$$
\sin (a x+b) \cos (a x+b)=\frac{2 \sin (a x+b) \cos (a x+b)}{2}
$$

We obtain,

$$
=\frac{\sin 2(a x+b)}{2}
$$

Let $2(a x+b)=t$
We get,
$2 \mathrm{adx}=\mathrm{dt}$
We get, $\int \frac{\sin 2(a x+b)}{2} d x=\frac{1}{2} \int \frac{\sin t d t}{2 a}$
On further calculation, we get,

$$
=\frac{1}{4 a}[-\cos t]+\mathrm{C}
$$

By putting $\mathrm{t}=2(\mathrm{ax}+\mathrm{b})$, we get

$$
=\frac{-1}{4 a} \cos 2(a x+b)+\mathrm{C}
$$

6. $\quad \sqrt{ } \mathrm{ax}+\mathrm{b}$

Solution:

EDUGRロSS

Let us take,
$\mathrm{ax}+\mathrm{b}=\mathrm{t}$
We get,
$\mathrm{adx}=\mathrm{dt}$
Hence,
$\mathrm{dx}=1 / \mathrm{adt}$
Now,
$\int(a x+b)^{\frac{1}{2}} d x$
We get,
$=\frac{1}{a} \int t^{\frac{1}{2}} d t$
On further calculation, we get
$=\frac{1}{a}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}$
Hence, we get,
$=\frac{2}{3 a}(a x+b)^{\frac{3}{2}}+\mathrm{C}$
7. $\quad \mathbf{x} \sqrt{ } \mathrm{x}+2$

Solution:

EDUGRロSS

Let us take,
$(\mathrm{x}+2)=\mathrm{t}$
We get, $\mathrm{dx}=\mathrm{dt}$
Now,
$\int x \sqrt{x+2} d x$
We get,
$=\int(t-2) \sqrt{t} d t$
On further calculating, we get

$$
=\int\left(t^{\frac{3}{2}}-2 t^{\frac{1}{2}}\right) d t
$$

By taking separately, we get

$$
=\int t^{\frac{3}{2}} d t-2 \int t^{\frac{1}{2}} d t
$$

So,

$$
=\frac{t^{\frac{5}{2}}}{\frac{5}{2}}-2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C}
$$

By further calculation, we get

$$
=\frac{2}{5} t^{\frac{5}{2}}-\frac{4}{3} t^{\frac{3}{2}}+\mathrm{C}
$$

$$
=\frac{2}{5}(x+2)^{\frac{5}{2}}-\frac{4}{3}(x+2)^{\frac{3}{2}}+\mathrm{C}
$$

8. $\quad x \sqrt{ } 1+2 x^{2}$

Solution:

EDUGRロSS

Let us take,

$$
1+2 x^{2}=t
$$

We get,
$4 \mathrm{xdx}=\mathrm{dt}$
$\int x \sqrt{1+2 x^{2}} d x$
We obtain,
$=\int \frac{\sqrt{t} d t}{4}$
So,

$$
=\frac{1}{4} \int t^{\frac{1}{2}} d t
$$

On further calculation, we get

$$
\begin{aligned}
& =\frac{1}{4}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C} \\
& =\frac{1}{6}\left(1+2 x^{2}\right)^{\frac{3}{2}}+\mathrm{C}
\end{aligned}
$$

9. $\quad(4 x+2) \sqrt{ } x^{2}+x$ +1 Solution:

EDUGRロSS

Let us take,

$$
x^{2}+x+1=t
$$

We get,
$(2 x+1) d x=d t$

$$
\int(4 x+2) \sqrt{x^{2}+x+1} d x
$$

We obtain,

$$
\begin{aligned}
& =\int 2 \sqrt{t} d t \\
& =2 \int \sqrt{t} d t
\end{aligned}
$$

On further calculation, we get

$$
\begin{aligned}
& =2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C} \\
& =\frac{4}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+\mathrm{C}
\end{aligned}
$$

10. $\quad 1 /(x-\sqrt{ } \mathbf{x})$

Solution:

Given

$$
\frac{1}{x-\sqrt{x}}
$$

This can be written as

$$
=\frac{1}{\sqrt{x}(\sqrt{x}-1)}
$$

Let us take,

$$
(\sqrt{x}-1)=t
$$

We get,
$\frac{1}{2 \sqrt{x}} d x=d t$
$\int \frac{1}{\sqrt{x}(\sqrt{x}-1)} d x=\int_{t}^{2} d t$

EDUGRロSS

On further calculation, we get

$$
=2 \log |t|+\mathrm{C}
$$

Hence, we obtain,

$$
=2 \log |\sqrt{x}-1|+C
$$

11. $\quad x /(\sqrt{ } x+4), x>$

0 Solution:
Let us take,
$\mathrm{x}+4=\mathrm{t}$
We get,
$\mathrm{dx}=\mathrm{dt}$

$$
\int \frac{x}{\sqrt{x+4}} d x=\int \frac{(t-4)}{\sqrt{t}} d t
$$

So,

$$
=\int\left(\sqrt{t}-\frac{4}{\sqrt{t}}\right) d t
$$

On further calculation, we get

$$
\begin{aligned}
& =\frac{t^{\frac{3}{2}}}{\frac{3}{2}}-4\left(\frac{t^{\frac{1}{2}}}{\frac{1}{2}}\right)+\mathrm{C} \\
= & \frac{2}{3}(t)^{\frac{3}{2}}-8(t)^{\frac{1}{2}}+\mathrm{C} \\
= & \frac{2}{3} t \cdot t^{\frac{1}{2}}-8 t^{\frac{1}{2}}+\mathrm{C} \\
= & \frac{2}{3} t^{\frac{1}{2}}(t-12)+\mathrm{C}
\end{aligned}
$$

By substituting $t=x+4$, we obtain

$$
\begin{aligned}
& =\frac{2}{3}(x+4)^{\frac{1}{2}}(x+4-12)+C \\
& =\frac{2}{3} \sqrt{x+4}(x-8)+C
\end{aligned}
$$

12. $\left(\mathrm{x}^{3}-1\right)^{1 / 3}$
x^{5} Solution:

EDUGRロSS

Let us take,
$\mathrm{x}^{3}-1=\mathrm{t}$
We get,
$3 x^{2} d x=d t$
$\int\left(x^{3}-1\right)^{\frac{1}{3}} x^{5} d x$
We get,
$=\int\left(x^{3}-1\right)^{\frac{1}{3}} x^{3} \cdot x^{2} d x$
By putting $\mathrm{x}^{3}-1=\mathrm{t}$, we obtain
$=\int t^{\frac{1}{3}}(t+1) \frac{d t}{3}$
$=\frac{1}{3} \int\left(t^{\frac{4}{3}}+t^{\frac{1}{3}}\right) d t$
On further calculation, we get
$=\frac{1}{3}\left[\frac{t^{\frac{7}{3}}}{\frac{7}{3}}+\frac{t^{\frac{4}{3}}}{\frac{4}{3}}\right]+\mathrm{C}$
$=\frac{1}{3}\left[\frac{3}{7} t^{\frac{7}{3}}+\frac{3}{4} t^{\frac{4}{3}}\right]+\mathrm{C}$
$=\frac{1}{7}\left(x^{3}-1\right)^{\frac{7}{3}}+\frac{1}{4}\left(x^{3}-1\right)^{\frac{4}{3}}+\mathrm{C}$
13. $x^{2} /\left(2+3 x^{3}\right)^{3}$ Solution:

Let us take,
$2+3 \mathrm{x}^{3}=\mathrm{t}$
We get,
$9 \mathrm{x}^{2} \mathrm{dx}=\mathrm{dt}$
$\int \frac{x^{2}}{\left(2+3 x^{3}\right)^{3}} d x$
So,
$=\frac{1}{9} \int \frac{d t}{(t)^{3}}$

EDUGRロSS

On further calculation, we get

$$
\begin{aligned}
& =\frac{1}{9}\left[\frac{t^{-2}}{-2}\right]+\mathrm{C} \\
& =\frac{-1}{18}\left(\frac{1}{t^{2}}\right)+\mathrm{C} \\
& =\frac{-1}{18\left(2+3 x^{3}\right)^{2}}+\mathrm{C}
\end{aligned}
$$

14. $1 / x(\log x)^{m}, x>0, m \neq 1$ Solution:

Let us take,
$\log \mathrm{x}=\mathrm{t}$
We get,
$\frac{1}{x} d x=d t$
$\int \frac{1}{x(\log x)^{m}} d x$
We obtain,
$=\int \frac{d t}{(t)^{m}}$
On further calculation, we get

$$
\begin{aligned}
& =\left(\frac{t^{-m+1}}{1-m}\right)+\mathrm{C} \\
& =\frac{(\log x)^{1-m}}{(1-m)}+\mathrm{C}
\end{aligned}
$$

15. $\mathrm{x} /\left(9-4 \mathrm{x}^{2}\right)$ Solution:

Let us take,
$9-4 \mathrm{x}^{2}=\mathrm{t}$
We get,
$-8 \mathrm{xdx}=\mathrm{dt}$
Now take,
$\int \frac{x}{9-4 x^{2}} d x$

EDUGRロSS

So,
$=\frac{-1}{8} \int_{t}^{1} d t$
By further calculating, we obtain

$$
\begin{aligned}
& =\frac{-1}{8} \log |t|+C \\
& =\frac{-1}{8} \log \left|9-4 x^{2}\right|+C
\end{aligned}
$$

16. $\mathbf{e}_{2 x}+3$ Solution:

Let us take,
$2 \mathrm{x}+3=\mathrm{t}$
We get,
$2 \mathrm{dx}=\mathrm{dt}$
Now
$\int e^{2 x+3} d x$
We obtain,
$=\frac{1}{2} \int e^{\prime} d t$
On further calculation, we get

$$
\begin{aligned}
& =\frac{1}{2}\left(e^{t}\right)+\mathrm{C} \\
& =\frac{1}{2} e^{(2 x+3)}+\mathrm{C}
\end{aligned}
$$

17.

$\frac{x}{e^{x^{2}}}$
Solution:
Let us take, $\mathrm{x}^{2}=\mathrm{t}$
We get,
$2 \mathrm{xdx}=\mathrm{dt}$
$\int \frac{x}{e^{x^{2}}} d x$

EDUGRロSS

So,
$=\frac{1}{2} \int \frac{1}{e^{i}} d t$

$$
=\frac{1}{2} \int e^{-t} d t
$$

On further calculation, we get

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{e^{-t}}{-1}\right)+\mathrm{C} \\
& =-\frac{1}{2} e^{-x^{2}}+\mathrm{C} \\
& =\frac{-1}{2 e^{x^{2}}}+\mathrm{C}
\end{aligned}
$$

18. $\frac{e^{\tan ^{-1} x}}{1+x^{2}}$

Solution:

Let us take, $\tan ^{-1} \mathrm{x}=\mathrm{t}$
We get,
$\frac{1}{1+x^{2}} d x=d t$
$\int \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x$
We obtain,
$=\int e^{t} d t$
By further calculation, we get

$$
=e^{t}+\mathrm{C}
$$

$$
=e^{\operatorname{lan}^{-1} x}+\mathrm{C}
$$

19.

$\frac{e^{2 x}-1}{e^{2 x}+1}$
Solution:

EDUGRロSS

By dividing numerator and denominator by e^{x}, we find

$$
\frac{\frac{\left(e^{2 x}-1\right)}{e^{x}}}{\frac{\left(e^{2 x}+1\right)}{e^{x}}}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

Let us assume,

$$
e^{x}+e^{-x}=t
$$

So,

$$
\begin{aligned}
& \left(e^{x}-e^{-x}\right) d x=d t \\
& \int \frac{e^{2 x}-1}{e^{2 x}+1} d x=\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x
\end{aligned}
$$

We get,
$=\int \frac{d t}{t}$
By calculating further, we get

$$
\begin{aligned}
& =\log |t|+\mathrm{C} \\
& =\log \left|e^{x}+e^{-x}\right|+\mathrm{C}
\end{aligned}
$$

20. $e^{2 x}$ Solution:

Let us assume,

$$
e^{2 x}+e^{-2 x}=t
$$

We get,

$$
\begin{aligned}
& \left(2 e^{2 x}-2 e^{-2 x}\right) d x=d t \\
& 2\left(e^{2 x}-e^{-2 x}\right) d x=d t
\end{aligned}
$$

Now

$$
\int\left(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\right) d x
$$

We get,
$=\int \frac{d t}{2 t}$
$=\frac{1}{2} \int_{t}^{1} d t$
On calculating further, we get

$$
=\frac{1}{2} \log |t|+\mathrm{C}
$$

$$
=\frac{1}{2} \log \left|e^{2 x}+e^{-2 x}\right|+\mathrm{C}
$$

21.

$\tan ^{2}(2 x-3)$

Solution:

$$
\tan ^{2}(2 x-3)=\sec ^{2}(2 x-3)-1
$$

Let us take,
$2 x-3=t$
We get,
$2 d x=d t$
Now,

$$
\int \tan ^{2}(2 x-3) d x=\int\left[\left(\sec ^{2}(2 x-3)\right)-1\right] d x
$$

By separating, we obtain

$$
\begin{aligned}
& =\frac{1}{2} \int\left(\sec ^{2} t\right) d t-\int 1 d x \\
& =\frac{1}{2} \int \sec ^{2} t d t-\int 1 d x
\end{aligned}
$$

On further calculation, we get

$$
\begin{aligned}
& =\frac{1}{2} \tan t-x+\mathrm{C} \\
& =\frac{1}{2} \tan (2 x-3)-x+\mathrm{C}
\end{aligned}
$$

22.

$\sec ^{2}(7-4 x)$

Solution:

EDUGRロSS

Let us take,

$$
7-4 x=t
$$

We get,

$$
-4 d x=d t
$$

Hence,

$$
\int \sec ^{2}(7-4 x) d x=\frac{-1}{4} \int \sec ^{2} t d t
$$

On calculating further, we get

$$
\begin{aligned}
& =\frac{-1}{4}(\tan t)+C \\
& =\frac{-1}{4} \tan (7-4 x)+C
\end{aligned}
$$

23.

$\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$

Solution:

Let us take,
$\sin ^{-1} \mathrm{x}=\mathrm{t}$

$$
\frac{1}{\sqrt{1-x^{2}}} d x=d t
$$

$$
\int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\int t d t
$$

We get,

$$
=\frac{t^{2}}{2}+\mathrm{C}
$$

By substituting $\mathrm{t}=\sin ^{-1} \mathrm{x}$, we get

$$
=\frac{\left(\sin ^{-1} x\right)^{2}}{2}+\mathrm{C}
$$

24.

$2 \cos x-3 \sin x$
$6 \cos x+4 \sin x$

Solution:

EDUGRロSS

$$
\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}
$$

This can be written as

$$
=\frac{2 \cos x-3 \sin x}{2(3 \cos x+2 \sin x)}
$$

Let us assume,

$$
3 \cos x+2 \sin x=t
$$

$$
(-3 \sin x+2 \cos x) d x=d t
$$

$$
\int \frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x} d x=\int \frac{d t}{2 t}
$$

On further calculation, we get

$$
\begin{aligned}
& =\frac{1}{2} \int_{t}^{1} d t \\
& =\frac{1}{2} \log |t|+\mathrm{C}
\end{aligned}
$$

Therefore, we get

$$
=\frac{1}{2} \log |2 \sin x+3 \cos x|+C
$$

$$
\frac{1}{\cos ^{2} x(1-\tan x)^{2}}
$$

Solution:

EDUGRロSS

$$
\frac{1}{\cos ^{2} x(1-\tan x)^{2}}=\frac{\sec ^{2} x}{(1-\tan x)^{2}}
$$

Let us assume,

$$
(1-\tan x)=t
$$

$$
-\sec ^{2} x d x=d t
$$

$$
\int \frac{\sec ^{2} x}{(1-\tan x)^{2}} d x=\int \frac{-d t}{t^{2}}
$$

We get,

$$
\begin{aligned}
& =-\int t^{-2} d t \\
& =+\frac{1}{t}+\mathrm{C}
\end{aligned}
$$

Therefore, we get

$$
=\frac{1}{(1-\tan x)}+\mathrm{C}
$$

26. $\frac{\cos \sqrt{x}}{\sqrt{x}}$

Solution:
Let us take,

$$
\begin{aligned}
& \sqrt{x}=t \\
& \frac{1}{2 \sqrt{x}} d x=d t \\
& \int \frac{\cos \sqrt{x}}{\sqrt{x}} d x=2 \int \cos t d t
\end{aligned}
$$

By further calculation, we get

$$
\begin{aligned}
& =2 \sin t+C \\
& =2 \sin \sqrt{x}+C
\end{aligned}
$$

27. $\sqrt{\sin 2 x} \cos 2 x$

Solution:

EDUGRロSS

Let us take,

$$
\sin 2 x=t
$$

$$
2 \cos 2 x d x=d t
$$

$$
\Rightarrow \int \sqrt{\sin 2 x} \cos 2 x d x=\frac{1}{2} \int \sqrt{t} d t
$$

On further calculation, we get

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+\mathrm{C} \\
& =\frac{1}{3} t^{\frac{3}{2}}+\mathrm{C}
\end{aligned}
$$

By substituting $t=\sin 2 x$, we get

$$
=\frac{1}{3}(\sin 2 x)^{\frac{3}{2}}+\mathrm{C}
$$

28. $\frac{\cos x}{\sqrt{1+\sin x}}$

Solution:

Let us take,

$$
\begin{aligned}
& 1+\sin x=t \\
& \cos x d x=d t
\end{aligned}
$$

$$
\int \frac{\cos x}{\sqrt{1+\sin x}} d x=\int \frac{d t}{\sqrt{t}}
$$

By further calculation, we get

$$
\begin{aligned}
& =\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+\mathrm{C} \\
& =2 \sqrt{t}+\mathrm{C} \\
& =2 \sqrt{1+\sin x}+\mathrm{C}
\end{aligned}
$$

29. $\cot x \log \sin x$

Solution:

Take
$\log \sin \mathrm{x}=\mathrm{t}$ By differentiation we get
$\frac{1}{\sin x} \cdot \cos x d x=d t$ $\sin x$
So we get $\cot \mathrm{xdx}=$ dt Integrating both
sides
$\int \cot x \log \sin x d x=\int t d t$
We get
$=\frac{t^{2}}{2}+\mathrm{C}$
Substituting the value of t
$=\frac{1}{2}(\log \sin x)^{2}+C$
30.
$\frac{\sin x}{1+\cos x}$

Solution:

Take $1+\cos \mathrm{x}=\mathrm{t}$
By differentiation
$-\sin x d x=d t$
By integrating both sides
$\int \frac{\sin x}{1+\cos x} d x=\int-\frac{d t}{t}$
So we get
$=-\log |t|+C$
Substituting the value of t
$=-\log |1+\cos x|+C$
31.
$\sin x$
$\overline{(1+\cos x)^{2}}$

Solution:

Take $1+\cos \mathrm{x}=\mathrm{t}$
By differentiation
$-\sin \mathrm{xdx}=\mathrm{dt}$

EDUGRロSS

Integrating both sides

$$
\int \frac{\sin x}{(1+\cos x)^{2}} d x=\int-\frac{d t}{t^{2}}
$$

We get
$=-\int t^{-2} d t$
It can be written as

$$
=\frac{1}{t}+\mathrm{C}
$$

Substituting the value of t
$=\frac{1}{1+\cos x}+C$
32.
$\frac{1}{1+\cot x}$

Solution:

It is given that
$I=\int \frac{1}{1+\cot x} d x$
We can write it as
$=\int \frac{1}{1+\frac{\cos x}{\sin x}} d x$

By taking LCM

$=\int \frac{\sin x}{\sin x+\cos x} d x$
Multiply and divide by 2 in numerator and denominator
$=\frac{1}{2} \int \frac{2 \sin x}{\sin x+\cos x} d x$
It can be written as
$=\frac{1}{2} \int \frac{(\sin x+\cos x)+(\sin x-\cos x)}{(\sin x+\cos x)} d x$
On further calculation
$=\frac{1}{2} \int 1 d x+\frac{1}{2} \int \frac{\sin x-\cos x}{\sin x+\cos x} d x$
We get
$=\frac{1}{2}(x)+\frac{1}{2} \int \frac{\sin x-\cos x}{\sin x+\cos x} d x$
Take $\sin \mathrm{x}+\cos \mathrm{x}=\mathrm{t}$
By differentiation
$(\cos \mathrm{x}-\sin \mathrm{x}) \mathrm{dx}=\mathrm{dt}$
We get
$I=\frac{x}{2}+\frac{1}{2} \int \frac{-(d t)}{t}$
By integration
$=\frac{x}{2}-\frac{1}{2} \log |t|+\mathrm{C}$
Substituting the value of t

$$
=\frac{x}{2}-\frac{1}{2} \log |\sin x+\cos x|+\mathrm{C}
$$

EDUGRロSS
33.
$1-\tan x$
Solution:

EDUGRロSS

It is given that
$I=\int \frac{1}{1-\tan x} d x$
We can write it as
$=\int \frac{1}{1-\frac{\sin x}{\cos x}} d x$
By taking LCM
$=\int \frac{\cos x}{\cos x-\sin x} d x$
Multiply and divide by 2 in numerator and denominator
$=\frac{1}{2} \int \frac{2 \cos x}{\cos x-\sin x} d x$
It can be written as
$=\frac{1}{2} \int \frac{(\cos x-\sin x)+(\cos x+\sin x)}{(\cos x-\sin x)} d x$
On further calculation
$=\frac{1}{2} \int 1 d x+\frac{1}{2} \int \frac{\cos x+\sin x}{\cos x-\sin x} d x$
We get
$=\frac{x}{2}+\frac{1}{2} \int \frac{\cos x+\sin x}{\cos x-\sin x} d x$
Take $\cos \mathrm{x}-\sin \mathrm{x}=\mathrm{t}$
By differentiation
$(-\sin x-\cos x) d x=d t$
We get
$I=\frac{x}{2}+\frac{1}{2} \int \frac{-(d t)}{t}$
By integration
$=\frac{x}{2}-\frac{1}{2} \log |t|+\mathrm{C}$
Substituting the value of t
$=\frac{x}{2}-\frac{1}{2} \log |\cos x-\sin x|+\mathrm{C}$

EDUGRロSS

34.

$\frac{\sqrt{\tan x}}{\sin x \cos x}$
Solution:
It is given that
$I=\int \frac{\sqrt{\tan x}}{\sin x \cos x} d x$
By multiplying $\cos \mathrm{x}$ to both numerator and denominator
$=\int \frac{\sqrt{\tan x} \times \cos x}{\sin x \cos x \times \cos x} d x$
On further calculation
$=\int \frac{\sqrt{\tan x}}{\tan x \cos ^{2} x} d x$
So we get
$=\int \frac{\sec ^{2} x d x}{\sqrt{\tan x}}$
Take $\tan \mathrm{x}=\mathrm{t}$
We get $\sec ^{2} \mathrm{xdx}=\mathrm{dt}$
$I=\int \frac{d t}{\sqrt{t}}$
By integration we get
$=2 \sqrt{t}+\mathrm{C}$
Substituting the value of t
$=2 \sqrt{\tan x}+\mathrm{C}$
35.
$\frac{(1+\log x)^{2}}{x}$
Solution:

EDUGRロSS

Consider
$1+\log \mathrm{x}=\mathrm{t}$
So we get
$\frac{1}{x} d x=d t$
Integrating both sides
$\int \frac{(1+\log x)^{2}}{x} d x=\int t^{2} d t$
We get
$=\frac{t^{3}}{3}+\mathrm{C}$
Substituting the value of t
$=\frac{(1+\log x)^{3}}{3}+C$
36.
$(x+1)(x+\log x)^{2}$
Solution:
It is given that

$$
\frac{(x+1)(x+\log x)^{2}}{x}=\left(\frac{x+1}{x}\right)(x+\log x)^{2}
$$

We can write it as
$=\left(1+\frac{1}{x}\right)(x+\log x)^{2}$
Consider $\mathrm{x}+\log \mathrm{x}=\mathrm{t}$
By differentiation

$$
\left(1+\frac{1}{x}\right) d x=d t
$$

Integrating both sides

$$
\int\left(1+\frac{1}{x}\right)(x+\log x)^{2} d x=\int t^{2} d t
$$

So we get
$=\frac{t^{3}}{3}+\mathrm{C}$
Substituting the value of t
$=\frac{1}{3}(x+\log x)^{3}+\mathrm{C}$
37.
$\frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}}$
Solution:

EDUGRロSS

It is given that

$$
\frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}}
$$

Consider $\mathrm{x}^{4}=\mathrm{t}$
We get $4 x^{3} d x=d t$
$\int \frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x=\frac{1}{4} \int \frac{\sin \left(\tan ^{-1} t\right)}{1+t^{2}} d t$
Similarly take $\tan ^{-1} \mathrm{t}=\mathrm{u}$
By differentiation we get

$$
\frac{1}{1+t^{2}} d t=d u
$$

Using equation (1) we get
$\int \frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right) d x}{1+x^{8}}=\frac{1}{4} \int \sin u d u$
By integration

$$
=\frac{1}{4}(-\cos u)+\mathrm{C}
$$

Substituting the value of u

$$
=\frac{-1}{4} \cos \left(\tan ^{-1} t\right)+C
$$

Now substituting the value of t

$$
=\frac{-1}{4} \cos \left(\tan ^{-1} x^{4}\right)+C
$$

Choose the correct answer in Exercises 38 and 39.
38. $\int \frac{10 x^{9}+10^{x} \log _{e} 10 d x}{x^{10}+10^{x}}$ equals
(A) $10^{x}-x^{10}+C$
(B) $10^{x}+x^{10}+C$
(C) $\left(10^{x}-x^{10}\right)^{-1}+C$
(D) $\log \left(10^{x}+x^{10}\right)+C$

Solution:

EDUGRロSS

Take $\mathrm{x}^{10}+10^{\mathrm{x}}=\mathrm{t}$
Differentiating both sides
$\left(10 x^{9}+10^{x} \log _{e} 10\right) d x=d t$
Integrating both sides we get
$\int \frac{10 x^{9}+10^{x} \log _{e} 10}{x^{10}+10^{x}} d x=\int \frac{d t}{t}$
So we get
$=\log \mathrm{t}+\mathrm{C}$
Substituting the value of t
$=\log \left(10^{x}+x^{10}\right)+C$
Therefore, D is the correct answer.
39. $\int \frac{d x}{\sin ^{2} x \cos ^{2} x}$ equals
(A) $\boldsymbol{\operatorname { t a n }} \mathrm{x}+\boldsymbol{\operatorname { c o t }} \mathrm{x}+\mathrm{C}$
(B) $\tan x-\cot x+C$
(C) $\tan x \cot x+C(D) \tan x-\cot 2 x+C$ Solution:

It is given that
$I=\int \frac{d x}{\sin ^{2} x \cos ^{2} x}$
We can write it as
$=\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x$
Here we get
$=\int \frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$

EDUGRロSS

By separating the terms
$=\int \frac{\sin ^{2} x}{\sin ^{2} x \cos ^{2} x} d x+\int \frac{\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$
We get
$=\int \sec ^{2} x d x+\int \operatorname{cosec}^{2} x d x$
By integration
$=\tan \mathrm{x}-\cot \mathrm{x}+\mathrm{C}$
Therefore, B is the correct answer.

EXERCISE 7.3

1. $\sin ^{2}(2 x+5)$

Solution:-
We have,
By standard trigonometric identity, $\sin ^{2} x=(1-\cos 4 x) / 2$
$\sin ^{2}(2 x+5)=\frac{1-\cos 2(2 x+5)}{2}=\frac{1-\cos (4 x+10)}{2}$
Taking integrals on both sides, we get,

$$
=\int \sin ^{2}(2 x+5) d x=\int \frac{1-\cos (4 x+10)}{2} d x
$$

Splitting the integrals,

$$
\begin{aligned}
& =\frac{1}{2} \int 1 \cdot d x-\frac{1}{2} \int \cos (4 x+10) d x \\
& =\frac{1}{2} x-\frac{1}{2} \int \cos (4 x+10) d x
\end{aligned}
$$

On integrating, we get,

$$
\begin{aligned}
& =\frac{1}{2} x-\frac{1}{2}\left(\frac{\sin (4 x+10)}{4}\right)+C \\
& =\frac{1}{2} x-\frac{1}{8} \sin (4 x+10)+C
\end{aligned}
$$

2. $\sin 3 x \cos 4 x$

Solution:-

By standard trigonometric identity $\sin \mathrm{A} \cos \mathrm{B}=1 / 2\{\sin (\mathrm{~A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})\}$

$$
\int \sin 3 x \cos 4 x d x=\frac{1}{2} \int\{\sin (3 x+4 x)+\sin (3 x-4 x)\} d x
$$

On simplifying,

$$
\begin{aligned}
& =\frac{1}{2} \int\{\sin 7 \mathrm{x}+\sin (-\mathrm{x})\} \mathrm{dx} \\
& =\frac{1}{2} \int\{\sin 7 \mathrm{x}-\sin \mathrm{x}\} \mathrm{dx}
\end{aligned}
$$

Splitting the integrals, we have,

$$
=\frac{1}{2} \int \sin 7 x d x-\frac{1}{2} \int \sin x d x
$$

On integrating, we get,

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{-\cos 7 x}{7}\right)-\frac{1}{2}(-\cos x)+C \\
& =\frac{-\cos 7 x}{14}+\frac{\cos x}{2}+C
\end{aligned}
$$

3. $\cos 2 x \cos 4 x \cos 6 x$

Solution:-
By standard trigonometric identity $\cos \mathrm{A} \cos \mathrm{B}=1 / 2\{\cos (\mathrm{~A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})\}$

$$
\begin{aligned}
& \int \cos 2 x \cos 4 x \cos 6 x d x=\int \cos 2 x\left[\frac{1}{2}\{\cos (4 x+6 x)+\cos (4 x-6 x)\}\right] d x \\
& =\frac{1}{2} \int\{\cos 2 x \cos 10 x+\cos 2 x \cos (-2 x)\} d x
\end{aligned}
$$

We know that, $\cos (-x)=\cos x$,

$$
=\frac{1}{2} \int\left\{\cos 2 x \cos 10 x+\cos ^{2} 2 x\right\} d x
$$

Again by, standard trigonometric identity $\cos A \cos B=1 / 2\{\cos (A+B)+\cos (A-$ B) $\}$ and $\cos ^{2} 2 x=(1+\cos 4 x) / 2$

$$
=\frac{1}{2} \int\left[\left\{\frac{1}{2} \cos (2 \mathrm{x}+10 \mathrm{x})+\cos (2 \mathrm{x}-10 \mathrm{x})\right\}+\left(\frac{1+\cos 4 \mathrm{x}}{2}\right)\right] \mathrm{dx}
$$

On simplifying, we get,

$$
=\frac{1}{4} \int(\cos 12 x+\cos 8 x+1+\cos 4 x) d x
$$

By integrating,

$$
=\frac{1}{4}\left[\frac{\sin 12 x}{12}+\frac{\sin 8 x}{8}+x+\frac{\sin 4 x}{4}\right]+C
$$

4. $\sin ^{3}(2 x+1)$

Solution:-

EDUGRロSS

Given, $\sin ^{3}(2 x+1)$
By splitting,

$$
=\int \sin ^{3}(2 x+1) d x=\int \sin ^{2}(2 x+1) \cdot \sin (2 x+1) d x
$$

We know that, $\sin ^{2} x=1-\cos ^{2} x$

$$
=\int\left(1-\cos ^{2}(2 x+1)\right) \sin (2 x+1) d x
$$

Let us assume $\cos (2 x+1)=t$
Then,

$$
\begin{aligned}
& \Rightarrow-2 \sin (2 x+1) d x=d t \\
& \Rightarrow \sin (2 x+1) d x=\frac{-d t}{2} \\
& \begin{aligned}
\sin ^{3}(2 x+1) & =\frac{-1}{2} f\left(1-t^{2}\right) d t \\
& =\frac{-1}{2}\left\{t-\frac{t^{3}}{3}\right\}
\end{aligned}
\end{aligned}
$$

Now substitute the value ' t ' in equation,

$$
\begin{aligned}
& =\frac{-1}{2}\left\{\cos (2 x+1)-\frac{\cos ^{3}(2 x+1)}{3}\right\} \\
& =\frac{-\cos (2 x+1)}{2}+\frac{\cos ^{3}(2 x+1)}{6}+C
\end{aligned}
$$

5. $\sin ^{3} x \cos ^{3} x$

Solution:-

EDUGRロSS

Given, $\int \sin ^{3} x \cos ^{3} x . d x$
By splitting the given function,

$$
=\int \cos ^{3} x \cdot \sin ^{2} x \cdot \sin x \cdot d x
$$

We know that, $\sin ^{2} x=1-\cos ^{2} x$

$$
=\int \cos ^{3} x\left(1-\cos ^{2} x\right) \sin x \cdot d x
$$

So, let us assume $\cos x=t$
Then,

$$
\begin{gathered}
\Rightarrow-\sin x \times d x=d t \\
\sin ^{3} x \cos ^{3} x=-\int t^{3}\left(1-t^{2}\right) d t \\
=-\int\left(t^{3}-t^{5}\right) d t
\end{gathered}
$$

On integrating, we get,

$$
=-\left\{\frac{t^{4}}{4}-\frac{t^{6}}{6}\right\}+C
$$

Now substitute the value ' t ' in equation,

$$
\begin{aligned}
& =-\left\{\frac{\cos ^{4} x}{4}-\frac{\cos ^{6} x}{6}\right\}+C \\
& =\frac{\cos ^{6} x}{6}-\frac{\cos ^{4} x}{4}+C
\end{aligned}
$$

6. $\sin x \sin 2 x \sin 3 x$

Solution:-

By standard trigonometric identity $\sin \mathrm{A} \sin \mathrm{B}=-1 / 2\{\cos (\mathrm{~A}+\mathrm{B})-\cos (\mathrm{A}-\mathrm{B})\}$
$\int \sin x \sin 2 x \sin 3 x d x=\int \sin x \cdot \frac{1}{2}[\{\cos (2 x-3 x)-\cos (2 x+3 x)\}] d x$
On simplifying, we get,
$=\frac{1}{2} \int\{\sin x \cos (-x)-\sin x \cos 5 x\} d x$
We know that, $\cos (-x)=\cos x$,
$=\frac{1}{2} \int\{\sin x \cos x-\sin x \cos 5 x\} d x$
Splitting the integrals, by using $\sin 2 \mathrm{x}=2 \sin \mathrm{x} \cos \mathrm{x}$, we get,
$=\frac{1}{2} \int \frac{\sin 2 \mathrm{x}}{2} \mathrm{dx}-\frac{1}{2} \int \sin \mathrm{x} \cos 5 \mathrm{x} d \mathrm{x}$
On integrating the first term, and substituting $\sin A \cos B=1 / 2\{\sin (A+B)+\sin (A$ -B) $\}$

$$
\begin{aligned}
& =\frac{1}{4}\left[\frac{-\cos 2 x}{2}\right]-\frac{1}{2} \int\left\{\frac{1}{2} \sin (x+5 x)+\sin (x-5 x)\right\} d x \\
& =\frac{-\cos 2 x}{8}-\frac{1}{4} \int(\sin 6 x+\sin (-4 x)) d x
\end{aligned}
$$

Computing and simplifying, we get,

$$
\begin{aligned}
& =\frac{-\cos 2 x}{8}-\frac{1}{4}\left[\frac{-\cos 6 x}{3}+\frac{\cos 4 x}{4}\right]+C \\
& =\frac{-\cos 2 x}{8}-\frac{1}{8}\left[\frac{-\cos 6 x}{3}+\frac{\cos 4 x}{2}\right]+C \\
& =\frac{1}{8}\left[\frac{\cos 6 x}{3}-\frac{\cos 4 x}{2}-\cos 2 x\right]+C
\end{aligned}
$$

7. $\sin 4 x \sin 8 x$

Solution:-

By standard trigonometric identity $\sin A \sin B=-1 / 2\{\cos (A+B)-\cos (A-B)\}$
Then,

$$
\begin{aligned}
& \int \sin 4 x \sin 8 x d x=\int\left\{\frac{1}{2} \cos (4 x-8 x)-\cos (4 x+8 x)\right\} d x \\
& =\frac{1}{2} \int(\cos (-4 x)-\cos 12 x d x
\end{aligned}
$$

We know that, $\cos (-x)=\cos x$,
$=\frac{1}{2} \int\{\cos 4 \mathrm{x}-\cos 12 \mathrm{x}\} \mathrm{dx}$
On integrating we get,
$=\frac{1}{2}\left[\frac{\sin 4 \mathrm{x}}{4}-\frac{\sin 12 \mathrm{x}}{12}\right]+\mathrm{C}$
8. $\frac{1-\cos x}{1+\cos x}$

Solution:-

By standard trigonometric identity, we have,

$$
\frac{1-\cos x}{1+\cos x}=\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}
$$

We know that, $(\operatorname{Sin} x / \cos x)=\tan x$

$$
=2 \tan ^{2} \frac{x}{2}
$$

Also, we know that, $\tan ^{-1} x=\sec x$

$$
=\left(\sec ^{2} \frac{x}{2}-1\right)
$$

Integrating both the sides, we get,

$$
\begin{aligned}
& \therefore \int \frac{1-\cos x}{1+\cos x} d x=\int\left(\sec ^{2} \frac{x}{2}-1\right) d x \\
& =\left[\frac{\tan \frac{x}{2}}{\frac{1}{2}}-x\right]+C \\
& =2 \tan \frac{x}{2}-x+C
\end{aligned}
$$

9. $\frac{\cos x}{1+\cos x}$

Solution:-

By standard trigonometric identity, we have,

$$
\frac{\cos x}{1+\cos x}=\frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}
$$

We know that, $(\sin x / \cos x)=\tan x$ and takeout $1 / 2$ as common, we get

$$
=\frac{1}{2}\left[1-\tan ^{2} \frac{x}{2}\right]
$$

Integrating both the sides, we get,

$$
\int \frac{\cos x}{1+\cos x} d x=\int \frac{1}{2}\left[1-\tan ^{2} \frac{x}{2}\right] d x
$$

Using standard trigonometric identity $\tan ^{2} x+1=\sec ^{2}(x)$

$$
=\frac{1}{2} \int\left[2-\sec ^{2} \frac{\mathrm{x}}{2}\right] \mathrm{dx}
$$

On integrating, we get,

$$
\begin{aligned}
& =\frac{1}{2}\left[2 x-\frac{\tan \frac{x}{2}}{\frac{1}{2}}\right]+C \\
& =x-\tan \frac{x}{2}+C
\end{aligned}
$$

10. $\sin ^{4} x$

Solution:-
By splitting the given function, we get,

$$
\sin ^{4} x=\sin ^{2} x \sin ^{2} x
$$

By standard trigonometric identity, we have, $\sin ^{2} x=(1-\cos 2 x) / 2$

$$
\begin{aligned}
& =\left(\frac{1-\cos 2 x}{2}\right)\left(\frac{1-\cos 2 x}{2}\right) \\
& =\frac{1}{4}(1-\cos 2 x)^{2}
\end{aligned}
$$

By using the formula $(a-b)^{2}=a^{2}-2 a b+b^{2}$, we get,

$$
=\frac{1}{4}\left[1+\cos ^{2} 2 x-2 \cos 2 x\right]
$$

From the standard trigonometric identity, $\cos ^{2} 2 x=(1+\cos 4 x) / 2$

$$
\begin{aligned}
& =\frac{1}{4}\left[1+\left(\frac{1+\cos 4 \mathrm{x}}{2}\right)-2 \cos 2 \mathrm{x}\right] \\
& =\frac{1}{4}\left[1+\frac{1}{2}+\frac{1}{2} \cos 4 \mathrm{x}-2 \cos 2 \mathrm{x}\right]
\end{aligned}
$$

On simplifying, we get,

$$
=\frac{1}{4}\left[\frac{3}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right]
$$

Integrating on both the sides,

$$
\begin{aligned}
& \int \sin ^{4} x d x=\frac{1}{4} \int\left[\frac{3}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right] d x \\
& =\frac{1}{4}\left[\frac{3}{2} x+\frac{1}{2}\left(\frac{\sin 4 x}{4}\right)-\frac{2 \sin 2 x}{2}\right]+C
\end{aligned}
$$

By simplifying,

$$
\begin{aligned}
& =\frac{1}{8}\left[3 x+\left(\frac{\sin 4 x}{4}\right)-2 \sin 2 x\right]+C \\
& =\frac{3 x}{8}-\frac{1}{4} \sin 2 x+\frac{1}{32} \sin 4 x+C
\end{aligned}
$$

11. $\cos ^{4} 2 x$

Solution:-

By splitting the given function,

$$
\cos ^{4} 2 x=\left(\cos ^{2} 2 x\right)^{2}
$$

By standard trigonometric identity, we have, $\cos ^{2} 2 \mathrm{x}=(1+\cos 4 \mathrm{x}) / 2$
$=\left(\frac{1+\cos 4 x}{2}\right)^{2}$
On simplifying, we get,

$$
=\frac{1}{4}\left[1+\cos ^{2} 4 x-2 \cos 4 x\right]
$$

By standard trigonometric identity, we have, $\cos ^{2} 2 \mathrm{x}=(1+\cos 4 \mathrm{x}) / 2$

$$
=\frac{1}{4}\left[1+\left(\frac{1+\cos 8 x}{2}\right)+2 \cos 4 x\right]
$$

$$
=\frac{1}{4}\left[1+\frac{1}{2}+\frac{1}{2} \cos 8 x+2 \cos 4 x\right]
$$

By simplifying,

$$
=\frac{1}{4}\left[\frac{3}{2}+\frac{1}{2} \cos 8 x+2 \cos 4 x\right]
$$

Integrating both side,

$$
\int \cos ^{4} 2 x d x=\int\left[\frac{3}{8}+\frac{1}{8} \cos 8 x+\frac{1}{2} \cos 4 x\right] d x
$$

$$
=\frac{3 x}{8}+\frac{1}{64} \sin 8 x+\frac{1}{8} \sin 4 x+C
$$

12. $\frac{\sin ^{2} x}{1+\cos x}$

Solution:-

By standard trigonometric identity, we have,

$$
\begin{aligned}
\frac{\sin ^{2} x}{1+\cos x} & =\frac{\left(2 \sin \frac{x}{2} \cos \frac{x}{2}\right)^{2}}{2 \cos ^{2} \frac{x}{2}} \\
& =\frac{4 \sin ^{2} \frac{x}{2} \cos ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}
\end{aligned}
$$

On simplifying, we get,

$$
=2 \sin ^{2} \frac{x}{2}
$$

From the standard trigonometric identity, we have, $1-\cos x=2 \sin ^{2} \frac{x}{2}$

$$
=1-\cos x
$$

EDUGRロSS

On integrating both the sides, we get,

$$
\begin{aligned}
\int \frac{\sin ^{2} x}{1+\cos x} d x & =\int(1-\cos x) d x \\
& =x-\sin x+C
\end{aligned}
$$

13. $\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}$

Solution:-
By using the trigonometry identity i.e.,
$\cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \frac{\mathrm{~A}+\mathrm{B}}{2} \sin \frac{\mathrm{~A}-\mathrm{B}}{2}$
So, we have,
$\frac{\cos 2 \mathrm{x}-\cos 2 \alpha}{\cos \mathrm{x}-\cos \alpha}=\frac{-2 \sin \frac{2 \mathrm{x}+2 \alpha}{2} \sin \frac{2 \mathrm{x}-2 \alpha}{2}}{-2 \sin \sin \frac{\mathrm{x}+\alpha}{2} \sin \sin \frac{\mathrm{x}-\alpha}{2}}$
By simplifying, we get,

$$
=\frac{\sin (x+\alpha) \sin (x-\alpha)}{\sin \left(\frac{x+\alpha}{2}\right) \sin \left(\frac{x-\alpha}{2}\right)}
$$

Then,
From the identity $\sin 2 x=2 \sin x \cos x$, we have

$$
=\frac{\left[2 \sin \left(\frac{x+\alpha}{2}\right) \cos \left(\frac{x+\alpha}{2}\right)\right]\left[2 \sin \left(\frac{x-\alpha}{2}\right) \cos \left(\frac{x-\alpha}{2}\right)\right]}{\sin \left(\frac{x+\alpha}{2}\right) \sin \left(\frac{x-\alpha}{2}\right)}
$$

EDUGRロSS

On simplifying, we get,

$$
=4 \cos \left(\frac{\mathrm{x}+\alpha}{2}\right) \cos \left(\frac{\mathrm{x}-\alpha}{2}\right)
$$

By using the trigonometry identity $2 \cos \mathrm{~A} \cos \mathrm{~B}=\cos (\mathrm{A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B})$, we have

$$
\begin{aligned}
& =2\left[\cos \left(\frac{x+\alpha}{2}+\frac{x-\alpha}{2}\right)+\cos \frac{x+\alpha}{2}-\frac{x-\alpha}{2}\right] \\
& =2[\cos (x)+\cos \alpha] \\
& =2 \cos x+2 \cos \alpha
\end{aligned}
$$

Then,
Integrating on both the sides,
$\int \therefore \frac{\cos 2 \mathrm{x}-\cos 2 \alpha}{\cos \mathrm{x}-\cos \alpha} \mathrm{dx}=\int(2 \cos \mathrm{x}+2 \cos \alpha) \mathrm{dx}$
We have,

$$
=2[\sin x+x \cos \alpha]+C
$$

14. $\frac{\cos x-\sin x}{1+\sin 2 x}$

Solution:-

Given $=\frac{\cos x-\sin x}{1+\sin 2 x}$
By using the standard trigonometric identity, $(1+\sin 2 x)=\sin ^{2} x+\cos ^{2} x+$ $2 \sin x \cos x$.

Then,

$$
\begin{aligned}
& =\frac{\cos x-\sin x}{\left(\sin ^{2} x+\cos ^{2} x\right)+2 \sin x \cos x} \\
& =\frac{\cos x-\sin x}{(\sin x+\cos x)^{2}}
\end{aligned}
$$

Now,
Let us assume that, $\sin x+\cos x=t$
And also, $(\cos x-\sin x) d x=d t$
Integrating on both the sides and substitute the value of $(\cos x-\sin x) d x$ and $(\sin x+\cos x)$ we get,

$$
\begin{aligned}
=\int \frac{\cos x-\sin x}{1+\sin 2 x} & d x
\end{aligned}=\int \frac{\cos x-\sin x}{(\sin x+\cos x)^{2}} d x . ~ \begin{aligned}
& =\int \frac{d t}{t^{2}} \\
& =-t^{-1}+C \\
& =-\frac{1}{t}+C \\
& =\frac{-1}{\sin x+\cos x}+C
\end{aligned}
$$

15. $\tan ^{3} 2 x \sec 2 x$

Solution:-

By splitting the given function, we have, $\tan ^{3} 2 x$
$\sec 2 \mathrm{x}=\tan ^{2} 2 \mathrm{x} \tan 2 \mathrm{x} \sec 2 \mathrm{x}$
From the standard trigonometric identity, $\tan ^{2} 2 x=\sec ^{2} 2 x-1$,

$$
=\left(\sec ^{2} 2 x-1\right) \tan 2 x \sec 2 x
$$

By multiplying, we get,

$$
=\left(\sec ^{2} 2 x \times \tan 2 x \sec 2 x\right)-(\tan 2 x \sec 2 x)
$$

Integrating both sides,
$\int \tan ^{3} 2 x \sec 2 x d x=\int \sec ^{2} 2 x \tan 2 x \sec 2 x d x-\int \tan 2 x \sec 2 x d x$

$$
=\int \sec ^{2} 2 x \tan 2 x \sec 2 x d x-\frac{\sec 2 x}{2}+C
$$

Then,
Let us assume sec $2 \mathrm{x}=\mathrm{t}$
And also assume $2 \sec 2 x \tan 2 x d x=d t$
$\int \tan ^{3} 2 x \sec 2 x d x=\frac{1}{2} \int t^{2} d t-\frac{\sec 2 x}{2}+C$
On simplifying, we get,

$$
\begin{aligned}
& =\frac{t^{3}}{6}-\frac{\sec 2 x}{2}+C \\
& =\frac{(\sec 2 x)^{3}}{6}-\frac{\sec 2 x}{2}+C
\end{aligned}
$$

16. $\boldsymbol{\operatorname { t a n }}^{4} x$

Solution:-
By splitting the given function, we have,
$\tan ^{4} x=\tan ^{2} x \times \tan ^{2} x$
Then,
From trigonometric identity, $\tan ^{2} x=\sec ^{2} x-1$

$$
=\left(\sec ^{2} x-1\right) \tan ^{2} x
$$

By multiplying, we get,

$$
=\sec ^{2} x \tan ^{2} x-\tan ^{2} x
$$

Again by using trigonometric identity, $\tan ^{2} x=\sec ^{2} x-1$

$$
\begin{aligned}
& =\sec ^{2} x \tan ^{2} x-\left(\sec ^{2} x-1\right) \\
& =\sec ^{2} x \tan ^{2} x-\sec ^{2} x+1
\end{aligned}
$$

Now, integrating on both sides we get,

$$
\begin{gathered}
\int \tan ^{4} x d x=\int \sec ^{2} x \tan ^{2} x d x-\int \sec ^{2} x d x-\int 1 . d x \\
=\int \sec ^{2} x \tan ^{2} x d x-\tan x+x+C
\end{gathered}
$$

Then, let us assume $\tan x=t$
And also assume $\sec ^{2} x d x=d t$

$$
\begin{aligned}
& \int \sec ^{2} x \tan ^{2} x d x=\int t^{2} d t=\frac{t^{3}}{3}=\frac{\tan ^{3} x}{3} \\
& \int \tan ^{4} x d x=\frac{1}{3} \tan ^{3} x-\tan x+x+C \\
& \text { 17. } \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}
\end{aligned}
$$

Solution:-
By splitting up the given function,

$$
\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}=\frac{\sin ^{3} x}{\sin ^{2} x \cos ^{2} x}+\frac{\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}
$$

By simplifying, we get,

$$
=\frac{\sin x}{\cos ^{2} x}+\frac{\cos x}{\sin ^{2} x}
$$

We know that, $(\sin x / \cos x)=\tan x$ and $(1 / \cos x)=\sec x$.
Again, we have $(\cos x / \sin x)=\cot x$ and $(1 / \sin x)=\operatorname{cosec} x$

$$
=\tan x \sec x+\cot x \operatorname{cosec} x
$$

Integrating on both the sides, we get

$$
\begin{aligned}
\int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x & =\int(\tan x \sec x+\cot x \operatorname{cosec} x) d x \\
& =\sec x-\operatorname{cosec} x+C
\end{aligned}
$$

18. $\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}$

EDUGRロSS

By using the standard trigonometric identity, $2 \sin ^{2} x=(1-\cos 2 x)$ Solution:$\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}=\frac{\cos 2 x+(1-\cos 2 x)}{\cos ^{2} x}$
By simplification, we get,

$$
=\frac{1}{\cos ^{2} x}
$$

We know that, $\left(1 / \cos ^{2} x\right)=\sec ^{2} x$

$$
=\sec ^{2} x
$$

Integrating on both sides, we get,

$$
=\tan x+C
$$

19. $\frac{1}{\sin x \cos ^{3} x}$

Solution:-

For further simplification, the given function can be written as,

$$
\frac{1}{\sin x \cos ^{3} x}=\frac{\sin x}{\cos ^{3} x}+\frac{1}{\sin x \cos x}
$$

Divide both numerator and denominator by $\cos ^{2} x$

$$
=\tan x \sec ^{2} x+\frac{\frac{1}{\cos ^{2} x}}{\frac{\sin x \cos x}{\cos ^{2} x}}
$$

On simplification, we get,

$$
=\tan x \sec ^{2} x+\frac{\sec ^{2} x}{\tan x}
$$

By applying the integrals, we get,

$$
\int \frac{1}{\sin x \cos ^{3} x} d x=\int \tan x \sec ^{2} x d x+\int \frac{\sec ^{2} x}{\tan x} d x
$$

Let us assume that, $\tan x=t$
Then, $\sec ^{2} x d x=d t$
By substituting above values, we get,

$$
\int \frac{1}{\sin x \cos ^{3} x} d x=\int t d t+\int \frac{1}{t} d t
$$

On integrating,

$$
=\frac{t^{2}}{2}+\log |t|+C
$$

Now, by substituting the value of ' t ' we get,

$$
=\frac{1}{2} \tan ^{2} x+\log |\tan x|+C
$$

20. $\cos 2 x$

$$
\overline{(\cos x+\sin x)^{2}}
$$

Solution:-

We know that, $(\cos x+\sin x)^{2}=\cos ^{2} x+\sin ^{2} x+2 \sin x \cos x$
$\frac{\cos 2 x}{(\cos x+\sin x)^{2}}=\frac{\cos 2 x}{\cos ^{2} x+\sin ^{2} x+2 \sin x \cos x}$
And also we know that, $\cos ^{2} x+\sin ^{2} x=1$ and $2 \sin x \cos x=\sin 2 x$, Then,

$$
=\frac{\cos 2 x}{1+\sin 2 x}
$$

By applying the integrals, we get,

$$
\int \frac{\cos 2 x}{(\cos x+\sin x)^{2}} d x=\int \frac{\cos 2 x}{1+\sin 2 x} d x
$$

Let us assume that, $1+\sin 2 x=t$
So, $2 \cos 2 x d x=d t$
By substituting above values, we get,

$$
\int \frac{\cos 2 x}{(\cos x+\sin x)^{2}} d x=\frac{1}{2} \int \frac{1}{t} d t
$$

On integrating,

$$
=\frac{1}{2} \log |t|+C
$$

Now, by substituting the value of ' t ' we get,
$=\frac{1}{2} \log |1+\sin 2 \mathrm{x}|+\mathrm{C}$
$=\frac{1}{2} \log \left|(\cos x+\sin x)^{2}\right|+C$
$=\log |\sin x+\cos x|+C$
21. $\sin ^{-1}(\cos x)$

Solution:- Given,
$\sin ^{-1}(\cos x)$
Let us assume $\cos x=t$
... [equation (i)]
Then, substitute ' t ' in place of cos x

EDUGRロSS

$=\operatorname{Sin}^{-1}(\mathrm{t})$
$\operatorname{Sin} x=\sqrt{1-t^{2}}$
So, now differentiating both sides of (i), we get,
$(-\sin x) d x=d t$
$\mathrm{dx}=\frac{-\mathrm{dt}}{\sin \mathrm{x}_{\mathrm{dt}}}$
$\mathrm{dx}=\sqrt{\sqrt{1-\mathrm{t}^{2}}}$
By applying the integrals, we get,

$$
\begin{aligned}
\int \sin ^{-1}(\cos x) d x & =\int \sin ^{-1} t\left(\frac{-d t}{\sqrt{1-t^{2}}}\right) \\
& =\int \frac{\sin ^{-1} t}{\sqrt{1-\mathrm{t}^{2}}} d t
\end{aligned}
$$

Let us assume that, $\sin ^{-1} \mathrm{t}=\mathrm{v}$
$\frac{\mathrm{dt}}{\sqrt{1-\mathrm{t}^{2}}}=\mathrm{dv}$
$\int \sin ^{-1}(\cos x) d x=-\int v d v$
On integrating,
$=-\frac{v^{2}}{2}+C$
Now, by substituting the value of ' v ' and ' t ', we get,
$=-\frac{\left(\sin ^{-1} \mathrm{t}\right)^{2}}{2}+\mathrm{C}$
$=-\frac{\left(\sin ^{-1}(\cos x)\right)^{2}}{2}+\mathrm{C}$
... [equation (ii)]
As we know that,
$\sin -1 x+\cos -1 x=\frac{\pi}{2}$
22. $\frac{1}{\cos (x-a) \cos (x-b)}$

Solution:-

Multiplying and dividing by $\sin (a-b)$ to given function, we get,

$$
\frac{1}{\cos (x-a) \cos (x-b)}=\frac{1}{\sin (a-b)}\left[\frac{\sin (a-b)}{\cos (x-a) \cos (x-b)}\right]
$$

For further simplification, the given function can be written as,

$$
=\frac{1}{\sin (a-b)}\left[\frac{\sin [(x-b)-(x-a)]}{\cos (x-a) \cos (x-b)}\right]
$$

Using $\sin (A-B)=\sin A \cos B-\cos A \sin B$ formula, we get,

$$
=\frac{1}{\sin (a-b)}\left[\frac{\sin (x-b) \cos (x-a)-\cos (x-b) \sin (x-a)}{\cos (x-a) \cos (x-b)}\right]
$$

We know that, $\sin x / \cos x=\tan x$ by applying this formula we get,

$$
=\frac{1}{\sin (a-b)}[\tan (x-b)-\tan (x-a)]
$$

Taking integrals,

$$
\int \frac{1}{\cos (x-a) \cos (x-b)} d x=\frac{1}{\sin (a-b)} \int[\tan (x-b)-\tan (x-a)] d x
$$

On integrating,

$$
=\frac{1}{\sin (a-b)}[-\log |\cos (x-b)|+\log |\cos (x-a)|]
$$

We know that, $\log (a / b)=\log a-\log b$, using in above equation, we get,

$$
=\frac{1}{\sin (a-b)}\left[\log \left|\frac{\cos (x-a)}{\cos (x-b)}\right|\right]+C
$$

Choose the correct answer in Exercises 23 and 24.
23. $\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x$ is equal to
(A) $\tan x+\cot x+C$
(B) $\tan x+\operatorname{cosec} x+C$
(C) $-\tan x+\cot x+C$
(D) $\tan x+\sec x+C$

Solution:-

(A) $\tan x+\cot x+C$

By splitting the denominators of given equation,
$\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x=\int\left(\frac{\sin ^{2} x}{\sin ^{2} x \cos ^{2} x}-\frac{\cos ^{2} x}{\sin ^{2} x \cos ^{2} x}\right) d x$
On simplifying, we get,

$$
=\int\left(\sec ^{2} x-\operatorname{cosec}^{2} x\right) d x
$$

As we know that,
$\int \sec ^{2} x d x=\tan x+c$
$\int \operatorname{cosec}^{2} x d x=-\cot x+c$
$=\tan \mathrm{x}+\cot \mathrm{x}+\mathrm{C}$
24. $\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x$ equals
(A) $-\cot \left(e x^{x}\right)+\mathrm{C}$
(B) $\tan \left(x e^{x}\right)+\mathrm{C}$
(C) $\tan \left(e^{x}\right)+\mathrm{C}$
(D) $\cot \left(e^{x}\right)+\mathrm{C}$

Solution:-

(B) $\tan \left(x e^{x}\right)+C$

Let us assume that, $\left(\mathrm{xe}^{\mathrm{x}}\right)=\mathrm{t}$
Differentiating both sides we get,
$\left(\left(e^{x} \times x\right)+\left(e^{x} \times 1\right)\right) d x=d t e^{x}(x$
$+1)=\mathrm{dt}$
Applying integrals,

EDUGRロSS

$$
\int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x=\int \frac{d t}{\cos ^{2} t}
$$

We know that, $\left(1 / \cos ^{2} t\right)=\sec ^{2} t$
$=\int \sec ^{2} t \cdot d t$
$=\tan \mathrm{t}+\mathrm{C}$
Substituting the value of ' t ',
$=\tan \left(e^{x} x\right)+C$

EXERCISE 7.4

Integrate the functions in Exercises 1 to 23.

1. $\frac{3 x^{2}}{x^{6}+1}$

Solution:-

Let us assume that $\mathrm{x}^{3}=\mathrm{t}$
Then, $3 x^{2} d x=d t$
By applying integrals, we get,
$\int \frac{3 x^{2}}{x^{6}+1} d x=\int \frac{d t}{t^{2}+1}$
On integrating,
$=\tan ^{-1} \mathrm{t}+\mathrm{C}$
No, Substitute the value of t,

$$
=\tan ^{-1}\left(x^{3}\right)+C
$$

2.

$\frac{1}{\sqrt{1+4 x^{2}}}$
Solution:

EDUGRロSS

Take $2 \mathrm{x}=\mathrm{t}$
We get $2 \mathrm{xdx}=\mathrm{dt}$
Integrating both sides
$\int \frac{1}{\sqrt{1+4 x^{2}}} d x=\frac{1}{2} \int \frac{d t}{\sqrt{1+t^{2}}}$
Using the formula
$\int \frac{1}{\sqrt{x^{2}+a^{2}}} d t=\log \left|x+\sqrt{x^{2}+a^{2}}\right|$
We get
$=\frac{1}{2}\left[\log \left|t+\sqrt{t^{2}+1}\right|\right]+\mathrm{C}$

Substituting the value of t

$$
=\frac{1}{2} \log \left|2 x+\sqrt{4 x^{2}+1}\right|+\mathrm{C}
$$

3.

$\frac{1}{\sqrt{(2-x)^{2}+1}}$
Solution:

EDUGRロSS

Take 2-x $=\mathrm{t}$
We get $-\mathrm{dx}=\mathrm{dt}$
Integrating both sides
$\int \frac{1}{\sqrt{(2-x)^{2}+1}} d x=-\int \frac{1}{\sqrt{t^{2}+1}} d t$
Using the formula
$\int \frac{1}{\sqrt{x^{2}+a^{2}}} d t=\log \left|x+\sqrt{x^{2}+a^{2}}\right|$
We get
$=-\log \left|t+\sqrt{t^{2}+1}\right|+\mathrm{C}$
Substituting the value of t

$$
\begin{aligned}
& =-\log \left|2-x+\sqrt{(2-x)^{2}+1}\right|+\mathrm{C} \\
& =\log \left|\frac{1}{(2-x)+\sqrt{x^{2}-4 x+5}}\right|+\mathrm{C}
\end{aligned}
$$

4.

$\frac{1}{\sqrt{9-25 x^{2}}}$
Solution:
Take $5 \mathrm{x}=\mathrm{t}$
We get $5 \mathrm{dx}=\mathrm{dt}$
Integrating both sides
$\int \frac{1}{\sqrt{9-25 x^{2}}} d x=\frac{1}{5} \int \frac{1}{\sqrt{9-t^{2}}} d t$
We get
$=\frac{1}{5} \int \frac{1}{\sqrt{3^{2}-t^{2}}} d t$
On further calculation
$=\frac{1}{5} \sin ^{-1}\left(\frac{t}{3}\right)+C$
Substituting the value of t

$$
=\frac{1}{5} \sin ^{-1}\left(\frac{5 x}{3}\right)+C
$$

5.

$\frac{3 x}{1+2 x^{4}}$

Solution:

Take $\sqrt{2} \mathrm{x}^{2}=\mathrm{t}$
We get $2 \sqrt{ } 2 \mathrm{xdx}=\mathrm{dt}$
Integrating both sides

$$
\int \frac{3 x}{1+2 x^{4}} d x=\frac{3}{2 \sqrt{2}} \int \frac{d t}{1+t^{2}}
$$

On further calculation
$=\frac{3}{2 \sqrt{2}}\left[\tan ^{-1} t\right]+\mathrm{C}$
Substituting the value of t
$=\frac{3}{2 \sqrt{2}} \tan ^{-1}\left(\sqrt{2} x^{2}\right)+\mathrm{C}$
6.
$\frac{x^{2}}{1-x^{6}}$

Solution:

Take $\mathrm{x}^{3}=\mathrm{t}$
We get $3 \mathrm{x}^{2} \mathrm{dx}=\mathrm{dt}$
Integrating both sides
$\int \frac{x^{2}}{1-x^{6}} d x=\frac{1}{3} \int \frac{d t}{1-t^{2}}$
On further calculation

EDUGRロSS

$=\frac{1}{3}\left[\frac{1}{2} \log \left|\frac{1+t}{1-t}\right|\right]+\mathrm{C}$
Substituting the value of t

$$
=\frac{1}{6} \log \left|\frac{1+x^{3}}{1-x^{3}}\right|+\mathrm{C}
$$

7.

$\frac{x-1}{\sqrt{x^{2}-1}}$
Solution:
By separating the terms
$\int \frac{x-1}{\sqrt{x^{2}-1}} d x=\int \frac{x}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x$
Take
$\int \frac{x}{\sqrt{x^{2}-1}} d x$
If $x^{2}-1=t$ we get $2 x d x=d t$
$\int \frac{x}{\sqrt{x^{2}-1}} d x=\frac{1}{2} \int \frac{d t}{\sqrt{t}}$
It can be written as
$=\frac{1}{2} \int t^{-\frac{1}{2}} d t$
By integration
$=\frac{1}{2}\left\lceil 2 t^{\frac{1}{2}}\right\rceil$
$=\sqrt{t}$
Substituting the value of t
$=\sqrt{x^{2}-1}$
Using equation (1) we get

EDUGRロSS

$\int \frac{x-1}{\sqrt{x^{2}-1}} d x=\int \frac{x}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x$
From formula
$\int \frac{1}{\sqrt{x^{2}-a^{2}}} d t=\log \left|x+\sqrt{x^{2}-a^{2}}\right|$
We get
$=\sqrt{x^{2}-1}-\log \left|x+\sqrt{x^{2}-1}\right|+C$
8.
$\frac{x^{2}}{\sqrt{x^{6}+a^{6}}}$

Solution:

Take $\mathrm{x}^{3}=\mathrm{t}$
We get $3 \mathrm{x}^{2} \mathrm{dx}=\mathrm{dt}$
Integrating both sides
$\int \frac{x^{2}}{\sqrt{x^{6}+a^{6}}} d x=\frac{1}{3} \int \frac{d t}{\sqrt{t^{2}+\left(a^{3}\right)^{2}}}$
On further calculation
$=\frac{1}{3} \log \left|t+\sqrt{t^{2}+a^{6}}\right|+\mathrm{C}$
Substituting the value of t
$=\frac{1}{3} \log \left|x^{3}+\sqrt{x^{6}+a^{6}}\right|+\mathrm{C}$
9.
$\frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}$

Solution:

EDUGRロSS

Take $\tan \mathrm{x}=\mathrm{t}$
We get $\sec ^{2} \mathrm{xdx}=\mathrm{dt}$
Integrating both sides

$$
\int \frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}} d x=\int \frac{d t}{\sqrt{t^{2}+2^{2}}}
$$

On further calculation

$$
=\log \left|t+\sqrt{t^{2}+4}\right|+\mathrm{C}
$$

Substituting the value of t

$$
=\log \left|\tan x+\sqrt{\tan ^{2} x+4}\right|+\mathrm{C}
$$

10.

$\frac{1}{\sqrt{x^{2}+2 x+2}}$

Solution:

It is given that

$$
\int \frac{1}{\sqrt{x^{2}+2 x+2}} d x=\int \frac{1}{\sqrt{(x+1)^{2}+(1)^{2}}} d x
$$

Take $\mathrm{x}+1=\mathrm{t}$
We get $\mathrm{dx}=\mathrm{dt}$
Integrating both sides
$\int \frac{1}{\sqrt{x^{2}+2 x+2}} d x=\int \frac{1}{\sqrt{t^{2}+1}} d t$
On further calculation
$=\log \left|t+\sqrt{t^{2}+1}\right|+\mathrm{C}$
Substituting the value of t

$$
=\log \left|(x+1)+\sqrt{(x+1)^{2}+1}\right|+C
$$

So we get

$$
=\log \left|(x+1)+\sqrt{x^{2}+2 x+2}\right|+C
$$

11.

EDUGRロSコ

$\frac{1}{9 x^{2}+6 x+5}$

Solution:

It is given that
$\int \frac{1}{9 x^{2}+6 x+5} d x=\int \frac{1}{(3 x+1)^{2}+(2)^{2}} d x$
Take $(3 \mathrm{x}+1)=\mathrm{t}$
We get $3 \mathrm{dx}=\mathrm{dt}$
Integrating both sides

$$
\int \frac{1}{(3 x+1)^{2}+(2)^{2}} d x=\frac{1}{3} \int \frac{1}{t^{2}+2^{2}} d t
$$

On further calculation
$=\frac{1}{3}\left[\frac{1}{2} \tan ^{-1}\left(\frac{t}{2}\right)\right]+\mathrm{C}$
Substituting the value of t
$=\frac{1}{6} \tan ^{-1}\left(\frac{3 x+1}{2}\right)+\mathrm{C}$
12.
$\frac{1}{\sqrt{7-6 x-x^{2}}}$

Solution:

EDUGRロSS

It is given that

$$
\frac{1}{\sqrt{7-6 x-x^{2}}}
$$

We can write it as

$$
7-6 x-x^{2}=7-\left(x^{2}+6 x+9-9\right)
$$

By further calculation
$=16-\left(x^{2}+6 x-9\right)$
We get
$=16-(x+3)^{2}$
$=4^{2}-(x+3)^{2}$
Here

$$
\int \frac{1}{\sqrt{7-6 x-x^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x
$$

Consider $\mathrm{x}+3=\mathrm{t}$
We get $\mathrm{dx}=\mathrm{dt}$
Integrating both sides
$\int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(t)^{2}}} d t$
We get
$=\sin ^{-1}\left(\frac{t}{4}\right)+\mathrm{C}$
Substituting the value of t
$=\sin ^{-1}\left(\frac{x+3}{4}\right)+\mathrm{C}$
13.
$\frac{1}{\sqrt{(x-1)(x-2)}}$

Solution:

EDUGRロSS

It is given that
$\frac{1}{\sqrt{(x-1)(x-2)}}$
We can write it as
$(x-1)(x-2)=x^{2}-3 x+2$
By further calculation

$$
=x^{2}-3 x+9 / 4-9 / 4+2
$$

We get

$$
\begin{aligned}
& =\left(x-\frac{3}{2}\right)^{2}-\frac{1}{4} \\
& =\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}
\end{aligned}
$$

Here
$\int \frac{1}{\sqrt{(x-1)(x-2)}} d x=\int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x$
Consider $\mathrm{x}-3 / 2=\mathrm{t}$
We get $\mathrm{dx}=\mathrm{dt}$
Integrating both sides
$\int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x=\int \frac{1}{\sqrt{t^{2}-\left(\frac{1}{2}\right)^{2}}} d t$
We get
$=\log \left|t+\sqrt{t^{2}-\left(\frac{1}{2}\right)^{2}}\right|+C$
Substituting the value of t
$=\log \left|\left(x-\frac{3}{2}\right)+\sqrt{x^{2}-3 x+2}\right|+C$
14.
$\frac{1}{\sqrt{8+3 x-x^{2}}}$

EDUGRロSS

Solution:

It is given that
$\frac{1}{\sqrt{8+3 x-x^{2}}}$
We can write it as
$8+3 \mathrm{x}-\mathrm{x}^{2}=8-\left(\mathrm{x}^{2}-3 \mathrm{x}+9 / 4-9 / 4\right)$
By further calculation
$=\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}$
Here
$\int \frac{1}{\sqrt{8+3 x-x^{2}}} d x=\int \frac{1}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}}} d x$
Consider $\mathrm{x}-3 / 2=\mathrm{t}$
We get $d x=d t$
Integrating both sides

We get
$=\sin ^{-1}\left(\frac{t}{\frac{\sqrt{41}}{2}}\right)+\mathrm{C}$
Substituting the value of t

EDUGRロSS

$=\sin ^{-1}\left(\frac{x-\frac{3}{2}}{\frac{\sqrt{41}}{2}}\right)+\mathrm{C}$
On further calculation
$=\sin ^{-1}\left(\frac{2 x-3}{\sqrt{41}}\right)+C$
15.
$\frac{1}{\sqrt{(x-a)(x-b)}}$

Solution:

It is given that
$\frac{1}{\sqrt{(x-a)(x-b)}}$
We can write it as
$(x-a)(x-b)=x^{2}-(a+b) x+a b$
By further calculation
$=x^{2}-(a+b) x+\frac{(a+b)^{2}}{4}-\frac{(a+b)^{2}}{4}+a b$
Here
$=\left\lceil x-\left(\frac{a+b}{2}\right)\right]^{2}-\frac{(a-b)^{2}}{4}$
Integrating both sides
$\int \frac{1}{\sqrt{(x-a)(x-b)}} d x=\int \frac{1}{\sqrt{\left\{x-\left(\frac{a+b}{2}\right)\right\}^{2}-\left(\frac{a-b}{2}\right)^{2}}} d x$
Consider
$x-\left(\frac{a+b}{2}\right)=t$
We get $\mathrm{dx}=\mathrm{dt}$

EDUGRロSS

$\int \frac{1}{\sqrt{\left\{x-\left(\frac{a+b}{2}\right)\right\}^{2}-\left(\frac{a-b}{2}\right)^{2}}} d x=\int \frac{1}{\sqrt{t^{2}-\left(\frac{a-b}{2}\right)^{2}}} d t$
It can be written as
$=\log \left|t+\sqrt{t^{2}-\left(\frac{a-b}{2}\right)^{2}}\right|+\mathrm{C}$
Substituting the value of t
$=\log \left|\left\{x-\left(\frac{a+b}{2}\right)\right\}+\sqrt{(x-a)(x-b)}\right|+C$
16.
$\frac{4 x+1}{\sqrt{2 x^{2}+x-3}}$

Solution:

Consider
$4 \mathrm{x}+1=\mathrm{Ad} / \mathrm{dx}\left(2 \mathrm{x}^{2}+\mathrm{x}-3\right)+\mathrm{B}$
So we get
$4 \mathrm{x}+1=\mathrm{A}(4 \mathrm{x}+1)+\mathrm{B}$
On further calculation
$4 \mathrm{x}+1=4 \mathrm{Ax}+\mathrm{A}+\mathrm{B}$
By equating the coefficients of x and constant term on both sides
$4 \mathrm{~A}=4$
$\mathrm{A}=1$
$\mathrm{A}+\mathrm{B}=1$
$\mathrm{B}=0$
Take $2 \mathrm{x}^{2}+\mathrm{x}-3=\mathrm{t}$
By differentiation
$(4 x+1) d x=d t$
Integrating both sides
$\int \frac{4 x+1}{\sqrt{2 x^{2}+x-3}} d x=\int \frac{1}{\sqrt{t}} d t$
We get
$=2 \vee_{\mathrm{t}}+\mathrm{C}$
Substituting the value of t
$=2 \sqrt{ } 2 x^{2}+x-3+\mathrm{C}$
17.
$\frac{x+2}{\sqrt{x^{2}-1}}$

Solution:

Consider
$x+2=A \frac{d}{d x}\left(x^{2}-1\right)+B$
It can be written as x
$+2=\mathrm{A}(2 \mathrm{x})+\mathrm{B}$
Now equating the coefficients of x and constant term on both sides
$2 \mathrm{~A}=1$
A $=1 / 2$
B $=2$
Using equation (1) we get
$(x+2)=\frac{1}{2}(2 x)+2$
Integrating both sides
$\int \frac{x+2}{\sqrt{x^{2}-1}} d x=\int \frac{\frac{1}{2}(2 x)+2}{\sqrt{x^{2}-1}} d x$
Separating the terms
$=\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x+\int \frac{2}{\sqrt{x^{2}-1}} d x$
Take
$\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x$
If $\mathrm{x}^{2}-1=\mathrm{t}$ we get $2 \mathrm{xdx}=\mathrm{dt}$
So we get
$\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x=\frac{1}{2} \int \frac{d t}{\sqrt{t}}$
By integration
$=\frac{1}{2}[2 \sqrt{t}]$
$=\sqrt{t}$
Substituting the value of t

EDUGRロSS

$=\sqrt{x^{2}-1}$
We can write it as
$\int \frac{2}{\sqrt{x^{2}-1}} d x=2 \int \frac{1}{\sqrt{x^{2}-1}} d x=2 \log \left|x+\sqrt{x^{2}-1}\right|$

Using equation (2) we get
$\int \frac{x+2}{\sqrt{x^{2}-1}} d x=\sqrt{x^{2}-1}+2 \log \left|x+\sqrt{x^{2}-1}\right|+C$
18.
$\frac{5 x-2}{1+2 x+3 x^{2}}$
Solution:

EDUGRロSS

Consider
$5 x-2=A \frac{d}{d x}\left(1+2 x+3 x^{2}\right)+B$
It can be written as
$5 \mathrm{x}-2=\mathrm{A}(2+6 \mathrm{x})+\mathrm{B}$
Now equating the coefficients of x and constant term on both sides
$5=6 A$
$\mathrm{A}=5 / 6$
$2 \mathrm{~A}+\mathrm{B}=-2$
$B=-11 / 3$
Using equation (1) we get

$$
5 x-2=\frac{5}{6}(2+6 x)+\left(-\frac{11}{3}\right)
$$

Integrating both sides
$\int \frac{5 x-2}{1+2 x+3 x^{2}} d x=\int \frac{\frac{5}{6}(2+6 x)-\frac{11}{3}}{1+2 x+3 x^{2}} d x$
Separating the terms
$=\frac{5}{6} \int \frac{2+6 x}{1+2 x+3 x^{2}} d x-\frac{11}{3} \int \frac{1}{1+2 x+3 x^{2}} d x$
We know that

$$
\begin{align*}
& I_{1}=\int \frac{2+6 x}{1+2 x+3 x^{2}} d x \text { and } I_{2}=\int \frac{1}{1+2 x+3 x^{2}} d x \\
& \int \frac{5 x-2}{1+2 x+3 x^{2}} d x=\frac{5}{6} I_{1}-\frac{11}{3} I_{2} \tag{1}
\end{align*}
$$

EDUGRロSS

Take
$I_{1}=\int \frac{2+6 x}{1+2 x+3 x^{2}} d x$
If $1+2 \mathrm{x}+3 \mathrm{x}^{2}=\mathrm{t}$ we get $(2+6 \mathrm{x}) \mathrm{dx}=\mathrm{dt}$
So we get
$I_{1}=\int \frac{d t}{t}$
By integration
$I_{1}=\log |t|$
Substituting the value of t
$I_{1}=\log \left|1+2 x+3 x^{2}\right|$
Take
$I_{2}=\int \frac{1}{1+2 x+3 x^{2}} d x$
$1+2 \mathrm{x}+3 \mathrm{x}^{2}=1+3\left(\mathrm{x}^{2}+2 / 3 \mathrm{x}\right)$
By addition and subtraction of $1 / 9$
$=1+3\left(x^{2}+\frac{2}{3} x+\frac{1}{9}-\frac{1}{9}\right)$
We get
$=1+3\left(x+\frac{1}{3}\right)^{2}-\frac{1}{3}$
On further calculation
$=\frac{2}{3}+3\left(x+\frac{1}{3}\right)^{2}$
Here
$=3\left[\left(x+\frac{1}{3}\right)^{2}+\frac{2}{9}\right]$
$=3\left[\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}\right]$
By integration

EDUGRロSS

$$
I_{2}=\frac{1}{3} \int \frac{1}{\left[\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}\right]^{2}} d x
$$

So we get

$$
=\frac{1}{3}\left\lfloor\frac{1}{\frac{\sqrt{2}}{3}} \tan ^{-1}\left(\frac{x+\frac{1}{3}}{\frac{\sqrt{2}}{3}}\right)\right\rfloor
$$

By taking LCM

$=\frac{1}{3}\left[\frac{3}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)\right]$
On further calculation
$=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)$
Now substituting the equations (2) and (3) in equation (1)
$\int \frac{5 x-2}{1+2 x+3 x^{2}} d x=\frac{5}{6}\left[\log \left|1+2 x+3 x^{2}\right|\right]-\frac{11}{3}\left[\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)\right]+\mathrm{C}$
We get
$=\frac{5}{6} \log \left|1+2 x+3 x^{2}\right|-\frac{11}{3 \sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)+\mathrm{C}$
19.

$$
\frac{6 x+7}{\sqrt{(x-5)(x-4)}}
$$

Solution:

It is given that

$$
\frac{6 x+7}{\sqrt{(x-5)(x-4)}}=\frac{6 x+7}{\sqrt{x^{2}-9 x+20}}
$$

Consider

$$
6 x+7=A \frac{d}{d x}\left(x^{2}-9 x+20\right)+B
$$

It can be written as

EDUGRロSS

$6 x+7=A(2 x-9)+B$
Now equating the coefficients of x and constant term on both sides
$2 \mathrm{~A}=6$
$\mathrm{A}=3$
$-9 \mathrm{~A}+\mathrm{B}=7$
$B=34$
Using equation (1) we get
$6 x+7=3(2 x-9)+34$
Integrating both sides
$\int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}}=\int \frac{3(2 x-9)+34}{\sqrt{x^{2}-9 x+20}} d x$
Separating the terms
$=3 \int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x+34 \int \frac{1}{\sqrt{x^{2}-9 x+20}} d x$
We know that
$I_{1}=\int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}-9 x+20}} d x$
$\int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}}=3 I_{1}+34 I_{2}$
Take

EDUGRロSS

WIsdamising Knawledge

$$
I_{1}=\int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x
$$

If $\mathrm{x}^{2}-9 \mathrm{x}+20=\mathrm{t}$ we get $(2 \mathrm{x}-9) \mathrm{dx}=\mathrm{dt}$
So we get

$$
I_{1}=\frac{d t}{\sqrt{t}}
$$

By integration

$$
I_{1}=2 \sqrt{t}
$$

Substituting the value of t

$$
\begin{equation*}
I_{1}=2 \sqrt{x^{2}-9 x+20} \tag{2}
\end{equation*}
$$

EDUGRロSS

WISdGMISING KNGWLEDGE

Take
$I_{2}=\int \frac{1}{\sqrt{x^{2}-9 x+20}} d x$
By addition and subtraction of $81 / 4$
$x^{2}-9 x+20=x^{2}-9 x+20+81 / 4-81 / 4$
$=\left(x-\frac{9}{2}\right)^{2}-\frac{1}{4}$
We get
$=\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}$
By integration
$I_{2}=\int \frac{1}{\sqrt{\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x$
So we get

$$
\begin{equation*}
I_{2}=\log \left|\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right| \tag{3}
\end{equation*}
$$

Now substituting the equations (2) and (3) in equation (1)

$$
\int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}} d x=3\left[2 \sqrt{x^{2}-9 x+20}\right]+34 \log \left[\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right]+\mathrm{C}
$$

We get

$$
=6 \sqrt{x^{2}-9 x+20}+34 \log \left[\left(x-\frac{9}{2}\right)+\sqrt{x^{2}-9 x+20}\right]+\mathrm{C}
$$

20.

$\frac{x+2}{\sqrt{4 x-x^{2}}}$

Solution:

Consider
$x+2=A \frac{d}{d x}\left(4 x-x^{2}\right)+B$

EDUGRロSS

It can be written as x
$+2=\mathrm{A}(4-2 \mathrm{x})+\mathrm{B}$
Now equating the coefficients of x and constant term on both sides
$-2 \mathrm{~A}=1$
$\mathrm{A}=-1 / 2$
$4 \mathrm{~A}+\mathrm{B}=2$
$\mathrm{B}=4$
Using equation (1) we get

$$
(x+2)=-\frac{1}{2}(4-2 x)+4
$$

Integrating both sides
$\int \frac{x+2}{\sqrt{4 x-x^{2}}} d x=\int \frac{-\frac{1}{2}(4-2 x)+4}{\sqrt{4 x-x^{2}}} d x$
Separating the terms
$=-\frac{1}{2} \int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x+4 \int \frac{1}{\sqrt{4 x-x^{2}}} d x$
We know that
$I_{1}=\int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x$ and $I_{2} \int \frac{1}{\sqrt{4 x-x^{2}}} d x$
$\int \frac{x+2}{\sqrt{4 x-x^{2}}} d x=-\frac{1}{2} I_{1}+4 I_{2}$
Take

$$
I_{1}=\int \frac{4-2 x}{\sqrt{4 x-x^{2}}} d x
$$

If $4 \mathrm{x}-\mathrm{x}^{2}=\mathrm{t}$ we get $(4-2 \mathrm{x}) \mathrm{dx}=\mathrm{dt}$
So we get
$t_{1}=\int \frac{d t}{\sqrt{t}}=2 \sqrt{t}$

EDUGRロSS

Substituting the value of t
$=2 \sqrt{4 x-x^{2}}$
Take

$$
\begin{aligned}
& I_{2}=\int \frac{1}{\sqrt{4 x-x^{2}}} d x \\
& 4 \mathrm{x}-\mathrm{x}^{2}=-\left(-4 \mathrm{x}+\mathrm{x}^{2}\right)
\end{aligned}
$$

By addition and subtraction of 4
$4 \mathrm{x}-\mathrm{x}^{2}=\left(-4 \mathrm{x}+\mathrm{x}^{2}+4-4\right)$
It can be written as
$=4-(x-2)^{2}$
$=(2)^{2}-(x-2)^{2}$
By integration
$I_{2}=\int \frac{1}{\sqrt{(2)^{2}-(x-2)^{2}}} d x$
So we get
$=\sin ^{-1}\left(\frac{x-2}{2}\right)$
Now substituting the equations (2) and (3) in equation (1)
$\int \frac{x+2}{\sqrt{4 x-x^{2}}} d x=-\frac{1}{2}\left(2 \sqrt{4 x-x^{2}}\right)+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+\mathrm{C}$
We get
$=-\sqrt{4 x-x^{2}}+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+\mathrm{C}$
21.
$\frac{(x+2)}{\sqrt{x^{2}+2 x+3}}$

Solution:

EDUGRロSS

It is given that
$\int \frac{(x+2)}{\sqrt{x^{2}+2 x+3}} d x$
By multiplying and dividing by 2
$=\frac{1}{2} \int \frac{2(x+2)}{\sqrt{x^{2}+2 x+3}} d x$
Multiplying the terms
$=\frac{1}{2} \int \frac{2 x+4}{\sqrt{x^{2}+2 x+3}} d x$
Separating the terms

$$
=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\frac{1}{2} \int \frac{2}{\sqrt{x^{2}+2 x+3}} d x
$$

EDUGRロSS

We get
$=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x$
We know that
$I_{1}=\int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x$
$\int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2} I_{1}+I_{2}$
Take

$$
I_{1}=\int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x
$$

Here $\mathrm{x}^{2}+2 \mathrm{x}+3=\mathrm{t}$
We get $(2 x+2) d x=d t$
$I_{1}=\int \frac{d t}{\sqrt{t}}=2 \sqrt{t}$
Substituting the value of t

$$
\begin{equation*}
=2 \sqrt{x^{2}+2 x+3} \tag{2}
\end{equation*}
$$

Take

$$
I_{2}=\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x
$$

We can write it as

$$
\begin{aligned}
& x^{2}+2 x+3=x^{2}+2 x+1+2 \\
& =(x+1)^{2}+(\sqrt{2})^{2}
\end{aligned}
$$

So we get

$$
I_{2}=\int \frac{1}{\sqrt{(x+1)^{2}+(\sqrt{2})^{2}}} d x
$$

By integration

$$
\begin{equation*}
=\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right| \tag{3}
\end{equation*}
$$

EDUGRロSS

By using equations (2) and (3) in (1) we get
$\int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2}\left[2 \sqrt{x^{2}+2 x+3}\right]+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+\mathrm{C}$
So we get
$=\sqrt{x^{2}+2 x+3}+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+\mathrm{C}$
22.
$\frac{x+3}{x^{2}-2 x-5}$
Solution:

EDUGRロSS

Consider
$(x+3)=A \frac{d}{d x}\left(x^{2}-2 x-5\right)+B$
It can be written as
$x+3=A(2 x-2)+B$
Now equating the coefficients of x and constant term on both sides
$2 \mathrm{~A}=1$
$A=1 / 2$
$-2 A+B=3$
$B=4$
Using equation (1) we get
$(x+3)=\frac{1}{2}(2 x-2)+4$
Integrating both sides
$\int \frac{x+3}{x^{2}-2 x-5} d x=\int \frac{\frac{1}{2}(2 x-2)+4}{x^{2}-2 x-5} d x$
Separating the terms
$=\frac{1}{2} \int \frac{2 x-2}{x^{2}-2 x-5} d x+4 \int \frac{1}{x^{2}-2 x-5} d x$
We know that
$I_{1}=\int \frac{2 x-2}{x^{2}-2 x-5} d x$ and $I_{2}=\int \frac{1}{x^{2}-2 x-5} d x$
$\int \frac{x+3}{\left(x^{2}-2 x-5\right)} d x=\frac{1}{2} I_{1}+4 I_{2}$

EDUGRロSS

Take
$I_{1}=\int \frac{2 x-2}{x^{2}-2 x-5} d x$
If $\mathrm{x}^{2}-2 \mathrm{x}-5=\mathrm{t}$ we get $(2 \mathrm{x}-2) \mathrm{dx}=\mathrm{dt}$
So we get
$I_{1}=\int \frac{d t}{t}=\log |t|$
Substituting the value of t
$=\log \left|x^{2}-2 x-5\right|$
Take
$I_{2}=\int \frac{1}{x^{2}-2 x-5} d x$
We can write it as
$=\int \frac{1}{\left(x^{2}-2 x+1\right)-6} d x$
By separating the terms
$=\int \frac{1}{(x-1)^{2}-(\sqrt{6})^{2}} d x$
By integration
$=\frac{1}{2 \sqrt{6}} \log \left(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right)$
Now substituting the equations (2) and (3) in equation (1)
$\int \frac{x+3}{x^{2}-2 x-5} d x=\frac{1}{2} \log \left|x^{2}-2 x-5\right|+\frac{4}{2 \sqrt{6}} \log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|+C$
We get
$=\frac{1}{2} \log \left|x^{2}-2 x-5\right|+\frac{2}{\sqrt{6}} \log \left|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right|+C$
23.
$\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}$

Solution:

Consider

EDUGRロSS

$5 x+3=A \frac{d}{d x}\left(x^{2}+4 x+10\right)+B$
It can be written as
$5 x+3=A(2 x+4)+B$
Now equating the coefficients of x and constant term on both sides
$2 \mathrm{~A}=5$
A $=5 / 2$
$4 \mathrm{~A}+\mathrm{B}=3$
$B=-7$
Using equation (1) we get

EDUGRロSS

$5 x+3=\frac{5}{2}(2 x+4)-7$
Integrating both sides
$\int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\int \frac{\frac{5}{2}(2 x+4)-7}{\sqrt{x^{2}+4 x+10}} d x$
Separating the terms
$=\frac{5}{2} \int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x-7 \int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$
We know that
$I_{1}=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x$ and $I_{2}=\int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$
$\int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\frac{5}{2} I_{1}-7 I_{2}$
Take
$I_{1}=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x$
If $x^{2}+4 x+10=t$ we get $(2 x+4) d x=d t$
So we get
$I_{1}=\int \frac{d t}{t}=2 \sqrt{t}$
Substituting the value of t

$$
\begin{equation*}
=2 \sqrt{x^{2}+4 x+10} . \tag{2}
\end{equation*}
$$

Take
$I_{2}=\int \frac{1}{\sqrt{x^{2}+4 x+10}} d x$

EDUGRロSS

We can write it as
$=\int \frac{1}{\sqrt{\left(x^{2}+4 x+4\right)+6}} d x$
By separating the terms
$=\int \frac{1}{(x+2)^{2}+(\sqrt{6})^{2}} d x$
By integration
$=\log \left|x+2+\sqrt{x^{2}+4 x+10}\right|$
Now substituting the equations (2) and (3) in equation (1)
$\int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\frac{5}{2}\left[2 \sqrt{x^{2}+4 x+10}\right]-7 \log \left|(x+2)+\sqrt{x^{2}+4 x+10}\right|+\mathrm{C}$
We get
$=5 \sqrt{x^{2}+4 x+10}-7 \log (x+2)+\sqrt{x^{2}+4 x+10}+\mathrm{C}$
Choose the correct answer in Exercises 24 and 25.
24.
$\int \frac{d x}{x^{2}+2 x+2}$ equals
(A) $x \tan ^{-1}(x+1)+C$
(B) $\tan ^{-1}(x+1)+C$
(C) $(x+1) \boldsymbol{\operatorname { t a n }}^{-1} x+C$
(D) $\tan ^{-1} x+C$

Solution:

It is given that

$$
\int \frac{d x}{x^{2}+2 x+2}=\int \frac{d x}{\left(x^{2}+2 x+1\right)+1}
$$

By separating the terms
$=\int \frac{1}{(x+1)^{2}+(1)^{2}} d x$
By integrating we get

$$
=\left[\tan ^{-1}(x+1)\right]+C
$$

Therefore, B is the correct answer.

EDUGRロSS

25.

$\int \frac{d x}{\sqrt{9 x-4 x^{2}}}$ equals
(A) $\frac{1}{9} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+\mathrm{C}$
(B) $\frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+\mathrm{C}$
(C) $\frac{1}{3} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+\mathrm{C}$
(D) $\frac{1}{2} \sin ^{-1}\left(\frac{9 x-8}{9}\right)+\mathrm{C}$

Solution:

EDUGRロSS

It is given that
$\int \frac{d x}{\sqrt{9 x-4 x^{2}}}$
We can write it as
$=\int \frac{1}{\sqrt{-4\left(x^{2}-\frac{9}{4} x\right)}} d x$
By further calculation we get
$=\int \frac{1}{\sqrt{-4\left(x^{2}-\frac{9 x}{4}+\frac{81}{64}-\frac{81}{64}\right)}} d x$
Separating the terms we get
$=\int \frac{1}{\sqrt{-4\left[\left(x-\frac{9}{8}\right)^{2}-\left(\frac{9}{8}\right)^{2}\right]}} d x$
On further simplification

$$
=\frac{1}{2} \int \frac{1}{\sqrt{\left(\frac{9}{8}\right)^{2}-\left(x-\frac{9}{8}\right)^{2}}} d x
$$

Using the formula
$\int \frac{d y}{\sqrt{a^{2}-y^{2}}}=\sin ^{-1} \frac{y}{a}+\mathrm{C}$
$=\frac{1}{2}\left[\sin ^{-1}\left(\frac{x-\frac{9}{8}}{\frac{9}{8}}\right)\right]+\mathrm{C}$
Taking LCM
$=\frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+C$
Therefore, B is the correct answer.

Wisdumisine Knawledee
1.
$\frac{x}{(x+1)(x+2)}$

Solution:

Consider
$\frac{x}{(x+1)(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)}$
We get
$\mathrm{x}=\mathrm{A}(\mathrm{x}+2)+\mathrm{B}(\mathrm{x}+1)$
Now by equating the coefficients of x and constant term, we get
$A+B=1$
$2 \mathrm{~A}+\mathrm{B}=0$
By solving the equations we get
$\mathrm{A}=-1$ and $\mathrm{B}=2$
Substituting the values of A and B

$$
\frac{x}{(x+1)(x+2)}=\frac{-1}{(x+1)}+\frac{2}{(x+2)}
$$

By integrating both sides w.r.t x

$$
\int \frac{x}{(x+1)(x+2)} d x=\int \frac{-1}{(x+1)}+\frac{2}{(x+2)} d x
$$

So we get
$=-\log |x+1|+2 \log |x+2|+c$
We can write it as

$$
\begin{aligned}
& =\log (x+2)^{2}-\log |x+1|+c \\
& =\log \frac{(x+2)^{2}}{(x+1)}+C
\end{aligned}
$$

2.

$\frac{1}{(x+3)(x-3)}$

Solution:

EDUGRロSS

Consider

$$
\frac{1}{(x+3)(x-3)}=\frac{A}{(x+3)}+\frac{B}{(x-3)}
$$

We get

$$
1=A(x-3)+B(x+3)
$$

Now by equating the coefficients of x and constant term, we get

$$
A+B=1
$$

$$
-3 \mathrm{~A}+3 \mathrm{~B}=0
$$

By solving the equations we get

$$
\mathrm{A}=-1 / 6 \text { and } \mathrm{B}=1 / 6
$$

Substituting the values of A and B

$$
\frac{1}{(x+3)(x-3)}=\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}
$$

By integrating both sides w.r.t x

$$
\int \frac{1}{\left(x^{2}-9\right)} d x=\int\left(\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}\right) d x
$$

So we get

$$
=-\frac{1}{6} \log |x+3|+\frac{1}{6} \log |x-3|+C
$$

We can write it as
$=\frac{1}{6} \log \left|\frac{(x-3)}{(x+3)}\right|+\mathrm{C}$
3.
$\frac{3 x-1}{(x-1)(x-2)(x-3)}$

Solution:

Consider
$\frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
We get

$$
3 x-1=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2) \ldots \ldots(1)
$$

By substituting the value of x in equation (1), we get

$$
\mathrm{A}=1, \mathrm{~B}=-5 \text { and } \mathrm{C}=4
$$

Substituting the values of A, B and C

$$
\frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)}
$$

By integrating both sides w.r.t x

$$
\int \frac{3 x-1}{(x-1)(x-2)(x-3)} d x=\int\left\{\frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)}\right\} d x
$$

So we get

$$
=\log |x-1|-5 \log |x-2|+4 \log |x-3|+c
$$

4.

$\frac{x}{(x-1)(x-2)(x-3)}$

Solution:

EDUGRロSS

WISDGMISINE KNGWLEDEE

Consider

$\frac{x}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}$
We get
$x=A(x-2)(x-3)+B(x-1)(x-3)+C(x-1)(x-2) \ldots \ldots$
By substituting the value of x in equation (1), we get

$$
\mathrm{A}=1 / 2, \mathrm{~B}=-2 \text { and } \mathrm{C}=3 / 2
$$

Substituting the values of A, B and C

$$
\frac{x}{(x-1)(x-2)(x-3)}=\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}
$$

By integrating both sides w.r.t x

$$
\int \frac{x}{(x-1)(x-2)(x-3)} d x=\int\left\{\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}\right\} d x
$$

So we get
$=1 / 2 \log |x-1|-2 \log |x-2|+3 / 2 \log |x-3|+c$
5.
$\frac{2 x}{x^{2}+3 x+2}$

Solution:

EDUGRロSS

Consider
$\frac{2 x}{x^{2}+3 x+2}=\frac{A}{(x+1)}+\frac{B}{(x+2)}$
We get
$2 \mathrm{x}=\mathrm{A}(\mathrm{x}+2)+\mathrm{B}(\mathrm{x}+1)$
By substituting the value of x in equation (1), we get
$A=-2$ and $B=4$
Substituting the values of A and B

$$
\frac{2 x}{(x+1)(x+2)}=\frac{-2}{(x+1)}+\frac{4}{(x+2)}
$$

By integrating both sides w.r.t x
$\int \frac{2 x}{(x+1)(x+2)} d x=\int\left\{\frac{4}{(x+2)}-\frac{2}{(x+1)}\right\} d x$
So we get
$=4 \log |x+2|-2 \log |x+1|+c$
6.
$\frac{1-x^{2}}{x(1-2 x)}$
Solution:
Consider
$\frac{1-x^{2}}{x(1-2 x)}=\frac{1}{2}+\frac{1}{2}\left(\frac{2-x}{x(1-2 x)}\right)$
We know that
$\frac{2-x}{x(1-2 x)}=\frac{A}{x}+\frac{B}{(1-2 x)}$
We get
$(2-x)=A(1-2 x)+B x$
By substituting the value of x in equation (1), we get
$\mathrm{A}=2$ and $\mathrm{B}=3$
Substituting the values of A and B
$\frac{2-x}{x(1-2 x)}=\frac{2}{x}+\frac{3}{1-2 x}$
We get
$\frac{1-x^{2}}{x(1-2 x)}=\frac{1}{2}+\frac{1}{2}\left\{\frac{2}{x}+\frac{3}{(1-2 x)}\right\}$
By integrating both sides w.r.t x
$\int \frac{1-x^{2}}{x(1-2 x)} d x=\int\left\{\frac{1}{2}+\frac{1}{2}\left(\frac{2}{x}+\frac{3}{1-2 x}\right)\right\} d x$
By further calculation
$=\frac{x}{2}+\log |x|+\frac{3}{2(-2)} \log |1-2 x|+\mathrm{C}$
So we get
$=\frac{x}{2}+\log |x|-\frac{3}{4} \log |1-2 x|+\mathrm{C}$
7.
$\frac{x}{\left(x^{2}+1\right)(x-1)}$
Solution:
We know that
$\frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C}{(x-1)}$
It can be written as
$x=(A x+B)(x-1)+C\left(x^{2}+1\right)$
By multiplying the terms
$\mathrm{x}=\mathrm{Ax}^{2}-\mathrm{Ax}+\mathrm{Bx}-\mathrm{B}+\mathrm{Cx}^{2}+\mathrm{C}$
Now by equating the coefficients of x^{2}, x and constant terms we get
$\mathrm{A}+\mathrm{C}=0$
$-\mathrm{A}+\mathrm{B}=1$
$-\mathrm{B}+\mathrm{C}=0$
By solving the equations
$A=-1 / 2, B=1 / 2$ and $C=1 / 2$
Using equation (1)

$$
\frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{\left(-\frac{1}{2} x+\frac{1}{2}\right)}{x^{2}+1}+\frac{\frac{1}{2}}{(x-1)}
$$

By integrating both sides w.r.t. x
$\int \frac{x}{\left(x^{2}+1\right)(x-1)}=-\frac{1}{2} \int \frac{x}{x^{2}+1} d x+\frac{1}{2} \int \frac{1}{x^{2}+1} d x+\frac{1}{2} \int \frac{1}{x-1} d x$
We get

$$
=-\frac{1}{4} \int \frac{2 x}{x^{2}+1} d x+\frac{1}{2} \tan ^{-1} x+\frac{1}{2} \log |x-1|+\mathrm{C}
$$

Here

$\int \frac{2 x}{x^{2}+1} d x$, let $\left(x^{2}+1\right)=t$
We get
$2 \mathrm{xdx}=\mathrm{dt}$
Substituting the values
$\int \frac{2 x}{x^{2}+1} d x=\int \frac{d t}{t}$
By integrating w.r.t t
$=\log |t|$
Substituting the value of t
$=\log \left|\mathrm{x}^{2}+1\right|$
So we get
$\int \frac{x}{\left(x^{2}+1\right)(x-1)}=-\frac{1}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \tan ^{-1} x+\frac{1}{2} \log |x-1|+\mathrm{C}$
We can write it as
$=\frac{1}{2} \log |x-1|-\frac{1}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \tan ^{-1} x+C$
8.
$\frac{x}{(x-1)^{2}(x+2)}$

Solution:

We know that
$\frac{x}{(x-1)^{2}(x+2)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+2)}$
It can be written as $\mathrm{x}=\mathrm{A}(\mathrm{x}-1)(\mathrm{x}+2)+\mathrm{B}$
$(x+2)+C(x-1)^{2}$
Taking $\mathrm{x}=1$ we get
B $=1 / 3$
Now by equating the coefficients of x^{2} and constant terms we get
$\mathrm{A}+\mathrm{C}=0$
$-2 \mathrm{~A}+2 \mathrm{~B}+\mathrm{C}=0$
By solving the equations
$\mathrm{A}=2 / 9$ and $\mathrm{C}=-2 / 9$
We get

EDUGRロSS

Wisdamising Knawledge

$\frac{x}{(x-1)^{2}(x+2)}=\frac{2}{9(x-1)}+\frac{1}{3(x-1)^{2}}-\frac{2}{9(x+2)}$
By integrating both sides w.r.t. x
$\int \frac{x}{(x-1)^{2}(x+2)} d x=\frac{2}{9} \int \frac{1}{(x-1)} d x+\frac{1}{3} \int \frac{1}{(x-1)^{2}} d x-\frac{2}{9} \int \frac{1}{(x+2)} d x$
Here
$=\frac{2}{9} \log |x-1|+\frac{1}{3}\left(\frac{-1}{x-1}\right)-\frac{2}{9} \log |x+2|+\mathrm{C}$
By further calculation
$=\frac{2}{9} \log \left|\frac{x-1}{x+2}\right|-\frac{1}{3(x-1)}+\mathrm{C}$
9.
$\frac{3 x+5}{x^{3}-x^{2}-x+1}$

Solution:

EDUGRロSS

It is given that

$$
\frac{3 x+5}{x^{3}-x^{2}-x+1}=\frac{3 x+5}{(x-1)^{2}(x+1)}
$$

We know that
$\frac{3 x+5}{(x-1)^{2}(x+1)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+1)}$
It can be written as
$3 \mathrm{x}+5=\mathrm{A}(\mathrm{x}-1)(\mathrm{x}+1)+\mathrm{B}(\mathrm{x}+1)+\mathrm{C}(\mathrm{x}-1)^{2}$
We get
$3 x+5=A\left(x^{2}-1\right)+B(x+1)+C\left(x^{2}+1-2 x\right) \ldots \ldots$ (
By substituting the value of $x=1$ in equation (1)

$$
B=4
$$

Now by equating the coefficients of x^{2} and x we get
$\mathrm{A}+\mathrm{C}=0$
B $-2 \mathrm{C}=3$
By solving the equations
$\mathrm{A}=-1 / 2$ and $\mathrm{C}=1 / 2$
We get
$\frac{3 x+5}{(x-1)^{2}(x+1)}=\frac{-1}{2(x-1)}+\frac{4}{(x-1)^{2}}+\frac{1}{2(x+1)}$
By integrating both sides w.r.t. x
$\int \frac{3 x+5}{(x-1)^{2}(x+1)} d x=-\frac{1}{2} \int \frac{1}{x-1} d x+4 \int \frac{1}{(x-1)^{2}} d x+\frac{1}{2} \int \frac{1}{(x+1)} d x$
Here

$$
=-\frac{1}{2} \log |x-1|+4\left(\frac{-1}{x-1}\right)+\frac{1}{2} \log |x+1|+\mathrm{C}
$$

By further calculation
$=\frac{1}{2} \log \left|\frac{x+1}{x-1}\right|-\frac{4}{(x-1)}+C$
10.
$\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}$

Solution:

It is given that
$\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}=\frac{2 x-3}{(x+1)(x-1)(2 x+3)}$
We know that
$\frac{2 x-3}{(x+1)(x-1)(2 x+3)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C}{(2 x+3)}$
It can be written as
$(2 \mathrm{x}-3)=\mathrm{A}(\mathrm{x}-1)(2 \mathrm{x}+3)+\mathrm{B}(\mathrm{x}+1)(2 \mathrm{x}+3)+\mathrm{C}(\mathrm{x}+1)(\mathrm{x}-1)$
$(2 x-3)=A\left(2 x^{2}+x-3\right)+B\left(2 x^{2}+5 x+3\right)+C\left(x^{2}-1\right)$
We get
$(2 \mathrm{x}-3)=(2 \mathrm{~A}+2 \mathrm{~B}+\mathrm{C}) \mathrm{x}^{2}+(\mathrm{A}+5 \mathrm{~B}) \mathrm{x}+(-3 \mathrm{~A}+3 \mathrm{~B}-\mathrm{C})$
Now by equating the coefficients of x^{2} and x we get
$B=-1 / 10, A=5 / 2$ and $C=-24 / 5$
We get

$$
\frac{2 x-3}{(x+1)(x-1)(2 x+3)}=\frac{5}{2(x+1)}-\frac{1}{10(x-1)}-\frac{24}{5(2 x+3)}
$$

By integrating both sides w.r.t. x

$$
\left.\int \frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)} d x=\frac{5}{2} \int \frac{1}{(x+1)} d x-\frac{1}{10} \int \frac{1}{x-1} d x-\frac{24}{5} \int \frac{1}{(2 x+3)} d x\right)
$$

Here

$$
=\frac{5}{2} \log |x+1|-\frac{1}{10} \log |x-1|-\frac{24}{5 \times 2} \log |2 x+3|
$$

By further calculation
$=\frac{5}{2} \log |x+1|-\frac{1}{10} \log |x-1|-\frac{12}{5} \log |2 x+3|+\mathrm{C}$
11.

$$
\frac{5 x}{(x+1)\left(x^{2}-4\right)}
$$

Solution:

It is given that

$$
\frac{5 x}{(x+1)\left(x^{2}-4\right)}=\frac{5 x}{(x+1)(x+2)(x-2)}
$$

We know that

$$
\frac{5 x}{(x+1)(x+2)(x-2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)}+\frac{C}{(x-2)}
$$

It can be written as
$5 x=A(x+2)(x-2)+B(x+1)(x-2)+C(x+1)(x+2) .$.
By substituting $x=-1,-2$ and 2 in equation (1)
$\mathrm{A}=5 / 3, B=-5 / 2$ and $\mathrm{C}=5 / 6$
We get
$\frac{5 x}{(x+1)(x+2)(x-2)}=\frac{5}{3(x+1)}-\frac{5}{2(x+2)}+\frac{5}{6(x-2)}$
By integrating both sides w.r.t. x
$\int \frac{5 x}{(x+1)\left(x^{2}-4\right)} d x=\frac{5}{3} \int \frac{1}{(x+1)} d x-\frac{5}{2} \int \frac{1}{(x+2)} d x+\frac{5}{6} \int \frac{1}{(x-2)} d x$
By further calculation
$=\frac{5}{3} \log |x+1|-\frac{5}{2} \log |x+2|+\frac{5}{6} \log |x-2|+\mathrm{C}$
12.
$\frac{x^{3}+x+1}{x^{2}-1}$
Solution:
It is given that
$\frac{x^{3}+x+1}{x^{2}-1}=x+\frac{2 x+1}{x^{2}-1}$
We know that
$\frac{2 x+1}{x^{2}-1}=\frac{A}{(x+1)}+\frac{B}{(x-1)}$
It can be written as
$2 x+1=A(x-1)+B(x+1) \ldots$.
By substituting $x=1$ and -1 in equation (1)
$A=1 / 2$ and $B=3 / 2$
We get

$$
\frac{x^{3}+x+1}{x^{2}-1}=x+\frac{1}{2(x+1)}+\frac{3}{2(x-1)}
$$

By integrating both sides w.r.t. x

$$
\int \frac{x^{3}+x+1}{x^{2}-1} d x=\int x d x+\frac{1}{2} \int \frac{1}{(x+1)} d x+\frac{3}{2} \int \frac{1}{(x-1)} d x
$$

By further calculation

$$
=\frac{x^{2}}{2}+\frac{1}{2} \log |x+1|+\frac{3}{2} \log |x-1|+\mathrm{C}
$$

13.

$$
\frac{2}{(1-x)\left(1+x^{2}\right)}
$$

Solution:

We know that
$\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{A}{(1-x)}+\frac{B x+C}{\left(1+x^{2}\right)}$
It can be written as
$2=A\left(1+x^{2}\right)+(B x+C)(1-x)$
$2=\mathrm{A}+\mathrm{Ax}^{2}+\mathrm{Bx}-\mathrm{Bx}^{2}+\mathrm{C}-\mathrm{Cx}$
Now by equating the coefficient of $\mathrm{x}^{2}, \mathrm{x}$ and constant terms
$\mathrm{A}-\mathrm{B}=0$
$\mathrm{B}-\mathrm{C}=0$
$\mathrm{A}+\mathrm{C}=2$
Solving the equations
$\mathrm{A}=1, \mathrm{~B}=1$ and $\mathrm{C}=1$
We get

$$
\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{1}{1-x}+\frac{x+1}{1+x^{2}}
$$

By integrating both sides w.r.t. x
$\int \frac{2}{(1-x)\left(1+x^{2}\right)} d x=\int \frac{1}{1-x} d x+\int \frac{x}{1+x^{2}} d x+\int \frac{1}{1+x^{2}} d x$
Multiplying and dividing by 2 in the second term
$=-\int \frac{1}{x-1} d x+\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x+\int \frac{1}{1+x^{2}} d x$
By further calculation

$$
=-\log |x-1|+\frac{1}{2} \log \left|1+x^{2}\right|+\tan ^{-1} x+C
$$

14.

$\frac{3 x-1}{(x+2)^{2}}$

Solution:

We know that

$$
\frac{3 x-1}{(x+2)^{2}}=\frac{A}{(x+2)}+\frac{B}{(x+2)^{2}}
$$

It can be written as

EDUGRロSS

$3 \mathrm{x}-1=\mathrm{A}(\mathrm{x}+2)+\mathrm{B}$
Now by equating the coefficient of x and constant terms
$\mathrm{A}=3$
$2 \mathrm{~A}+\mathrm{B}=-1$

Solving the equations
$B=-7$

We get
$\frac{3 x-1}{(x+2)^{2}}=\frac{3}{(x+2)}-\frac{7}{(x+2)^{2}}$
By integrating both sides w.r.t. x
$\int \frac{3 x-1}{(x+2)^{2}} d x=3 \int \frac{1}{(x+2)} d x-7 \int \frac{x}{(x+2)^{2}} d x$
So we get
$=3 \log |x+2|-7\left(\frac{-1}{(x+2)}\right)+\mathrm{C}$
By further calculation
$=3 \log |x+2|+\frac{7}{(x+2)}+C$
15.
$\frac{1}{\left(x^{4}-1\right)}$
Solution:

It is given that

$$
\frac{1}{\left(x^{4}-1\right)}=\frac{1}{\left(x^{2}-1\right)\left(x^{2}+1\right)}=\frac{1}{(x+1)(x-1)\left(1+x^{2}\right)}
$$

We know that

$$
\frac{1}{(x+1)(x-1)\left(1+x^{2}\right)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C x+D}{\left(x^{2}+1\right)}
$$

So we get

$$
1=\mathrm{A}(\mathrm{x}-1)\left(\mathrm{x}^{2}+1\right)+\mathrm{B}(\mathrm{x}+1)\left(\mathrm{x}^{2}+1\right)+(\mathrm{Cx}+\mathrm{D})\left(\mathrm{x}^{2}-1\right)
$$

By multiplying the terms

$$
1=\mathrm{A}\left(\mathrm{x}^{3}+\mathrm{x}-\mathrm{x}^{2}-1\right)+\mathrm{B}\left(\mathrm{x}^{3}+\mathrm{x}+\mathrm{x}^{2}+1\right)+\mathrm{Cx}^{3}+\mathrm{Dx}^{2}-\mathrm{Cx}-\mathrm{D}
$$

It can be written as

$$
\begin{equation*}
1=(\mathrm{A}+\mathrm{B}+\mathrm{C}) \mathrm{x}^{3}+(-\mathrm{A}+\mathrm{B}+\mathrm{D}) \mathrm{x}^{2}+(\mathrm{A}+\mathrm{B}-\mathrm{C}) \mathrm{x}+(-\mathrm{A}+\mathrm{B}-\mathrm{D}) \ldots \tag{1}
\end{equation*}
$$

Now by equating the coefficient of $\mathrm{x}^{3}, \mathrm{x}^{2}, \mathrm{x}$ and constant terms

$$
\begin{aligned}
& A+B+C=0 \\
& -A+B+D=0 \\
& A+B-C=0
\end{aligned}
$$

$$
-A+B-D=1
$$

Solving the equations

$$
A=-1 / 4, B=1 / 4, C=0 \text { and } D=-1 / 2
$$

We get

$$
\frac{1}{x^{4}-1}=\frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2\left(x^{2}+1\right)}
$$

By integrating both sides w.r.t. x

$$
\int \frac{1}{x^{4}-1} d x=-\frac{1}{4} \log |x+1|+\frac{1}{4} \log |x-1|-\frac{1}{2} \tan ^{-1} x+C
$$

So we get

$$
=\frac{1}{4} \log \left|\frac{x-1}{x+1}\right|-\frac{1}{2} \tan ^{-1} x+C
$$

16.

$$
\frac{1}{x\left(x^{n}+1\right)}
$$

Solution:

By multiplying both numerator and denominator by $\mathrm{x}^{\mathrm{n}-1}$

$$
\frac{1}{x\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n-1} x\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)}
$$

Here $\mathrm{x}^{\mathrm{n}}=\mathrm{t}$ we get
$\mathrm{nx}^{\mathrm{n}-1} \mathrm{dx}=\mathrm{dt}$
So we get

$$
\int \frac{1}{x\left(x^{n}+1\right)} d x=\int \frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)} d x=\frac{1}{n} \int \frac{1}{t(t+1)} d t
$$

We know that
$\frac{1}{t(t+1)}=\frac{A}{t}+\frac{B}{(t+1)}$
It can be written as
$1=\mathrm{A}(1+\mathrm{t})+\mathrm{Bt} \ldots .$. (1)
By substituting $\mathrm{t}=0,-1$ in equation (1) $A=1$ and $B=-1$

We get
$\frac{1}{t(t+1)}=\frac{1}{t}-\frac{1}{(1+t)}$
By integrating both sides w.r.t. x
$\int \frac{1}{x\left(x^{n}+1\right)} d x=\frac{1}{n} \int\left\{\frac{1}{t}-\frac{1}{(t+1)}\right\} d x$
So we get
$=\frac{1}{n}[\log |t|-\log |t+1|]+C$
Substituting the value of t
$=-\frac{1}{n}\left[\log \left|x^{n}\right|-\log \left|x^{n}+1\right|\right]+\mathrm{C}$
It can be written as
$=\frac{1}{n} \log \left|\frac{x^{n}}{x^{n}+1}\right|+\mathrm{C}$
17.
$\frac{\cos x}{(1-\sin x)(2-\sin x)}$

Solution:

It is given that
$\frac{\cos x}{(1-\sin x)(2-\sin x)}$
Consider
$\sin x=t$
By differentiating w.r.t t
$\cos \mathrm{xdx}=\mathrm{dt}$
Integrating w.r.t x
$\int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x=\int \frac{d t}{(1-t)(2-t)}$
Here we can write it as
$\frac{1}{(1-t)(2-t)}=\frac{A}{(1-t)}+\frac{B}{(2-t)}$
We get
$1=A(2-t)+B(1-t)$
By substituting $\mathrm{t}=2$ and $\mathrm{t}=1$ in equation (1)
$A=1$ and $B=-1$
$\frac{1}{(1-t)(2-t)}=\frac{1}{(1-t)}-\frac{1}{(2-t)}$
Integrating w.r.t t
$\int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x=\int\left\{\frac{1}{1-t}-\frac{1}{(2-t)}\right\} d t$
So we get
$=-\log |1-t|+\log |2-t|+C$
It can be written as
$=\log \left|\frac{2-t}{1-t}\right|+\mathrm{C}$
Substituting the value of t
$=\log \left|\frac{2-\sin x}{1-\sin x}\right|+C$
18.
$\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}$

Solution:

We know that
$\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=1-\frac{\left(4 x^{2}+10\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}$
It can be written as
$\frac{4 x^{2}+10}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{A x+B}{\left(x^{2}+3\right)}+\frac{C x+D}{\left(x^{2}+4\right)}$

So we get

$4 x^{2}+10=(A x+B)\left(x^{2}+4\right)+(C x+D)\left(x^{2}+3\right)$
Multiplying the terms
$4 \mathrm{x}^{2}+10=\mathrm{Ax}^{3}+4 \mathrm{Ax}+\mathrm{Bx}^{2}+4 \mathrm{~B}+\mathrm{Cx}^{3}+3 \mathrm{Cx}+\mathrm{Dx}^{2}+3 \mathrm{D}$
Grouping the terms
$4 x^{2}+10=(A+C) x^{3}+(B+D) x^{2}+(4 A+3 C) x+(4 B+3 D)$
Now by equating the coefficients of $\mathrm{x}^{3}, \mathrm{x}^{2}, \mathrm{x}$ and constant terms
$\mathrm{A}+\mathrm{C}=0$
$B+D=4$
$4 \mathrm{~A}+3 \mathrm{C}=0$
$4 \mathrm{~B}+3 \mathrm{D}=10$
By solving these equations
$\mathrm{A}=0, \mathrm{~B}=-2, \mathrm{C}=0$ and $\mathrm{D}=6$
Substituting the values
$\frac{4 x^{2}+10}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}$
We can write it as
$\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=1-\left(\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}\right)$
Integrating both sides w.r.t x
$\int \frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)} d x=\int\left\{1+\frac{2}{\left(x^{2}+3\right)}-\frac{6}{\left(x^{2}+4\right)}\right\} d x$
So we get
$=\int\left\{1+\frac{2}{x^{2}+(\sqrt{3})^{2}}-\frac{6}{x^{2}+2^{2}}\right\}$
Here

$$
=x+2\left(\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}\right)-6\left(\frac{1}{2} \tan ^{-1} \frac{x}{2}\right)+\mathrm{C}
$$

By further calculation

$$
=x+\frac{2}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}-3 \tan ^{-1} \frac{x}{2}+C
$$

19.

$\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$

Solution:

It is given that
$\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}$
Consider $\mathrm{x}^{2}=\mathrm{t}$
So we get
$2 \mathrm{xdx}=\mathrm{dt}$
Integrating both sides

$$
\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int \frac{d t}{(t+1)(t+3)}
$$

We can write it as
$\frac{1}{(t+1)(t+3)}=\frac{A}{(t+1)}+\frac{B}{(t+3)}$
$1=\mathrm{A}(\mathrm{t}+3)+\mathrm{B}(\mathrm{t}+1)$
Now by substituting $t=-3$ and $t=-1$ in equation (1) $A=1 / 2$ and $B=-1 / 2$

Substituting the values
$\frac{1}{(t+1)(t+3)}=\frac{1}{2(t+1)}-\frac{1}{2(t+3)}$
Integrating w.r.t t
$\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int\left\{\frac{1}{2(t+1)}-\frac{1}{2(t+3)}\right\} d t$
So we get
$=\frac{1}{2} \log |(t+1)|-\frac{1}{2} \log |t+3|+\mathrm{C}$
It can be written as
$=\frac{1}{2} \log \left|\frac{t+1}{t+3}\right|+\mathrm{C}$
Substituting the value of t
$=\frac{1}{2} \log \left|\frac{x^{2}+1}{x^{2}+3}\right|+\mathrm{C}$
20.

EDUGRロSS

$$
\frac{1}{x\left(x^{4}-1\right)}
$$

Solution:

It is given that
$\frac{1}{x\left(x^{4}-1\right)}$
By multiplying both numerator and denominator by x^{3}
$\frac{1}{x\left(x^{4}-1\right)}=\frac{x^{3}}{x^{4}\left(x^{4}-1\right)}$
Integrating both sides
$\int \frac{1}{x\left(x^{4}-1\right)} d x=\int \frac{x^{3}}{x^{4}\left(x^{4}-1\right)} d x$
Consider $\mathrm{x}^{4}=\mathrm{t}$
So we get $4 x^{3} d x=d t$
We can write it as
$\int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int \frac{d t}{t(t-1)}$
So we get
$\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{(t-1)}$
$1=\mathrm{A}(\mathrm{t}-1)+\mathrm{Bt}$
Now by substituting $\mathrm{t}=0$ in equation (1)
$A=-1$ and $B=1$

EDUGRロSS

Substituting the values
$\frac{1}{t(t+1)}=\frac{-1}{t}+\frac{1}{t-1}$
Integrating w.r.t t
$\int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int\left\{\frac{-1}{t}+\frac{1}{t-1}\right\} d t$
So we get
$=\frac{1}{4}[-\log |t|+\log |t-1|]+C$
It can be written as
$=\frac{1}{4} \log \left|\frac{t-1}{t}\right|+\mathrm{C}$
Substituting the value of t
$=\frac{1}{4} \log \left|\frac{x^{4}-1}{x^{4}}\right|+\mathrm{C}$
21.
$\frac{1}{\left(e^{x}-1\right)}$
Solution:

EDUGRロSS

It is given that

$$
\frac{1}{\left(e^{x}-1\right)}
$$

Consider $\mathrm{e}^{\mathrm{x}}=\mathrm{t}$
So we get $e^{x} d x=d t$
We can write it as
$\int \frac{1}{e^{t}-1} d x=\int \frac{1}{t-1} \times \frac{d t}{t}=\int \frac{1}{t(t-1)} d t$
So we get

$$
\begin{align*}
& \frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1} \\
& 1=\mathrm{A}(\mathrm{t}-1)+\mathrm{Bt} \ldots . . \tag{1}
\end{align*}
$$

Now by substituting $t=1$ and $t=0$ in equation (1)
$A=-1$ and $B=1$
Substituting the values
$\frac{1}{t(t+1)}=\frac{-1}{t}+\frac{1}{t-1}$
Integrating w.r.t t
$\int \frac{1}{t(t-1)} d t=\log \left|\frac{t-1}{t}\right|+\mathrm{C}$
Substituting the value of t

$$
=\log \left|\frac{e^{x}-1}{e^{x}}\right|+C
$$

Choose the correct answer in each of the Exercises 22 and 23.
22. $\int \frac{x d x}{(x-1)(x-2)}$ equals
(A) $\log \left|\frac{(x-1)^{2}}{x-2}\right|+C$
(B) $\log \left|\frac{(x-2)^{2}}{x-1}\right|+C$
(C) $\log \left|\left(\frac{x-1}{x-2}\right)^{2}\right|+C$
(D) $\log |(x-1)(x-2)|+C$

Solution:

We know that
$\frac{x}{(x-1)(x-2)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}$
It can be written as
$\mathrm{x}=\mathrm{A}(\mathrm{x}-2)+\mathrm{B}(\mathrm{x}-1)$
Now by substituting $x=1$ and 2 in equation (1)
$\mathrm{A}=-1$ and $\mathrm{B}=2$
Substituting the value of A and B
$\frac{x}{(x-1)(x-2)}=-\frac{1}{(x-1)}+\frac{2}{(x-2)}$
Integrating both sides w.r.t x
$\int \frac{x}{(x-1)(x-2)} d x=\int\left\{\frac{-1}{(x-1)}+\frac{2}{(x-2)}\right\} d x$
We get
$=-\log |x-1|+2 \log |x-2|+C$
We can write it as
$=\log \left|\frac{(x-2)^{2}}{x-1}\right|+C$
Therefore, B is the correct answer.
23. $\int \frac{d x}{x\left(x^{2}+1\right)}$ equals
(A) $\log |x|-\frac{1}{2} \log \left(x^{2}+1\right)+C$
(B) $\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+C$
(C) $-\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+C$
(D) $\frac{1}{2} \log |x|+\log \left(x^{2}+1\right)+C$

Solution:

We know that

$$
\begin{equation*}
\frac{1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1} \tag{1}
\end{equation*}
$$

It can be written as
$1=A\left(x^{2}+1\right)+(B x+C) x$
Now by equating the coefficients of x^{2}, x and constant terms
$\mathrm{A}+\mathrm{B}=0$
$\mathrm{C}=0$
$\mathrm{A}=1$
By solving the equations we get
$\mathrm{A}=1, \mathrm{~B}=-1$ and $\mathrm{C}=0$
Substituting the value of A and B
$\frac{1}{x\left(x^{2}+1\right)}=\frac{1}{x}+\frac{-x}{x^{2}+1}$
Integrating both sides w.r.t x
$\int \frac{1}{x\left(x^{2}+1\right)} d x=\int\left\{\frac{1}{x}-\frac{x}{x^{2}+1}\right\} d x$
We get
$=\log |x|-\frac{1}{2} \log \left|x^{2}+1\right|+\mathrm{C}$
Therefore, A is the correct answer.

EXERCISE 7.6
Integrate the functions in Exercises 1 to 22.

1. $x \sin x$

Solution:

It is given that
$I=\int x \sin x d x$
Here by taking x as first function and $\sin \mathrm{x}$ as second function
Now integrating by parts we get
$I=x \int \sin x d x-\int\left\{\left(\frac{d}{d x} x\right) \int \sin x d x\right\} d x$
So we get
$=x(-\cos x)-\int 1 \cdot(-\cos x) d x$
It can be written as
$=-x \cos x+\sin x+C$

2. $x \sin 3 x$ Solution:

It is given that
$I=\int x \sin 3 x d x$
Here by taking x as first function and 3 x as second function
Now integrating by parts we get
$I=x \int \sin 3 x d x-\int\left\{\left(\frac{d}{d x} x\right) \int \sin 3 x d x\right\}$
So we get
$=x\left(\frac{-\cos 3 x}{3}\right)-\int 1 \cdot\left(\frac{-\cos 3 x}{3}\right) d x$
By multiplying the terms
$=\frac{-x \cos 3 x}{3}+\frac{1}{3} \int \cos 3 x d x$
It can be written as
$=\frac{-x \cos 3 x}{3}+\frac{1}{9} \sin 3 x+C$
3. $x^{2} e^{x}$ Solution:

It is given that
$I=\int x^{2} e^{x} d x$
Here by taking x^{2} as first function and e^{x} as second function
Now integrating by parts we get

EDUGRロSS

$I=x^{2} \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x^{2}\right) \int e^{x} d x\right\} d x$
So we get
$=x^{2} e^{x}-\int 2 x \cdot e^{x} d x$
It can be written as
$=x^{2} e^{x}-2 \int x \cdot e^{x} d x$
Now integrating by parts we get
$=x^{2} e^{x}-2\left[x \cdot \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x\right) \cdot \int e^{x} d x\right\} d x\right]$
On further calculation
$=x^{2} e^{x}-2\left[x e^{x}-\int e^{x} d x\right]$
So we get
$=x^{2} e^{x}-2\left[x e^{x}-e^{x}\right]$
By multiplying the terms
$=x^{2} e^{x}-2 x e^{x}+2 e^{x}+\mathrm{C}$
Taking the common terms
$=e^{x}\left(x^{2}-2 x+2\right)+\mathrm{C}$

4. $x \log x$ Solution:

It is given that
$I=\int x \log x d x$
Here by taking x as first function and x as second function
Now integrating by parts we get
$I=\log x \int x d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x d x\right\} d x$
So we get
$=\log x \cdot \frac{x^{2}}{2}-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x$
By multiplying the terms

$$
=\frac{x^{2} \log x}{2}-\int \frac{x}{2} d x
$$

It can be written as
$=\frac{x^{2} \log x}{2}-\frac{x^{2}}{4}+\mathrm{C}$
5. $\mathrm{x} \log 2 \mathrm{x}$ Solution:

It is given that
$\mathrm{x} \log 2 \mathrm{x}$
Here by taking 2 x as first function and x as second function
Now integrating by parts we get
$I=\log 2 x \int x d x-\int\left\{\left(\frac{d}{d x} 2 \log 2 x\right) \int x d x\right\} d x$
So we get
$=\log 2 x \cdot \frac{x^{2}}{2}-\int \frac{2}{2 x} \cdot \frac{x^{2}}{2} d x$
By multiplying the terms
$=\frac{x^{2} \log 2 x}{2}-\int \frac{x}{2} d x$
It can be written as
$=\frac{x^{2} \log 2 x}{2}-\frac{x^{2}}{4}+\mathrm{C}$

6. $x^{2} \log x$ Solution:

It is given that
$I=\int x^{2} \log x d x$
Here by taking x as first function and x^{2} as second function
Now integrating by parts we get
$I=\log x \int x^{2} d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x^{2} d x\right\} d x$
So we get
$=\log x\left(\frac{x^{3}}{3}\right)-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x$
By multiplying the terms

$$
=\frac{x^{3} \log x}{3}-\int \frac{x^{2}}{3} d x
$$

It can be written as

$$
=\frac{x^{3} \log x}{3}-\frac{x^{3}}{9}+C
$$

7. $x \sin ^{-1} x$

Solution:

It is given that
$I=x \sin ^{-1} x$
Here by taking $\sin ^{-1} \mathrm{x}$ as first function and x as second function
Now integrating by parts we get
$I=\sin ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \sin ^{-1} x\right) \int x d x\right\} d x$

So we get
$=\sin ^{-1} x\left(\frac{x^{2}}{2}\right)-\int \frac{1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x$
By multiplying the terms
$=\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int \frac{-x^{2}}{\sqrt{1-x^{2}}} d x$
Addition and subtraction of 1 in the numerator
$=\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int\left\{\frac{1-x^{2}}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}\right\} d x$
On further simplification
$=\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int\left\{\sqrt{1-x^{2}}-\frac{1}{\sqrt{1-x^{2}}}\right\} d x$
Integrating the terms
$=\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2}\left\{\int \sqrt{1-x^{2}} d x-\int \frac{1}{\sqrt{1-x^{2}}} d x\right\}$
So we get

$$
=\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2}\left\{\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x-\sin ^{-1} x\right\}+C
$$

By further calculation

$$
=\frac{x^{2} \sin ^{-1} x}{2}+\frac{x}{4} \sqrt{1-x^{2}}+\frac{1}{4} \sin ^{-1} x-\frac{1}{2} \sin ^{-1} x+\mathrm{C}
$$

Taking the common terms

$$
=\frac{1}{4}\left(2 x^{2}-1\right) \sin ^{-1} x+\frac{x}{4} \sqrt{1-x^{2}}+\mathrm{C}
$$

8. $x \tan ^{-1} x$

Solution:

We know that
$I=\int x \tan ^{-1} x d x$
Consider $\tan ^{-1} \mathrm{x}$ as the first function and x as the second function
Here integrating by parts we get
$I=\tan ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \tan ^{-1} x\right) \int x d x\right\} d x$
By further calculation
$=\tan ^{-1} x\left(\frac{x^{2}}{2}\right)-\int \frac{1}{1+x^{2}} \cdot \frac{x^{2}}{2} d x$
Multiplying the terms

$$
=\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int \frac{x^{2}}{1+x^{2}} d x
$$

Again integrating by parts
$=\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int\left(\frac{x^{2}+1}{1+x^{2}}-\frac{1}{1+x^{2}}\right) d x$
So we get
$=\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2} \int\left(1-\frac{1}{1+x^{2}}\right) d x$
On further simplification
$=\frac{x^{2} \tan ^{-1} x}{2}-\frac{1}{2}\left(x-\tan ^{-1} x\right)+\mathrm{C}$
We get

$$
=\frac{x^{2}}{2} \tan ^{-1} x-\frac{x}{2}+\frac{1}{2} \tan ^{-1} x+\mathrm{C}
$$

9. $x \cos ^{-1} x$

Solution:

EDUGRロSS

We know that

$$
I=\int x \cos ^{-1} x d x
$$

Consider $\cos ^{-1} \mathrm{x}$ as the first function and x as the second function
Here integrating by parts we get

$$
I=\cos ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \cos ^{-1} x\right) \int x d x\right\} d x
$$

By further calculation

$$
=\cos ^{-1} x \frac{x^{2}}{2}-\int \frac{-1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x
$$

By adding and subtracting 1 to the numerator

$$
=\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int \frac{1-x^{2}-1}{\sqrt{1-x^{2}}} d x
$$

It can be written as

$$
=\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int\left\{\sqrt{1-x^{2}}+\left(\frac{-1}{\sqrt{1-x^{2}}}\right)\right\} d x
$$

Separating the terms

$$
=\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int \sqrt{1-x^{2}} d x-\frac{1}{2} \int\left(\frac{-1}{\sqrt{1-x^{2}}}\right) d x
$$

We get

$$
\begin{equation*}
=\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} I_{1}-\frac{1}{2} \cos ^{-1} x \tag{1}
\end{equation*}
$$

We know that

$$
I_{1}=\int \sqrt{1-x^{2}} d x
$$

Integrating by parts we get

$$
I_{1}=x \sqrt{1-x^{2}}-\int \frac{d}{d x} \sqrt{1-x^{2}} \int x d x
$$

On further calculation

$$
I_{1}=x \sqrt{1-x^{2}}-\int \frac{-2 x}{2 \sqrt{1-x^{2}}} x d x
$$

So we get

$$
I_{1}=x \sqrt{1-x^{2}}-\int \frac{-x^{2}}{\sqrt{1-x^{2}}} d x
$$

EDUGRロSS

Addition and subtraction of 1 to numerator

$$
I_{1}=x \sqrt{1-x^{2}}-\int \frac{1-x^{2}-1}{\sqrt{1-x^{2}}} d x
$$

By separating the terms

$$
I_{1}=x \sqrt{1-x^{2}}-\left\{\int \sqrt{1-x^{2}} d x+\int \frac{-d x}{\sqrt{1-x^{2}}}\right\}
$$

We get

$$
I_{1}=x \sqrt{1-x^{2}}-\left\{I_{1}+\cos ^{-1} x\right\}
$$

On further calculation
$2 I_{1}=x \sqrt{1-x^{2}}-\cos ^{-1} x$

We can write it as

$$
I_{1}=\frac{x}{2} \sqrt{1-x^{2}}-\frac{1}{2} \cos ^{-1} x
$$

Now by substituting the value in equation (1)

$$
I=x^{2} \frac{\cos ^{-1} x}{2}-\frac{1}{2}\left(\frac{x}{2} \sqrt{1-x^{2}}-\frac{1}{2} \cos ^{-1} x\right)-\frac{1}{2} \cos ^{-1} x
$$

We get

$$
=\frac{\left(2 x^{2}-1\right)}{4} \cos ^{-1} x-\frac{x}{4} \sqrt{1-x^{2}}+\mathrm{C}
$$

10. $\left(\sin ^{-1} x\right)^{2}$

Solution:

We know that

$$
I=\int\left(\sin ^{-1} x\right)^{2} \cdot 1 d x
$$

Consider $\left(\sin ^{-1} \mathrm{x}\right)^{2}$ as the first function and 1 as the second function
Here integrating by parts we get

$$
I=\left(\sin ^{-1} x\right)^{2} \int 1 d x-\int\left\{\frac{d}{d x}\left(\sin ^{-1} x\right)^{2} \cdot \int 1 \cdot d x\right\} d x
$$

By further calculation

$$
=\left(\sin ^{-1} x\right)^{2} \cdot x-\int \frac{2 \sin ^{-1} x}{\sqrt{1-x^{2}}} \cdot x d x
$$

Multiplying the terms
$=x\left(\sin ^{-1} x\right)^{2}+\int \sin ^{-1} x \cdot\left(\frac{-2 x}{\sqrt{1-x^{2}}}\right) d x$
Again integrating by parts
$=x\left(\sin ^{-1} x\right)^{2}+\left[\sin ^{-1} x \int \frac{-2 x}{\sqrt{1-x^{2}}} d x-\int\left\{\left(\frac{d}{d x} \sin ^{-1} x\right) \int \frac{-2 x}{\sqrt{1-x^{2}}} d x\right\} d x\right]$
So we get
$=x\left(\sin ^{-1} x\right)^{2}+\left[\sin ^{-1} x \cdot 2 \sqrt{1-x^{2}}-\int \frac{1}{\sqrt{1-x^{2}}} \cdot 2 \sqrt{1-x^{2}} d x\right]$
On further simplification

$$
=x\left(\sin ^{-1} x\right)^{2}+2 \sqrt{1-x^{2}} \sin ^{-1} x-\int 2 d x
$$

We get

$$
=x\left(\sin ^{-1} x\right)^{2}+2 \sqrt{1-x^{2}} \sin ^{-1} x-2 x+\mathrm{C}
$$

11.

$\int \frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}} d x$

Solution:

We know that

$$
I=\int \frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}} d x
$$

By multiplying and dividing by -2

$$
I=\frac{-1}{2} \int \frac{-2 x}{\sqrt{1-x^{2}}} \cdot \cos ^{-1} x d x
$$

Consider $\cos ^{-1} \mathrm{x}$ as the first function and $\left(\frac{-2 x}{\sqrt{1-x^{2}}}\right)$ as the second function
Here integrating by parts we get

$$
I=\frac{-1}{2}\left[\cos ^{-1} x \int \frac{-2 x}{\sqrt{1-x^{2}}} d x-\int\left\{\left(\frac{d}{d x} \cos ^{-1} x\right) \int \frac{-2 x}{\sqrt{1-x^{2}}} d x\right\} d x\right]
$$

By further calculation
$=\frac{-1}{2}\left[\cos ^{-1} x \cdot 2 \sqrt{1-x^{2}}-\int \frac{-1}{\sqrt{1-x^{2}}} \cdot 2 \sqrt{1-x^{2}} d x\right]$
Multiplying the terms
$=\frac{-1}{2}\left[2 \sqrt{1-x^{2}} \cos ^{-1} x+\int 2 d x\right]$
So we get
$=\frac{-1}{2}\left[2 \sqrt{1-x^{2}} \cos ^{-1} x+2 x\right]+\mathrm{C}$
On further simplification
$=-\left[\sqrt{1-x^{2}} \cos ^{-1} x+x\right]+\mathrm{C}$
12. $x \sec ^{2} x$

Solution:

It is given that
$I=\int x \sec ^{2} x d x$
Consider x as the first function and $\sec ^{2} \mathrm{x}$ as the second function
Integrating by parts we get

$$
I=x \int \sec ^{2} x d x-\int\left\{\left\{\frac{d}{d x} x\right\} \int \sec ^{2} x d x\right\} d x
$$

By further calculation
$=x \tan x-\int 1 \cdot \tan x d x$
So we get
$=\mathrm{x} \tan \mathrm{x}+\log |\cos \mathrm{x}|+\mathrm{C}$
13. $\tan ^{-1} x$

Solution:
It is given that

$$
I=\int 1 \cdot \tan ^{-1} x d x
$$

Consider $\tan ^{-1} \mathrm{x}$ as the first function and 1 as the second function
Integrating by parts we get
$I=\tan ^{-1} x \int 1 d x-\int\left\{\left(\frac{d}{d x} \tan ^{-1} x\right) \int 1 \cdot d x\right\} d x$
By further calculation
$=\tan ^{-1} x \cdot x-\int \frac{1}{1+x^{2}} \cdot x d x$
Multiplying and dividing by 2
$=x \tan ^{-1} x-\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x$
We get
$=x \tan ^{-1} x-\frac{1}{2} \log \left|1+x^{2}\right|+\mathrm{C}$
$=x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)+C$

EDUGRロSS

14. $x(\log x)^{2}$

Solution:
It is given that
$I=\int x(\log x)^{2} d x$
Consider $(\log x)^{2}$ as the first function and x as the second function
Integrating by parts we get
$I=(\log x)^{2} \int x d x-\int\left\{\left\{\left(\frac{d}{d x}(\log x)^{2}\right\} \int x d x\right] d x\right.$
By further calculation
$=\frac{x^{2}}{2}(\log x)^{2}-\left[\int 2 \log x \cdot \frac{1}{x} \cdot \frac{x^{2}}{2} d x\right]$
It can be written as
$=\frac{x^{2}}{2}(\log x)^{2}-\int x \log x d x$
Now integrating by parts
$I=\frac{x^{2}}{2}(\log x)^{2}-\left[\log x \int x d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x d x\right\} d x\right]$
So we get
$=\frac{x^{2}}{2}(\log x)^{2}-\left[\frac{x^{2}}{2} \log x-\int \frac{1}{x} \cdot \frac{x^{2}}{2} d x\right]$
On further simplification
$=\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}}{2} \log x+\frac{1}{2} \int x d x$
We get

$$
=\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}}{2} \log x+\frac{x^{2}}{4}+\mathrm{C}
$$

15. $\left(x^{2}+1\right) \log x$

Solution:

EDUGRロSS

Consider
$I=\int\left(x^{2}+1\right) \log x d x$
It can be written as
$=\int x^{2} \log x d x+\int \log x d x$
We know that
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
Here
$I_{1}=\int x^{2} \log x d x$ and $I_{2}=\int \log x d x$
Take
$I_{1}=\int x^{2} \log x d x$
Consider $\log \mathrm{x}$ as the first function and x^{2} as the second function
Now integrating by parts
$I_{1}=\log x \int x^{2} d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x^{2} d x\right\} d x$
On further calculation
$=\log x \cdot \frac{x^{3}}{3}-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x$
It can be written as
$=\frac{x^{3}}{3} \log x-\frac{1}{3}\left(\int x^{2} d x\right)$
So we get
$=\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+C_{1}$
Take
$I_{2}=\int \log x d x$
Consider $\log \mathrm{x}$ as the first function and 1 as the second function
Now integrating by parts
$I_{2}=\log x \int 1 \cdot d x-\left\{\left\{\left(\frac{d}{d x} \log x\right) \int 1 \cdot d x\right\}\right.$

EDUGRロSS

On further calculation
$=\log x \cdot x-\int \frac{1}{x} \cdot x d x$
It can be written as
$=x \log x-\int 1 d x$
So we get
$=x \log x-x+C_{2}$
By using equations (2) and (3) in (1) we get
$I=\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+\mathrm{C}_{1}+x \log x-x+\mathrm{C}_{2}$
We can write it as
$=\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+x \log x-x+\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$
We get
$=\left(\frac{x^{3}}{3}+x\right) \log x-\frac{x^{3}}{9}-x+\mathrm{C}$
16. $\quad e^{x}(\sin x+\cos$
x) Solution:

EDUGRロSS

Consider

$I=\int e^{x}(\sin x+\cos x) d x$
We know that
$f(x)=\sin x$
So we get
$f^{\prime}(x)=\cos x$
Here
$I=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$
It can be written as
$\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
$I=e^{x} \sin x+\mathrm{C}$
17.
$\frac{x e^{x}}{(1+x)^{2}}$

Solution:

EDUGRロSS

It is given that
$I=\int \frac{x e^{x}}{(1+x)^{2}} d x$
We can write it as
$=\int e^{x}\left\{\frac{x}{(1+x)^{2}}\right\} d x$
By addition and subtraction of 1 to the numerator
$=\int e^{x}\left\{\frac{1+x-1}{(1+x)^{2}}\right\} d x$
Separating the terms we get
$=\int e^{x}\left\{\frac{1}{1+x}-\frac{1}{(1+x)^{2}}\right\} d x$
Consider
$f(x)=\frac{1}{1+x}$
By differentiation
$f^{\prime}(x)=\frac{-1}{(1+x)^{2}}$
So we get
$\int \frac{x e^{x}}{(1+x)^{2}} d x=\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x$
We know that
$\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
We get
$\int \frac{x e^{x}}{(1+x)^{2}} d x=\frac{e^{x}}{1+x}+\mathrm{C}$
18.
$e^{x}\left(\frac{1+\sin x}{1+\cos x}\right)$

EDUGRロSS

Solution:

It is given that
$e^{x}\left(\frac{1+\sin x}{1+\cos x}\right)$
We can write it as

$$
=e^{x}\left(\frac{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right)
$$

Using the formula we can write it as

$$
=\frac{e^{x}\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}}{2 \cos ^{2} \frac{x}{2}}
$$

By further simplification
$=\frac{1}{2} e^{x} \cdot\left(\frac{\sin \frac{x}{2}+\cos \frac{x}{2}}{\cos \frac{x}{2}}\right)^{2}$
So we get
$=\frac{1}{2} e^{x}\left[\tan \frac{x}{2}+1\right]^{2}$
$=\frac{1}{2} e^{2}\left(1+\tan \frac{x}{2}\right)^{2}$
By expanding using formula
$=\frac{1}{2} e^{x}\left[1+\tan ^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right]$
We know that

$$
=\frac{1}{2} e^{x}\left[\sec ^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right]
$$

EDUGRロSS

So we get
$\frac{e^{x}(1+\sin x) d x}{(1+\cos x)}=e^{x}\left[\frac{1}{2} \sec ^{2} \frac{x}{2}+\tan \frac{x}{2}\right]$
Consider $\tan \mathrm{x} / 2=\mathrm{f}(\mathrm{x})$
By differentiation
$f^{\prime}(x)=\frac{1}{2} \sec ^{2} \frac{x}{2}$
Here

$$
\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}
$$

Using equation (1) we get

$$
\int \frac{e^{x}(1+\sin x)}{(1+\cos x)} d x=e^{x} \tan \frac{x}{2}+\mathrm{C}
$$

19.

$e^{x}\left[\frac{1}{x}-\frac{1}{x^{2}}\right]$

Solution:

It is given that

$$
I=\int e^{x}\left[\frac{1}{x}-\frac{1}{x^{2}}\right] d x
$$

Here if $f(x)=1 / x$ we get
$f^{\prime}(x)=-1 / x^{2}$
We know that
$\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
So we get

$$
I=\frac{e^{x}}{x}+\mathrm{C}
$$

20.

$\frac{(x-3) e^{x}}{(x-1)^{3}}$
Solution:

EDUGRロSS

It is given that
$\int e^{x}\left\{\frac{x-3}{(x-1)^{3}}\right\} d x=\int e^{x}\left\{\frac{x-1-2}{(x-1)^{3}}\right\} d x$
By separating the terms
$=\int e^{x}\left\{\frac{1}{(x-1)^{2}}-\frac{2}{(x-1)^{3}}\right\} d x$
We know that
$f(x)=\frac{1}{(x-1)^{2}}$
By differentiation
$f^{\prime}(x)=\frac{-2}{(x-1)^{3}}$
Here
$\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
We get
$\int e^{x}\left\{\frac{(x-3)}{(x-1)^{2}}\right\} d x=\frac{e^{x}}{(x-1)^{2}}+\mathrm{C}$
21. $\mathrm{e}^{2 \mathrm{x}} \sin \mathrm{x}$ Solution:

EDUGRロSS

It is given that
$I=\int e^{2 x} \sin x d x$
Now integrating by parts we get
$I=\sin x \int e^{2 x} d x-\int\left\{\left(\frac{d}{d x} \sin x\right) \int e^{2 x} d x\right\} d x$
So we get
$I=\sin x \cdot \frac{e^{2 x}}{2}-\int \cos x \cdot \frac{e^{2 x}}{2} d x$
We can write it as
$I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2} \int e^{2 x} \cos x d x$
Here again integrating by parts we get
$I=\frac{e^{2 x} \cdot \sin x}{2}-\frac{1}{2}\left[\cos x \int e^{2 x} d x-\int\left\{\left(\frac{d}{d x} \cos x\right) \int e^{2 x} d x\right\} d x\right]$
So we get
$I=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left\lfloor\cos x \cdot \frac{e^{2 x}}{2}-\int(-\sin x) \frac{e^{2 x}}{2} d x\right\rfloor$
On further simplification
$I=\frac{e^{2 x} \cdot \sin x}{2}-\frac{1}{2}\left[\frac{e^{2 x} \cos x}{2}+\frac{1}{2} \int e^{2 x} \sin x d x\right]$
By using equation (1) we get
$I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}-\frac{1}{4} I$
It can be written as
$I+\frac{1}{4} I=\frac{e^{2 x} \cdot \sin x}{2}-\frac{e^{2 x} \cos x}{4}$
We get
$\frac{5}{4} I=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}$
By cross multiplication

EDUGRロSS

$$
I=\frac{4}{5}\left[\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{4}\right]+\mathrm{C}
$$

So we get

$$
I=\frac{e^{2 x}}{5}[2 \sin x-\cos x]+\mathrm{C}
$$

22.

$\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$

Solution:

Take $\mathrm{x}=\tan \theta$ we get $\mathrm{d} \mathrm{x}=\sec ^{2} \theta \mathrm{~d} \theta$
$\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$

EDUGRロSS

So we get
$=\sin ^{-1}(\sin 2 \theta)=2 \theta$
By integrating both sides w.r.t x
$\int \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x=\int 2 \theta \cdot \sec ^{2} \theta d \theta$
We get
$=2 \int \theta \cdot \sec ^{2} \theta d \theta$
Now integrating by parts we get
$2\left[\theta \cdot \int \sec ^{2} \theta d \theta-\int\left\{\left(\frac{d}{d \theta} \theta\right) \int \sec ^{2} \theta d \theta\right\} d \theta\right]$
On further calculation
$=2\left[\theta \cdot \tan \theta-\int \tan \theta d \theta\right]$
By integration of second term
$=2[\theta \tan \theta+\log |\cos \theta|]+\mathrm{C}$
Now by substituting the value of θ

$$
=2\left[x \tan ^{-1} x+\log \left|\frac{1}{\sqrt{1+x^{2}}}\right|\right]+\mathrm{C}
$$

We get

$$
=2 x \tan ^{-1} x+2 \log \left(1+x^{2}\right)^{\frac{-1}{2}}+\mathrm{C}
$$

It can be written as
$=2 x \tan ^{-1} x+2\left[-\frac{1}{2} \log \left(1+x^{2}\right)\right]+\mathrm{C}$
By further calculation
$=2 x \tan ^{-1} x-\log \left(1+x^{2}\right)+C$
Choose the correct answer in Exercises 23 and 24.

EDUGRロSS

23. $\int x^{2} e^{x^{3}} d x$ equals
(A) $\frac{1}{3} e^{x^{3}}+C$
(B) $\frac{1}{3} e^{x^{2}}+C$
(C) $\frac{1}{2} e^{x^{3}}+C$
(D) $\frac{1}{2} e^{x^{2}}+C$

Solution:

It is given that
$I=\int x^{2} e^{x^{3}} d x$
Take $x^{3}=t$ we get
$3 \mathrm{x}^{2} \mathrm{dx}=\mathrm{dt}$
Here
$I=\frac{1}{3} \int e^{\prime} d t$
By integrating w.r.t t
$=\frac{1}{3}\left(e^{t}\right)+\mathrm{C}$
Substituting the value of t
$=\frac{1}{3} e^{x^{3}}+\mathrm{C}$
Therefore, A is the correct answer.
24. $\int e^{x} \sec x(1+\tan x) d x$ equals
(A) $e^{x} \cos x+C$
(B) $e^{x} \sec x+C(C) e^{x} \sin x$
$+\mathbf{C}$
(D) $\mathrm{e}^{\mathrm{x}} \tan \mathrm{x}+\mathrm{C}$

Solution:

EDUGRロSS

It is given that

$$
I=\int e^{x} \sec x(1+\tan x) d x
$$

Multiplying the terms we get
$=\int e^{x}(\sec x+\sec x \tan x) d x$
Take $\sec x=f(x)$
So we get $\sec x \tan x=f^{\prime}(x)$
We know that
$\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+\mathrm{C}$
Here
$I=e^{x} \sec x+\mathrm{C}$
Therefore, B is the correct answer.

EXERCISE 7.7

Integrate the functions in exercise 1 to 9

1. $\sqrt{4-x^{2}}$

Solution:
Given:
$\sqrt{4-x^{2}}$
Upon integration we get,
$\int \sqrt{4-x^{2}} d x=\int \sqrt{(2)^{2}-(x)^{2}} d x$
By using the formula,
$\int \sqrt{a^{2}-x^{2}} d x=\frac{\pi}{2} \sqrt{a^{2}-x^{2}} \frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
So,

$$
\begin{aligned}
\int \sqrt{4-x^{2}} d x & =\frac{\pi}{2} \sqrt{4-x^{2}} \frac{4}{2} \sin ^{-1} \frac{x}{a}+C \\
& =\frac{x}{2} \sqrt{4-x^{2}}+2 \sin ^{-1} \frac{x}{a}+C
\end{aligned}
$$

2. $\sqrt{1-4 x^{2}}$

Solution:

EDUGRロSS

Given:

$$
\sqrt{1-4 x^{2}}
$$

Upon integration we get,

$$
\sqrt{1-4 x^{2}} d x=\int \sqrt{(1)^{2}-(2 x)^{2} d x}
$$

Let $2 \mathrm{x}=\mathrm{t}$
So,
$2 \mathrm{dx}=\mathrm{dt}$
$\mathrm{dx}=\mathrm{dt} / 2$
Then,

$$
I=\frac{1}{2} \int \sqrt{(1)^{2}-(t)^{2} d t}
$$

By using the formula,
$\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}} \frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
So,

$$
\begin{aligned}
& \mathrm{I}=\frac{1}{2}\left[\frac{\mathrm{t}}{2} \sqrt{1-\mathrm{t}^{2}}+\frac{1}{2} \sin ^{-1} \mathrm{t}\right]+\mathrm{C} \\
&=\frac{\mathrm{t}}{4} \sqrt{1-\mathrm{t}^{2}}+\frac{1}{4} \sin ^{-1} \mathrm{t}+\mathrm{C} \\
&=\frac{2 \mathrm{x}}{4} \sqrt{1-4 \mathrm{x}^{2}}+\frac{1}{4} \sin ^{-1} 2 \mathrm{x}+\mathrm{C} \\
&=\frac{\mathrm{x}}{2} \sqrt{1-4 \mathrm{x}^{2}}+\frac{1}{4} \sin ^{-1} 2 \mathrm{x}+\mathrm{C} \\
& \text { 3. } \sqrt{x^{2}+4 x+6}
\end{aligned}
$$

Solution:

EDUGRロSS

Given:

$$
\sqrt{x^{2}+4 x+6}
$$

Upon integration we get,

$$
\begin{aligned}
I & =\int \sqrt{x^{2}+4 x+6} d x \\
& =\int \sqrt{x^{2}+4 x+4+2} d x \\
& =\int \sqrt{(x+2)^{2}+(\sqrt{2})^{2}} d x
\end{aligned}
$$

By using the formula,

$$
\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C}
$$

So,

$$
\begin{aligned}
I & =\frac{(x+2)}{2} \sqrt{x^{2}+4 x+6}+\frac{2}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x+6}\right|+C \\
& =\frac{(x+2)}{2} \sqrt{x^{2}+4 x+6}+\log \left|(x+2)+\sqrt{x^{2}+4 x+6}\right|+C
\end{aligned}
$$

4. $\sqrt{x^{2}+4 x+1}$

Solution:

Given:
$\sqrt{x^{2}+4 x+1}$
Upon integration we get,

$$
\begin{aligned}
\mathrm{I} & =\int \sqrt{\mathrm{x}^{2}+4 \mathrm{x}+1} d \mathrm{x} \\
& =\int \sqrt{\left(\mathrm{x}^{2}+4 \mathrm{x}+4\right)-3} d x \\
& =\int \sqrt{(\mathrm{x}+2)^{2}-(\sqrt{3})^{2}} d x
\end{aligned}
$$

By using the formula,

$$
\int \sqrt{(x+2)^{2}-(\sqrt{3})^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C
$$

So,

$$
I=\frac{(x+2)}{2} \sqrt{x^{2}+4 x+1}-\frac{3}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x+1}\right|+C
$$

5. $\sqrt{1-4 x-x^{2}}$

Solution:

Given:

$$
\sqrt{1-4 x-x^{2}}
$$

Upon integration we get,

$$
\begin{aligned}
I & =\int \sqrt{1-4 \mathrm{x}-\mathrm{x}^{2}} \mathrm{dx} \\
& =\int \sqrt{1-\left(\mathrm{x}^{2}+4 \mathrm{x}+4-4\right)} \mathrm{dx} \\
& =\int \sqrt{1+4-(\mathrm{x}+2)^{2}} \mathrm{dx} \\
& =\int \sqrt{(\sqrt{5})^{2}-(\mathrm{x}+2)^{2}} \mathrm{dx}
\end{aligned}
$$

By using the formula,
$\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
So,

$$
I=\frac{(x+2)}{2} \sqrt{1-4 x-x^{2}}+\frac{5}{2} \sin ^{-1}\left(\frac{x+2}{\sqrt{5}}\right)+C
$$

6. $\sqrt{x^{2}+4 x-5}$

Solution:

Given:
$\sqrt{x^{2}+4 x-5}$
Upon integration we get,

$$
\begin{aligned}
I & =\sqrt{x^{2}+4 x-5} d x \\
& =\int \sqrt{\left(x^{2}+4 x+4\right)-9} d x \\
& =\int \sqrt{(x+2)^{2}-(3)^{2}} d x
\end{aligned}
$$

By using the formula,
$\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
So,

$$
I=\frac{(x+2)}{2} \sqrt{x^{2}+4 x-5}-\frac{9}{2} \log \left|(x+2)+\sqrt{x^{2}+4 x-5}\right|+C
$$

7. $\sqrt{1+3 x-x^{2}}$

Solution:

Given:

$$
\sqrt{1+3 x-x^{2}}
$$

Upon integration we get,

$$
\begin{aligned}
& I=\int \sqrt{1+3 x-x^{2}} d x \\
& =\int \sqrt{1-\left(x^{2}-3 x+\frac{9}{4}-\frac{9}{4}\right)} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int \sqrt{\left(1+\frac{9}{4}\right)-\left(x-\frac{3}{2}\right)^{2}} d x \\
& =\int \sqrt{\left(\frac{\sqrt{13}^{2}}{2}\right)-\left(x-\frac{3}{2}\right)^{2}} d x
\end{aligned}
$$

By using the formula,
$\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+C$
So,

$$
\begin{aligned}
I & =\frac{x-\frac{3}{2}}{2} \sqrt{1+3 x-x^{2}}+\frac{13}{4 \times 2} \sin ^{-1}\left(\frac{x-\frac{3}{2}}{\frac{\sqrt{13}}{2}}\right)+C \\
& =\frac{2 x-3}{4} \sqrt{1+3 x-x^{2}}+\frac{13}{8} \sin ^{-1}\left(\frac{2 x-3}{\sqrt{13}}\right)+C
\end{aligned}
$$

8. $\sqrt{x^{2}+3 x}$

Solution:

EDUGRロSS

Given:

$$
\sqrt{x^{2}+3 x}
$$

Upon integration we get,

$$
\begin{aligned}
I & =\int \sqrt{x^{2}+3 x} d x \\
& =\int \sqrt{x^{2}+3 x+\frac{9}{4}-\frac{9}{4}} d x \\
& =\int \sqrt{\left(x+\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}} d x
\end{aligned}
$$

By using the formula,

$$
\int \sqrt{x^{2}-a^{2} x} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C
$$

So,

$$
\begin{aligned}
& I=\frac{\left(x+\frac{3}{2}\right)}{2} \sqrt{x^{2}-3 x}-\frac{9}{2} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}-3 x}\right|+C \\
& =\frac{(2 x+3)}{4} \sqrt{x^{2}+3 x}-\frac{9}{8} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x}\right|+C
\end{aligned}
$$

9. $\sqrt{1+\frac{x^{2}}{9}}$

Solution:

EDUGRロSS

Given:
$\sqrt{1+\frac{x^{2}}{9}}$
Upon integration we get,
$I=\int \sqrt{1+\frac{x^{2}}{9}} d x$
$=\frac{1}{3} \int \sqrt{9+\mathrm{x}^{2}} \mathrm{dx}$
$=\frac{1}{3} \int \sqrt{(3)^{2}+\mathrm{x}^{2}} \mathrm{dx}$
By using the formula,

$$
\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x^{2}+a^{2}\right|+C
$$

So,

$$
\begin{aligned}
\mathrm{I} & =\frac{1}{3}\left[\frac{\mathrm{x}}{2} \sqrt{\mathrm{x}^{2}+9}+\frac{9}{2} \log \left|\mathrm{x}+\sqrt{\mathrm{x}^{2}+9}\right|\right]+\mathrm{C} \\
& =\frac{\mathrm{x}}{6} \sqrt{\mathrm{x}^{2}+9}+\frac{3}{2} \log \left|\mathrm{x}+\sqrt{\mathrm{x}^{2}+9}\right|+C
\end{aligned}
$$

10. $\int \sqrt{1+x^{2}} d x$ is equal to
A. $\frac{x}{2} \sqrt{1+x^{2}+\frac{1}{2}} \log \left|\left(x+\sqrt{1+x^{2}}\right)\right|+C$
B. $\frac{2}{3}\left(1+\mathrm{x}^{2}\right)^{\frac{3}{2}}+\mathrm{C}$
C. $\frac{2}{3} x\left(1+x^{2}\right)^{\frac{3}{2}}+C$
D. $\frac{x}{2} \sqrt{1+\mathrm{x}^{2}}+\frac{1}{2} \mathrm{x}^{2} \log \left|\left(\mathrm{x}+\sqrt{1+\mathrm{x}^{2}}\right)\right|+\mathrm{C}$

Solution:

Given:
$\int \sqrt{1+x^{2}} d x$
By using the formula,
$\int \sqrt{a^{2}+x^{2}} d x=\frac{x}{2} \sqrt{a^{2}+x^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
So,
$\int \sqrt{1+\mathrm{x}^{2}} \mathrm{dx}=\frac{\mathrm{x}}{2} \sqrt{1+\mathrm{x}^{2}}+\frac{1}{2} \log \left|\mathrm{x}+\sqrt{1+\mathrm{x}^{2}}\right|+\mathrm{C}$
Hence the correct option is A.
11. $\int \sqrt{x^{2}-8 x+7} d x$ is equal to
A. $\frac{1}{2}(x-4) \sqrt{x^{2}-2 x+7}+9 \log \left|x-4+\sqrt{x^{2}-8 x+7}\right|+C$
B. $\frac{1}{2}(x+4) \sqrt{x^{2}-8 x+7}+9 \log \left|x+4+\sqrt{x^{2}-8 x+7}\right|+C$
C. $\frac{1}{2}(x-4) \sqrt{x^{2}-8 x+7}-3 \sqrt{2} \log \left|x-4+\sqrt{x^{2}-8 x+7}\right|+C$
D. $\frac{1}{2}(x-4) \sqrt{x^{2}-8 x+7}-\frac{9}{2} \log \left|x-4+\sqrt{x^{2}-8 x+7}\right|+C$

Solution:
Given:
$\int \sqrt{x^{2}-8 x+7} d x$
Upon integration we get,

$$
\begin{aligned}
\mathrm{I} & =\int \sqrt{\mathrm{x}^{2}-8 \mathrm{x}+7} d \mathrm{x} \\
& =\int \sqrt{\left(\mathrm{x}^{2}-8 \mathrm{x}+16\right)-9} d \mathrm{x} \\
& =\int \sqrt{(\mathrm{x}-4)^{2}-(3)^{2}} d x
\end{aligned}
$$

By using the formula,
$\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
So,
$I=\frac{(x-4)}{2} \sqrt{x^{2}-8 x+7}-\frac{9}{2} \log \left|(x-4)+\sqrt{x^{2}-8 x+7}\right|+C$
Hence the correct option is D.

EXERCISE 7.8
Evaluate the following definite integrals as limit of sums.

1. $\int_{a}^{b} x d x$

Solution:

Given:
$\int_{a}^{b} x d x$
We know that $f(x)$ is continuous in $[a, b]$
Then we have,
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=\frac{b-a}{n}$
By substituting the value of h in the above expression we get
$\int_{a}^{b}(x) d x=\lim _{n \rightarrow \infty}\left(\frac{b-a}{n}\right) \sum_{r=0}^{n-1} f\left(a+\frac{(b-a) r}{n}\right)$
Since, $\mathrm{f}(\mathrm{a})=\mathrm{a}$

$$
=\lim _{n \rightarrow \infty}\left(\frac{b-a}{n}\right) \sum_{r=0}^{n-1}\left(\frac{(b-a) r}{n}\right)+a
$$

By expanding the summation we get,

$$
=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{\mathrm{~b}-\mathrm{a}}{\mathrm{n}}\right)\left(\frac{(\mathrm{b}-\mathrm{a})(\mathrm{n}-1)(\mathrm{n})}{2 \mathrm{n}}+\mathrm{a}(\mathrm{n}-1)\right)
$$

Upon simplification we get,

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{(b-a)}{n} \cdot \frac{(b-a)\left(n^{2}-n\right)+2 a n^{2}-2 a n}{2 n} \\
& =\lim _{n \rightarrow \infty} \frac{(b-a)}{n} \cdot \frac{(b+a) n^{2}-(b+a) n}{2 n}
\end{aligned}
$$

$$
=\lim _{n \rightarrow \infty} \frac{(b+a)(b-a) n^{2}-(b+a)(b-a) n}{2 n^{2}}
$$

On computing we get,

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\frac{(b+a)(b-a)}{2}-\frac{(b+a)(b-a)}{n}\right) \\
& =\frac{(b+a)(b-a)}{2} \\
& =\frac{b^{2}-a^{2}}{2}
\end{aligned}
$$

2. $\int_{0}^{5}(x+1) d x$

Solution:

Given:

$$
\int_{0}^{5}(x+1) d x
$$

We know that $f(x)$ is continuous in $[a, b]$ i.e., $[0,5]$
Then we have,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h) \text {, where } h=\frac{b-a}{n}
$$

Substituting the value of h in the above expression we get,

$$
\int_{0}^{5}(x+1) d x=\lim _{n \rightarrow \infty}\left(\frac{5}{n}\right) \sum_{r=0}^{n-1} f\left(\frac{5 r}{n}\right)
$$

Since, $\mathrm{f}(\mathrm{a})=\mathrm{a}$

$$
=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{5}{\mathrm{n}}\right) \sum_{\mathrm{r}=0}^{\mathrm{n}-1}\left(\frac{5 r}{\mathrm{n}}\right)+1
$$

By expanding the summation we get,

$$
=\lim _{n \rightarrow \infty}\left(\frac{5}{n}\right)\left(\frac{5(n-1)(n)}{2 n}+(n-1)\right)
$$

EDUGRロSS

Upon simplification we get,

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{5}{n} \cdot \frac{5 n^{2}-5 n+2 n^{2}-2 n}{2 n} \\
& =\lim _{n \rightarrow \infty} \frac{5}{n} \cdot \frac{7 n^{2}-7 n}{2 n} \\
& =\lim _{n \rightarrow \infty} \frac{35 n^{2}-35 n}{2 n^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{35}{2}-\left(\frac{35}{2 n}\right) \\
& =\frac{35}{2}
\end{aligned}
$$

3. $\int_{2}^{3} x^{2} d x$

Solution:

Given:
$\int_{2}^{3} x^{2} d x$
We know that $f(x)$ is continuous in $[a, b]$ i.e., $[2,3]$
Then we have,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h) \text {, where } h=\frac{b-a}{n}
$$

Substituting the value of h in the above expression we get,

$$
\int_{2}^{3}\left(x^{2}\right) d x=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{1}{\mathrm{n}}\right) \sum_{\mathrm{r}=0}^{\mathrm{n}-1} \mathrm{f}\left(2+\left(\frac{\mathrm{r}}{\mathrm{n}}\right)\right)
$$

Since, $f(a)=a$

$$
=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{1}{\mathrm{n}}\right) \sum_{\mathrm{r}=0}^{\mathrm{n}-1}\left(2+\left(\frac{r}{\mathrm{n}}\right)\right)^{2}
$$

By expanding the summation we get,

$$
=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{1}{\mathrm{n}}\right) \sum_{\mathrm{r}=0}^{\mathrm{n}-1}\left(\frac{\mathrm{r}^{2}}{\mathrm{n}^{2}}+4+\frac{4 \mathrm{r}}{\mathrm{n}}\right)
$$

EDUGRロSS

Upon simplification we get,

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{(n-1)(n)(2 n-1)}{6 n^{2}}+4 n+\frac{4(n-1)(n)}{2 n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+4 n+\frac{2\left(n^{2}-n\right)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+4 n+\frac{2\left(n^{2}-n\right)}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{\left(2 n^{3}-3 n^{2}+n\right)+\left(24 n^{3}\right)+\left(12 n^{3}-12 n^{2}\right)}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{38 n^{3}-15 n^{2}+n}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{38 n^{3}-15 n^{2}+n}{6 n^{3}}\right)
\end{aligned}
$$

On computing we get,

$$
\begin{aligned}
& =\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{38}{6}\right)-\left(\frac{15}{6 \mathrm{n}}\right)+\left(\frac{1}{6 \mathrm{n}^{2}}\right) \\
& =\frac{38}{6} \\
& =\frac{19}{3}
\end{aligned}
$$

4. $\int_{1}^{4}\left(x^{2}-x\right) d x$

Solution:

Given:

$$
\int_{1}^{4}\left(x^{2}-x\right) d x
$$

We know that $f(x)$ is continuous in $[a, b]$ i.e., $[1,4]$
Then we have,
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=(b-a) / n$
Substituting the value of h in the above expression we get,

$$
\int_{1}^{4}\left(x^{2}-x\right) d x=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1} f\left(\left(1+\frac{3 r}{n}\right)\right)
$$

Since, $f(a)=a$

$$
=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{3}{\mathrm{n}}\right) \sum_{\mathrm{r}=0}^{\mathrm{n}-1}\left(\left(1+\frac{3 \mathrm{r}}{\mathrm{n}}\right)^{2}-\left(1+\frac{3 \mathrm{r}}{\mathrm{n}}\right)\right.
$$

By expanding the summation we get,

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(1+\frac{9 r^{2}}{n^{2}}+\frac{6 r}{n}-1-\frac{3 r}{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(\frac{9 r^{2}}{n^{2}}+\frac{3 r}{n}\right)
\end{aligned}
$$

Upon simplification we get,

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{9(n-1)(n)(2 n-1)}{6 n^{2}}+\frac{3 n(n-1)}{2 n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{9\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+\frac{3 n(n-1)}{2 n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{9\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+\frac{3 n(n-1)}{2 n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{\left(18 n^{3}-27 n^{2}+9 n\right)+\left(9 n^{3}-9 n^{2}\right)}{6 n^{2}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{27 n^{3}-36 n^{2}+9 n}{6 n^{2}}\right)
\end{aligned}
$$

On computing we get,

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\frac{81 n^{3}-108 n^{2}+27 n}{6 n^{3}}\right) \\
& =\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{81}{6}\right)-\left(\frac{108}{6 \mathrm{n}}\right)+\left(\frac{27}{6 \mathrm{n}^{2}}\right)
\end{aligned}
$$

$$
=27 / 2
$$

5. $\int_{-1}^{1} e^{x} d x$

Solution:

Given:
$\int_{-1}^{1} e^{x} d x$
We know that $f(x)$ is continuous in $[a, b]$ i.e., $[-1,1]$ Then we have,

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h) \text {, where } h=\frac{b-a}{n}
$$

Substituting the value of h in the above expression we get,

$$
\int_{0}^{2}\left(e^{x}\right) d x=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} f\left(-1+\frac{2 r}{n}\right)
$$

Since, $f(a)=a$

$$
=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} e^{\frac{2 r}{n}-1}
$$

By expanding the summation we get,

$$
=\lim _{n \rightarrow \infty}\left(\frac{2}{n e}\right)\left(e^{0}+e^{h}+e^{2 h}+\cdots \ldots \ldots \ldots \ldots+e^{n h}\right.
$$

sum of $=e^{0}+e^{h}+e^{2 h}+\ldots \ldots \ldots \ldots . .+e^{n h}$
Whose g.p has common ratio with $e^{1 / n}$.
Whose sum is:

$$
=\frac{\mathrm{e}^{\mathrm{h}}\left(1-\mathrm{e}^{\mathrm{nh}}\right)}{1-\mathrm{e}^{\mathrm{h}}}
$$

Upon simplification we get,

$$
\begin{aligned}
& =\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{2}{\mathrm{ne}}\right)\left(\frac{\mathrm{e}^{\mathrm{h}}\left(1-\mathrm{e}^{\mathrm{nh}}\right)}{1-\mathrm{e}^{\mathrm{h}}}\right) \\
& =\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{2}{\mathrm{ne}}\right) \cdot \frac{\mathrm{e}^{\mathrm{h}}\left(1-\mathrm{e}^{\mathrm{nh}}\right)}{\frac{1-\mathrm{e}^{\mathrm{h}} \cdot \mathrm{~h}}{\mathrm{~h}}} \\
& =\lim _{\mathrm{h} \rightarrow 0} \frac{1-\mathrm{e}^{\mathrm{h}}}{\mathrm{~h}} \\
& =-1 \\
& =\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{2}{\mathrm{ne}}\right)\left(\frac{\mathrm{e}^{\mathrm{h}}\left(1-\mathrm{e}^{\mathrm{nh}}\right)}{-\mathrm{h}}\right)
\end{aligned}
$$

$=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{2}{\mathrm{ne}}\right)\left(\frac{\mathrm{e}^{\left(\frac{2}{\mathrm{n}}\right)\left(1-\mathrm{e}^{\mathrm{n} \times\left(\frac{2}{\mathrm{n}}\right)}\right)}}{-\frac{2}{\mathrm{n}}}\right)_{[\text {Since, } \mathrm{h}=2 / \mathrm{n}]}$
$=\frac{\mathrm{e}^{2}-1}{\mathrm{e}}$
$=\mathrm{e}-\mathrm{e}^{-1}$
6. $\int_{0}^{4}\left(x+e^{2 x}\right) d x$

Solution:

Given:

$$
\begin{aligned}
& \int_{0}^{4}\left(x+e^{2 x}\right) d x \\
& \mathrm{~h}(\mathrm{x})=\int_{0}^{4} \mathrm{x} \cdot \mathrm{dx} \\
& \mathrm{~g}(\mathrm{x})=\int_{0}^{4} \mathrm{e}^{2 \mathrm{x}} \cdot \mathrm{dx}
\end{aligned}
$$

So, $f(x)=h(x)+g(x)$
Now let us solve for $h(x)$
We know that $\mathrm{h}(\mathrm{x})$ is continuous in $[0,4]$
Then we have,

$$
\int_{a}^{b} h(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h) \text {, where } h=\frac{b-a}{n}
$$

Substituting the value of h in the above expression we get,
$\int_{0}^{4}(x) d x=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right) \sum_{r=0}^{n-1} f\left(\frac{4 r}{n}\right)$
Since, $f(a)=a$

$$
=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{4}{\mathrm{n}}\right) \sum_{\mathrm{r}=0}^{\mathrm{n}-1}\left(\frac{4 \mathrm{r}}{\mathrm{n}}\right)
$$

By expanding the summation we get,

$$
=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right)\left(\frac{2(n-1)(n)}{n}\right)
$$

Upon simplification we get,

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{4}{n} \cdot \frac{2 n^{2}-2 n}{n} \\
& =\lim _{n \rightarrow \infty} \frac{4}{n} \frac{2 n^{2}-2 n}{n} \\
& =\lim _{n \rightarrow \infty} \frac{8 n^{2}-8 n}{n^{2}} \\
& =\lim _{n \rightarrow \infty} 8-\left(\frac{8}{n}\right) \\
& =8
\end{aligned}
$$

Now let us solve for $\mathrm{g}(\mathrm{x})$
We know that $\mathrm{g}(\mathrm{x})$ is continuous in $[0,4]$
Then we have,
$\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} f(a+r h)$, where $h=\frac{b-a}{n}$
Substituting the value of h in the above expression we get,
$\int_{0}^{4}\left(e^{2 x}\right) d x=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right) \sum_{r=0}^{n-1} f\left(\frac{4 r}{n}\right)$
Since, $f(a)=a$

$$
=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right) \sum_{r=0}^{n-1} e^{\frac{4 r}{n}}
$$

By expanding the summation we get,

$$
=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right)\left(e^{0}+e^{h}+e^{2 h}+\cdots \ldots \ldots \ldots .+e^{n h}\right.
$$

sum of $=e^{0}+e^{h}+e^{2 h}+\ldots \ldots \ldots \ldots \ldots+e^{n h}$
Whose g.p is common with ratio $e^{1 / n}$
Whose sum is:

$$
=\frac{\mathrm{e}^{\mathrm{h}}\left(1-\mathrm{e}^{\mathrm{nh}}\right)}{1-\mathrm{e}^{\mathrm{h}}}
$$

Upon simplification we get,

$$
\begin{aligned}
& =\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{4}{\mathrm{n}}\right)\left(\frac{\mathrm{e}^{\mathrm{h}}\left(1-\mathrm{e}^{\mathrm{nh}}\right)}{1-\mathrm{e}^{\mathrm{h}}}\right) \\
& =\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{4}{\mathrm{n}}\right)\left(\frac{\mathrm{e}^{\mathrm{h}}\left(1-\mathrm{e}^{\mathrm{nh}}\right)}{\frac{1-\mathrm{e}^{\mathrm{h}} \cdot \mathrm{~h}}{h}}\right) \\
& =\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{4}{\mathrm{n}}\right)\left(\frac{\mathrm{e}^{\mathrm{h}}\left(1-\mathrm{e}^{\mathrm{nh}}\right)}{-\mathrm{h}}\right) \\
& {\left[\text { Since, } \mathrm{lim}_{\mathrm{h} \rightarrow 0} \frac{1-\mathrm{e}^{\mathrm{h}}}{\mathrm{~h}}=-1\right]} \\
& =\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{4}{\mathrm{n}}\right)\left(\frac{\mathrm{e}^{\left(\frac{4}{n}\right)}\left(1-\mathrm{e}^{\mathrm{n} \times\left(\frac{4}{n}\right)}\right)}{-\frac{4}{\mathrm{n}}}\right)_{[\text {Since, } \mathrm{h}=4 / \mathrm{n}]} \\
& =\left(\mathrm{e}^{8}-1\right)
\end{aligned}
$$

On computing we get, f

$$
\begin{aligned}
(\mathrm{x})= & \mathrm{h}(\mathrm{x})+\mathrm{g}(\mathrm{x}) \\
= & 8+\mathrm{e}^{8}-1
\end{aligned}
$$

EXERCISE 7.9

the definite integrals in Exercises 1 to 20.

1. $\int_{-1}^{1}(x+1) d x$

Solution:

Let $I=\int_{-1}^{1}(x+1) d x$
So,
$I=\int_{-1}^{1}(x+1) d x$
On splitting the integrals, we have
$I=\int_{-1}^{1} x d x+\int_{-1}^{1} 1 x d x \quad\left[\int x^{n} d x=\frac{x^{n+1}}{n+1}\right]$
Applying the limits after integration,
$I=\left[\frac{x^{2}}{2}\right]_{-1}^{1}+[x]_{-1}^{1}$
$\mathrm{I}=\left[\frac{1^{2}}{2}-\frac{(-1)^{2}}{2}\right]+[1-(-1)]$
$I=\left[\frac{1}{2}-\frac{1}{2}\right]+[1+1]=0+2$
$I=2$
Therefore, $\int_{-1}^{1}(x+1) d x=2$
2. $\int_{2}^{3} \frac{1}{x} d x$

Solution:

$$
\begin{aligned}
& \text { Let } I=\int_{2}^{3} \frac{1}{x} d x \\
& I=\int_{2}^{3} \frac{1}{x} d x \quad\left[\int \frac{1}{x} d x=\log x\right]
\end{aligned}
$$

Applying the limits after integration,

$$
\mathrm{I}=[\log |\mathrm{x}|]_{2}^{3}
$$

$$
I=\log |3|-\log |2|
$$

$$
I=\log 3 / 2
$$

Therefore,

$$
\int_{2}^{3} \frac{1}{x} d x=\log \frac{3}{2}
$$

3. $\int_{1}^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x$

Solution:

$$
\begin{aligned}
& \text { Let } I=\int_{1}^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x \\
& I=\int_{1}^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x
\end{aligned}
$$

Splitting the integrals, we have

$$
\begin{aligned}
& I=\int_{1}^{2} 4 x^{3} d x-\int_{1}^{2} 5 x^{2} d x+\int_{1}^{2} 6 x d x+\int_{1}^{2} 9 d x \\
& I=4 \int_{1}^{2} x^{3} d x-5 \int_{1}^{2} x^{2} d x+6 \int_{1}^{2} x d x+9 \int_{1}^{2} d x
\end{aligned}
$$

Performing integration separately, we get

$$
\begin{aligned}
\mathrm{I}=4 \times\left[\frac{\mathrm{x}^{3+1}}{3+1}\right]_{1}^{2}-5 \times\left[\frac{\mathrm{x}^{2+1}}{2+1}\right]_{1}^{2}+6 \times & {\left[\frac{\mathrm{x}^{1+1}}{1+1}\right]_{1}^{2}+9 \times\left[\frac{\mathrm{x}^{0+1}}{0+1}\right]_{1}^{2} } \\
& {\left[\int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\frac{x^{\mathrm{n}+1}}{\mathrm{n}+1}\right] }
\end{aligned}
$$

Applying the limits after integration,

$$
\begin{aligned}
I & =4 \times\left[\frac{x^{4}}{4}\right]_{1}^{2}-5 \times\left[\frac{x^{3}}{3}\right]_{1}^{2}+6 \times\left[\frac{x^{2}}{2}\right]_{1}^{2}+9 \times[x]_{1}^{2} \\
& =2^{4}-1^{4}-5\left[\frac{2^{3}}{3}-\frac{1^{3}}{3}\right]+6\left[\frac{2^{2}}{2}-\frac{1^{2}}{2}\right]+9[2-1] \\
& =16-1-5\left[\frac{7}{3}\right]+3(3)+9 \\
& =33-\frac{35}{3} \\
& =\frac{99-35}{3}=\frac{64}{3}
\end{aligned}
$$

Therefore, $\int_{1}^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x=64 / 3$
4. $\int_{0}^{\frac{\pi}{4}} \sin 2 x d x$

Solution:

EDUGRロSS

Let $\mathrm{I}=\int_{0}^{\frac{\pi}{4}} \sin 2 \mathrm{xdx}$
$I=\int_{0}^{\frac{\pi}{4}} \sin 2 x d x$
Applying limits after integration, we have
$I=\left[-\frac{\cos 2 x}{2}\right]_{0}^{\frac{\pi}{4}}$
$\left[\int \sin x d x=-\cos x\right]$
$\mathrm{I}=-(\cos 2 \times \pi / 4-\cos 0) / 2$
$\mathrm{I}=-(\cos \pi / 2-\cos 0) / 2=-(0-1) / 2$
$\mathrm{I}=1 / 2$
Therefore, $\int_{0}^{\frac{\pi}{4}} \sin 2 x d x=1 / 2$
5. $\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$

Solution:

Let $I=\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$
$I=\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$
Integrating $\cos 2 \mathrm{x}$ and applying limits, we have
$\mathrm{I}=\left[\frac{\sin 2 \mathrm{x}}{2}\right]_{0}^{\pi / 2}$

$$
\left[\int \cos x d x=\sin x+c\right]
$$

$I=\frac{1}{2}\left(\sin 2 \times \frac{\pi}{2}-\sin 2 \times 0\right)$
$I=\frac{1}{2}(\sin \pi-\sin 0)$
$I=1 / 2 \times(0-0)=0$
Therefore, $\int_{0}^{\frac{\pi}{2}} \cos 2 \mathrm{xdx}=0$

EDUGRロSร

WIsdamisina KNawledae
6. $\int_{4}^{5} e^{x} d x$

Solution:

Let $I=\int{ }_{4}^{5} e^{x} d x$

$$
I=\int{ }_{4}^{5} e^{x} d x
$$

Applying the limits after integration, we get

$$
I=\left[e^{x}\right]_{4}^{5}=e^{5}-e^{4} \quad\left[\int e^{x} d x=e^{x}+c\right]
$$

$I=e^{4}(e-1)$
Therefore, $\int_{4}^{5} e^{x} d x=e^{4}(e-1)$
7. $\int_{0}^{\frac{\pi}{4}} \tan x d x$

Solution:

EDUGRロSS

$$
\begin{aligned}
& \text { Let } I=\int_{0}^{\frac{\pi}{4}} \tan x d x \\
& I=\int_{0}^{\frac{\pi}{4}} \tan x d x \quad\left[\text { Using } \int \tan x d x=-\log |\cos x|+c\right] \\
& I=[-\log |\cos x|]_{0}^{\pi / 4}
\end{aligned}
$$

Applying limits after integrating, we have

$$
I=-\left(\log \left|\cos \frac{\pi}{4}\right|-\log |\cos 0|\right)
$$

$$
I=-\left(\log \left|\frac{1}{\sqrt{2}}\right|-\log |1|\right)=-\log (2)^{-\frac{1}{2}}+0
$$

$$
\mathrm{I}=\frac{1}{2} \log 2
$$

Therefore, $\int_{0}^{\frac{\pi}{4}} \tan \mathrm{xdx}=\frac{1}{2} \log 2$
8.

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x
$$

Solution:

$$
\begin{aligned}
& \text { Let } I=\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x \\
& I=\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x
\end{aligned}
$$

Performing integration, we have

$$
\begin{aligned}
& I=[\log |\operatorname{cosec} x-\cot x|]_{\pi / 6}^{\pi / 4} \\
& \qquad \quad\left[U \operatorname{sing} \int \operatorname{cosec} x d x=\log |\operatorname{cosec} x-\cot x|+c\right]
\end{aligned}
$$

Applying limits after integration, we get
$\mathrm{I}=\log |\operatorname{cosec} \pi / 4-\cot \pi / 4|-\log |\operatorname{cosec} \pi / 6-\cot \pi / 6|$
$I=\log |\sqrt{2}-1|-\log |2-\sqrt{3}|$
$I=\log \left|\frac{\sqrt{2}-1}{2-\sqrt{3}}\right|$
Therefore, $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x=\log \left(\frac{\sqrt{2}-1}{2-\sqrt{3}}\right)$
9. $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$

Solution:
Let $\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{2}}}$
Performing integration,

$$
I=\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}} \quad\left[\text { Using } \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c\right]
$$

Applying limits after integration, we have
$I=\left[\sin ^{-1} x\right]_{0}^{1}$

EDUGRロSS

$\mathrm{I}=\sin ^{-1}(1)-\sin ^{-1}(0)=\pi / 2-0$
$I=\pi / 2$
Therefore, $\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1-\mathrm{X}^{2}}}=\pi / 2$
$\int_{10 .}^{1} \frac{d x}{1+x^{2}}$
Solution:
Let $I=\int_{0}^{1} \frac{d x}{1+x^{2}}$
$I=\int_{0}^{1} \frac{d x}{1+x^{2}}$
We know that,
$\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$
Hence, on integrating we get
$I=\left[\tan ^{-1} x\right]_{0}^{1}$
Applying limits, we have
$\mathrm{I}=\tan ^{-1}(1)-\tan ^{-1}(0)=\pi / 4-0$
$I=\pi / 4$
Therefore, $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}=\pi / 4$
11. $\int_{2}^{3} \frac{d x}{x^{2}-1}$

Solution:
Let $I=\int_{2}^{3} \frac{d x}{x^{2}-1}$
On integrating, we have
$I=\int_{2}^{3} \frac{d x}{x^{2}-1} \quad\left[\right.$ w.k.t $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \frac{x-a}{x+a}+c$]
Applying limits after integration, we get
$I=\left[\left.\frac{1}{2} \log \right\rvert\, \frac{x-1}{x+1}\right]_{2}^{3}=\frac{1}{2}\left(\log \left|\frac{3-1}{3+1}\right|-\log \left|\frac{2-1}{2+1}\right|\right)$
$\mathrm{I}=\frac{1}{2}\left(\log \left|\frac{2}{4}\right|-\log \left|\frac{1}{3}\right|\right)=\frac{1}{2} \log \frac{1 / 2}{1 / 3}$
$I=1 / 2 \log 3 / 2$
Therefore, $\int_{2}^{3} \frac{d x}{x^{2}-1}=1 / 2 \log 3 / 2$
12. $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$

Solution:
Let $I=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$
We know that,
$\cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1$
So, $\cos ^{2} \mathrm{x}=\frac{\frac{1+\cos 2 \mathrm{x}}{2}}{2}$
Putting the value $\cos ^{2} x$ in I and splitting the integrals, we have

$$
I=\int_{0}^{\pi / 2} \frac{1+\cos 2 x}{2} d x=\frac{1}{2} \int_{0}^{\pi / 2} d x+\frac{1}{2} \int_{0}^{\pi / 2} \cos 2 x d x \quad\left[\int \cos x d x=\sin x+c\right]
$$

Applying limits after integration, we get
$\mathrm{I}=\frac{1}{2}[\mathrm{x}]_{0}^{\pi / 2}+\frac{1}{2}\left[\frac{\sin 2 \mathrm{x}}{2}\right]_{0}^{\pi / 2}=\frac{1}{2}\left(\frac{\pi}{2}-0\right)+\frac{1}{4}\left(\sin 2 \times \frac{\pi}{2}-\sin 2 \times 0\right)$

EDUGRロSS

$\mathrm{I}=\frac{\pi}{4}+\frac{1}{4}(0-0)=\pi / 4$
Therefore, $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x=\pi / 4$
13. $\int_{2}^{3} \frac{x d x}{x^{2}+1}$

Solution:
Let $\mathrm{I}=\int_{2}^{3} \frac{\mathrm{xdx}}{\mathrm{x}^{2}+1}$
Let's assume $x^{2}+1=t$
So,
$d\left(x^{2}+1\right)=d t$
$2 \mathrm{xdx}=\mathrm{dt}$
$\mathrm{xdx}=\mathrm{dt} / 2$
When $\mathrm{x}=2 ; \mathrm{t}=2^{2}+1=5$
When $\mathrm{x}=3 ; \mathrm{t}=3^{2}+1=10$
Substituting ($\mathrm{x}^{2}+1$) and $\mathrm{x} d \mathrm{x}$ in I , we have

$$
\int_{5}^{10} \frac{\mathrm{dt}}{2 \mathrm{t}}=\frac{1}{2} \int_{5}^{10} \frac{\mathrm{dt}}{\mathrm{t}} \quad\left[\text { w.k.t } \frac{1}{\mathrm{x}} \mathrm{dx}=\log \mathrm{x}\right]
$$

Applying limits after integration, we get
$\mathrm{I}=\frac{1}{2}[\log t]_{5}^{10}=\frac{1}{2}(\log 10-\log 5)=\frac{1}{2} \log \frac{10}{5}$
$\mathrm{I}=1 / 2 \log 2$
Therefore, $\int_{2}^{3} \frac{x d x}{x^{2}+1}=1 / 2 \log 2$
14.
$\int_{0}^{1} \frac{2 x+3}{5 x^{2}+1} d x$
Solution:

Let $\mathrm{I}=\int_{0}^{1} \frac{2 \mathrm{x}+3}{5 \mathrm{x}^{2}+1}$
Multiplying by 5 in numerator and denominator:

$$
I=\frac{1}{5} \int_{0}^{1} \frac{5(2 x+3)}{5 x^{2}+1} d x=\frac{1}{5} \int_{0}^{1} \frac{10 x+15}{5 x^{2}+1} d x
$$

Splitting the fraction into two fractions, we have

$$
I=\frac{1}{5} \int_{0}^{1} \frac{10 x}{5 x^{2}+1} d x+3 \int_{0}^{1} \frac{1}{5 x^{2}+1}
$$

$$
\text { Now, } \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

Where, $\mathrm{I}_{1}=\frac{1}{5} \int_{0}^{1} \frac{10 \mathrm{x}}{5 \mathrm{x}^{2}+1} \mathrm{dx}$
Let us take $5 \mathrm{x}^{2}+1=\mathrm{t} \ldots$. (1)
$\mathrm{d}\left(5 \mathrm{x}^{2}+1\right)=\mathrm{dt}$
$10 \mathrm{xdx}=\mathrm{dt}$
When $x=0 ; t=5 \times 0^{2}+1=1$
When $\mathrm{x}=1 ; \mathrm{t}=5 \times 1^{2}+1=6$
Substituting (1) and (2) in I_{1}, we have
$I_{1}=\frac{1}{5} \int_{1}^{6} \frac{d t}{t}=\frac{1}{5}[\log |t|]_{1}^{6} \quad\left[\right.$ w.k.t $\left.\int \frac{1}{x} d x=\log x\right]$
Applying limits to integrals, we get
$I_{1}=\frac{1}{5}(\log |6|-\log |1|)=\frac{1}{5}(\log 6-0)$
$\mathrm{I}_{1}=\frac{1}{5} \int_{0}^{1} \frac{10 \mathrm{x}}{5 \mathrm{x}^{2}+1} \mathrm{dx}=\frac{\log 6}{5}$
Next,
$I_{2}=3 \int_{0}^{1} \frac{1}{5 x^{2}+1} d x=\frac{3}{5} \int_{0}^{1} \frac{1}{x^{2}+\frac{1}{5}} d x$

$$
\left[\text { w.k.t } \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c\right.
$$

EDUGRロSS

Applying limits to integrals, we get
$\mathrm{I}_{1}=\frac{1}{5}(\log |6|-\log |1|)=\frac{1}{5}(\log 6-0)$
$\mathrm{I}_{1}=\frac{1}{5} \int_{0}^{1} \frac{10 \mathrm{x}}{5 \mathrm{x}^{2}+1} \mathrm{dx}=\frac{\log 6}{5}$
Next,
$I_{2}=3 \int_{0}^{1} \frac{1}{5 x^{2}+1} d x=\frac{3}{5} \int_{0}^{1} \frac{1}{x^{2}+\frac{1}{5}} d x$

$$
\left[\text { w.k.t } \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c\right.
$$

$\mathrm{I}_{2}=\frac{3}{5} \times \frac{1}{\frac{1}{\sqrt{5}}}\left[\tan ^{-1} \sqrt{5} \mathrm{x}\right]_{0}^{1}=\frac{3}{5} \times \sqrt{5}\left(\tan ^{-1} \sqrt{5}-\tan ^{-1} 0\right)$
$\mathrm{I}_{2}=3 / \sqrt{5} \tan ^{-15}$
$\mathrm{I}_{2}=\frac{3}{5} \times \frac{1}{\frac{1}{\sqrt{5}}}\left[\tan ^{-1} \sqrt{5} \mathrm{x}\right]_{0}^{1}=\frac{3}{5} \times \sqrt{5}\left(\tan ^{-1} \sqrt{5}-\tan ^{-1} 0\right)$
$\mathrm{I}_{2}=3 / \sqrt{5} \tan ^{-15} \mid$
Hence, $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$I=1 / 5 \log 6+3 / \sqrt{5} \tan ^{-15}$
Therefore, $\int_{0}^{1} \frac{2 \mathrm{x}+3}{5 \mathrm{x}^{2}+1} \mathrm{dx}=1 / 5 \log 6+3 / \sqrt{5} \tan ^{-15}$
15. $\int_{0}^{1} x e^{x^{2}} d x$

Solution:

EDUGRロSS

Let $I=\int_{0}^{1} x e^{x^{2}} d x$
On taking $\mathrm{x}^{2}=\mathrm{t} \Rightarrow 2 \mathrm{xdx}=\mathrm{dt}$
When $\mathrm{x}=0 ; \mathrm{t}=0$
When $\mathrm{x}=1 ; \mathrm{t}=1$
Substituting t and dt in I ,

$$
\int_{\mathrm{I}=0}^{1} \frac{\mathrm{e}^{t} d t}{2} \int_{=1 / 2}^{1 / 2} \int_{0}^{1} d t\left[\int \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\mathrm{e}^{\mathrm{x}}+\mathrm{c}\right]
$$

$$
\mathrm{I}=\frac{1}{2}\left[\mathrm{e}^{\mathrm{t}}\right]_{0}^{1}=\frac{1}{2}\left(\mathrm{e}-\mathrm{e}^{0}\right)=\frac{1}{2}(\mathrm{e}-1)
$$

Therefore, $\int_{0}^{1} x e^{x^{2}} d x=1 / 2(e-1)$
16.

$$
\int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3}
$$

Solution:

Let $\mathrm{I}=\int_{1}^{2} \frac{5 \mathrm{x}^{2}}{\mathrm{x}^{2}+4 \mathrm{x}+3}$
On dividing $5 x^{2}$ by $x^{2}+4 x+3$ we get 5 as quotient and $-(20 x+15)$ as remainder
So $\mathrm{I}=\int_{1}^{2}\left(5-\frac{20 x+15}{x^{2}+4 x+3}\right) d x$
Splitting the integrals, we have
$I=\int_{1}^{2} 5 d x-\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3}=5[x]_{1}^{2}-\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3}$
$I=5(2-1)-\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3}$
$\mathrm{I}=5-\mathrm{I}_{1}$
Now,
$\int_{I_{1}=}^{2} \frac{20 x+15}{x^{2}+4 x+3}$
Adding and subtracting 25 in the numerator, we get
$\mathrm{I}_{1}=\int_{1}^{2} \frac{20 \mathrm{x}+15+25-25}{x^{2}+4 x+3} d x=\int_{1}^{2} \frac{20 \mathrm{x}+40}{\mathrm{x}^{2}+4 \mathrm{x}+3} \mathrm{dx}-\int_{1}^{2} \frac{25}{x^{2}+4 \mathrm{x}+3} \mathrm{dx}$
$\mathrm{I}_{1}=10 \int_{1}^{2} \frac{2 \mathrm{x}+4}{\mathrm{x}^{2}+4 \mathrm{x}+3} \mathrm{dx}-25 \int_{1}^{2} \frac{1}{x^{2}+4 \mathrm{x}+3} \mathrm{dx}$
Let us assume $\mathrm{x}^{2}+4 \mathrm{x}+3=\mathrm{t}$
Then, $(2 x+4) d x=d t$
So,
$I_{1}=10 \int \frac{\mathrm{dt}}{\mathrm{t}}-25 \int \frac{1}{\mathrm{x}^{2}+4 \mathrm{x}+3+1-1} \mathrm{dx}=10 \log \mathrm{t}+25 \int \frac{1}{\mathrm{x}^{2}+4 \mathrm{x}+4-1} \mathrm{dx}$
$I_{1}=10 \log t-\quad 25 \int \frac{1}{(x+2)^{2}-1^{2}} d x$ [w.k.t $\int \frac{1}{\mathrm{x}} \mathrm{dx}=\log \mathrm{x}$]
$\left.\mathrm{I}_{1}=10 \log \mathrm{t}-\mathrm{C}\left[\frac{1}{2} \log \left(\frac{\mathrm{x}+2-1}{\mathrm{x}+2+1}\right)\right] \underset{[\text { w.k.t }}{\int} \frac{\mathrm{dx}}{\mathrm{x}^{2}-\mathrm{a}^{2}}=\frac{1}{2 \mathrm{a}} \log \frac{\mathrm{x}-\mathrm{a}}{\mathrm{x}+\mathrm{a}}+\mathrm{c}\right]$
Applying limits after integration, we get
$\mathrm{I}_{1}=$
$10\left[\log \left(\mathrm{x}^{2}+4 \mathrm{x}+3\right)\right]_{1}^{2}-\frac{25}{2}\left[\log \left(\frac{\mathrm{x}+1}{\mathrm{x}+3}\right)\right]_{1}^{2}$
$\mathrm{I}_{1}=10 \times$
$\left[\log \left(2^{2}+4 \times 2+3\right)-\log \left(1^{2}+4 \times 1+3\right)\right]-\frac{25}{2}\left[\log \left(\frac{2+1}{2+3}\right)-\log \left(\frac{1+1}{1+3}\right)\right]$
$\mathrm{I}_{1}=10[\log 15-\log 8]-\frac{25}{2}\left[\log \frac{3}{5}-\log \frac{2}{4}\right]$
$\mathrm{I}_{1}=10[\log (5 \times 3)-\log (4 \times 2)]-\frac{25}{2}[\log 3-\log 5-\log 2+\log 4]$
$\mathrm{I}_{1}=$
$10 \log 5+10 \log 3-10 \log 4-10 \log 2-\frac{25}{2} \log 3+\frac{25}{2} \log 5+\frac{25}{2} \log 2-\frac{25}{2} \log 4$

$$
\begin{aligned}
& \mathrm{I}_{1}= \\
& \left(10+\frac{25}{2}\right) \log 5-\left(10+\frac{25}{2}\right) \log 4+\left(10-\frac{25}{2}\right) \log 3+\left(-10+\frac{25}{2}\right) \log 2 \\
& \mathrm{I}_{1}=\frac{45}{2} \log 5-\frac{45}{2} \log 4-\frac{5}{2} \log 3+\frac{5}{2} \log 2=\frac{45}{2} \log \frac{5}{4}-\frac{5}{2} \log \frac{3}{2} \\
& \text { As, } \mathrm{I}=5-\mathrm{I}_{1}
\end{aligned}
$$

On substituting I_{1} in I we get,

$$
I=5-\frac{45}{2} \log \frac{5}{4}-\frac{5}{2} \log \frac{3}{2}
$$

Therefore, $\int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3}=5-\frac{45}{2} \log \frac{5}{4}-\frac{5}{2} \log \frac{3}{2}$
17. $\int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x$

Solution:

EDUGRロSS

Let $\mathrm{I}=\int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} \mathrm{x}+\mathrm{x}^{3}+2\right) \mathrm{dx}$
Splitting the given integral, we have
$I=\int_{0}^{\pi / 4}\left(2 \sec ^{2} x+x^{3}+2\right) d x=2 \int_{0}^{\pi / 4} \sec ^{2} x d x+\int_{0}^{\pi / 4} x^{3} d x+2 \int_{0}^{\pi / 4} d x$
Now, integration separately and applying limits, we get

$$
\begin{aligned}
& 2[\tan x]_{0}^{\pi / 4}+\left[\frac{x^{4}}{4}\right]_{0}^{\pi / 4}+2[x]_{0}^{\pi / 4} \\
I & =2(\tan \pi / 4-\tan 0)+1 / 4\left((\pi / 4)^{4}-0\right)+2(\pi / 4-0) \\
I & =2 \times 1+\frac{1}{4} \times\left(\frac{\pi}{4}\right)^{4}+2 \times \frac{\pi}{4}
\end{aligned}
$$

Expanding the exponents, we have
$\mathrm{I}=2+\frac{\pi}{2}+\frac{\pi^{4}}{1024}$
Therefore, $\int_{0}^{\pi / 4}\left(2 \sec ^{2} x+x^{3}+2\right) d x=2+\frac{\pi}{2}+\frac{\pi^{4}}{1024}$
18. $\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x$

Solution:

Let $I=\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x$
We know that,

$$
\cos x=\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}
$$

So, substituting $\cos x=\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}$ in I_{0} we have
Applying the limits after integration, we get
$\int_{0}^{\pi} \cos x d x=[\sin x]_{0}^{\pi} \quad$ [w.k.t $\int \cos x d x=\sin x+c$]
$\mathrm{I}=\sin \pi-\sin 0=0-0=0$
Therefore, $\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x=0$
19.

$$
\int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x
$$

Solution:

Let $I=\int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x$
$I=3 \int_{0}^{2} \frac{2 x+1}{x^{2}+4}=3 \int_{0}^{2} \frac{2 x}{x^{2}+4} d x+3 \int_{0}^{2} \frac{1}{x^{2}+4} d x$

EDUGRロSS

Now, we have $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
Where $\mathrm{I}_{1}=3 \int_{0}^{2} \frac{2 \mathrm{x}}{\mathrm{x}^{2}+4} \mathrm{dx}$
Let $\mathrm{x}^{2}+4=\mathrm{t}$
$2 \mathrm{xdx}=\mathrm{dt}$
When $\mathrm{x}=0 ; \mathrm{t}=4$
When $\mathrm{x}=2 ; \mathrm{t}=2^{2}+4=8$
Substituting t and $d k$ in I_{1}
$I_{1}=3 \int_{4}^{8} \frac{d t}{t}=3[\log |t|]_{4}^{8}$ $\left[\right.$ w.k.t $\int \frac{1}{x} d x=\log x$]
$I_{1}=3[\log |8|-\log |4|]=3 \log 8 / 4$
$I_{1}=3 \log 1 / 2=-3 \log 2$
And, $\mathrm{I}_{2}=3 \int_{0}^{2} \frac{1}{\mathrm{x}^{2}+4} \mathrm{dx}=3 \int_{0}^{2} \frac{1}{\mathrm{x}^{2}+2^{2}} \mathrm{dx}$ $\left[\right.$ w.k.t $\left.\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c\right]$
$\mathrm{I}_{2}=3 \times \frac{1}{2}\left[\tan ^{-1} \frac{\mathrm{x}}{2}\right]_{0}^{2}=\frac{3}{2}\left[\tan ^{-1} \frac{2}{2}-\tan ^{-1} \frac{0}{2}\right]=\frac{3}{2}\left[\tan ^{-1} 1-\tan ^{-1} 0\right]$
$\mathrm{I}_{2}=\frac{3}{2} \times \frac{\pi}{4}=3 \pi / 8$
Now, $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$\mathrm{I}=3 \log 1 / 2+3 \pi / 8$
Therefore, $\int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x=3 \log 1 / 2+3 \pi / 8$
20. $\int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x$

Solution:
Let $\mathrm{I}=\int_{0}^{1}\left(\mathrm{xe}^{\mathrm{x}}+\sin \frac{\pi \mathrm{x}}{4}\right) \mathrm{dx}$
Splitting the integrals, we have
$\int_{0}^{1} x^{x} e^{x} d x+\int_{0}^{1} \sin \frac{\pi x}{4} d x$
Now, $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$I_{1}=\int_{0}^{1} x e^{x} d x$ [Using u-v integral form: $u=x$ and $v=e^{x}$]
$I_{1}=x \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x\right) \int e^{x} d x\right\} d x$
$I_{1}=x e^{x}-\int e^{x} d x \quad\left[\right.$ w.k.t $\left.\int e^{x} d x=e^{x}+c\right]$
Now, integrating the reduced form and applying the limits, we get
$I_{1}=\left[\mathrm{xe}^{\mathrm{x}}-\mathrm{e}^{\mathrm{x}}\right]_{0}^{1}=\left[\left(1 \times \mathrm{e}^{1}-\mathrm{e}^{1}\right)-\left(0 \times \mathrm{e}^{0}-\mathrm{e}^{0}\right)\right]$
$\mathrm{I}_{1}=\mathrm{e}-\mathrm{e}-0+1$
$\mathrm{I}_{1}=1$
Next, taking I_{2}
$\mathrm{I}_{2}=\int_{0}^{1} \sin \frac{\pi \mathrm{x}}{4} \mathrm{dx}$
[w.k.t $\left.\int \sin x d x=-\cos x\right]$
Applying the limits after integration, we get
$\mathrm{I}_{2}=\left[-\frac{\cos \frac{\pi \mathrm{x}}{4}}{\frac{\pi}{4}}\right]_{0}^{1}=-\frac{4}{\pi}\left[\cos \frac{\pi}{4} \times 1-\cos \frac{\pi}{4} \times 0\right]=-\frac{4}{\pi}\left[\cos \frac{\pi}{4}-\cos 0\right]$
$\mathrm{I}_{2}=\frac{4}{\pi}\left(1-\frac{1}{\sqrt{2}}\right)=\frac{4}{\pi}-\frac{2 \sqrt{2}}{\pi}$
As, $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
Hence, $\mathrm{I}=1+\frac{4}{\pi}-\frac{2 \sqrt{2}}{\pi}$
Therefore, $\int_{0}^{1}\left(\mathrm{xe}^{\mathrm{x}}+\sin \frac{\pi \mathrm{x}}{4}\right) \mathrm{dx}=1+\frac{4}{\pi}-\frac{2 \sqrt{2}}{\pi}$

EDUGRロSS

$$
\int_{1}^{\sqrt{3}} \frac{d x}{1+x^{2}} \text { equals }
$$

(A) $\frac{\pi}{3}$
(B) $\frac{2 \pi}{3}$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{12}$
21.

Solution:
Let $\mathrm{I}=\int_{1}^{\sqrt{3}} \frac{\mathrm{dx}}{\mathrm{x}^{2}+1}$
$I=\int_{1}^{\sqrt{3}} \frac{d x}{x^{2}+1}$
On integrating using standard form and applying limits, we get

$$
\begin{aligned}
I=\left[\tan ^{-1} x\right]_{1}^{\sqrt{3}}=\left[\tan ^{-1} \sqrt{3}-\tan ^{-1} 1\right] & =\frac{\pi}{3}-\frac{\pi}{4} \\
& {\left[\text { w.k.t } \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c\right.}
\end{aligned}
$$

$$
\mathrm{I}=\frac{4 \pi-3 \pi}{12}={ }_{\pi / 12}
$$

Therefore, $\int_{1}^{\sqrt{3}} \frac{\mathrm{dx}}{\mathrm{x}^{2}+1}=\pi / 12$
Hence, option (D) is correct.
22.

$$
\int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}} \text { equals }
$$

(A) $\frac{\pi}{6}$
(B) $\frac{\pi}{12}$
(C) $\frac{\pi}{24}$
(D) $\frac{\pi}{4}$

Solution:

Let $\mathrm{I}=\int_{0}^{\frac{2}{3}} \frac{\mathrm{dx}}{4+9 \mathrm{x}^{2}}$

$$
I=\int_{0}^{3} \frac{d x}{4+9 x^{2}}
$$

Now, taking 9 common from Denominator in I, we have

$$
I=\frac{1}{9} \int_{0}^{\frac{2}{3}} \frac{d x}{\frac{4}{9}+x^{2}}=\frac{1}{9} \int_{0}^{\frac{2}{3}} \frac{d x}{\left(\frac{2}{3}\right)^{2}+x^{2}} \quad\left[\text { w.k.t } \quad \int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c\right]
$$

Using the standard form for integrating and applying the limits, we get

$$
\mathrm{I}=\frac{1}{9} \times \frac{3}{2}\left[\tan ^{-1} \frac{\mathrm{x}}{\frac{2}{3}}\right]_{0}^{\frac{2}{3}}=\frac{1}{9} \times \frac{3}{2}\left[\tan ^{-1} \frac{3 \mathrm{x}}{2}\right]_{0}^{\frac{2}{3}}
$$

$$
I=\frac{1}{6}\left[\tan ^{-1} \frac{3}{2} \times \frac{2}{3}-\tan ^{-1} 0\right]=\frac{1}{6}\left[\tan ^{-1} 1-\tan ^{-1} 0\right]
$$

$$
I=\frac{1}{6} \times\left(\frac{\pi}{4}-0\right)=\pi / 24
$$

$$
\text { Therefore, } \int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}}=\pi / 24
$$

Hence, option (C) is correct.

EXERCISE 7.10

the integrals in Exercise 1 to 8 by substitution.
1.

$$
\int_{0}^{1} \frac{x}{x^{2}+1} d x
$$

Solution:
Given integral: $\int_{0}^{1} \frac{x}{x^{2}+1} d x$
Let's take $\mathrm{x}^{2}+1=\mathrm{t}$
Then, $2 \mathrm{xdx}=\mathrm{dt}$
$x d x=1 / 2 d t$
When $\mathrm{x}=0, \mathrm{t}=1$ and when $\mathrm{x}=1, \mathrm{t}=2$
Now,

$$
\begin{aligned}
& \begin{aligned}
& \int_{0}^{1} \frac{\mathrm{x}}{\mathrm{x}^{2}+1} \mathrm{dx}=\int_{1}^{2} \frac{d t}{2 t} \\
&=\frac{1}{2} \int_{1}^{2} \frac{d t}{t} \\
&=\frac{1}{2}\left[\log |t|_{1}^{2}\right. \\
&=\frac{1}{2}[\log 2-\log 1] \\
&=\frac{1}{2} \log 2 \\
& \text { 2. } \int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{5} \phi d \phi
\end{aligned}
\end{aligned}
$$

Solution:

EDUGRロSS

$$
\begin{aligned}
& \qquad \int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{5} \phi d \phi \\
& \text { Given integral: } \\
& \text { Let's consider } \\
& I=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{5} \phi d \phi=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{4} \phi \cos \phi d \phi
\end{aligned}
$$

$I=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi}\left(\cos ^{2} \phi\right)^{2} \cos \phi d \phi=\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi}\left(1-\sin ^{2} \phi\right)^{2} \cos \phi d \phi$
Also, let $\sin \phi=\mathrm{t} \Rightarrow \cos \phi \mathrm{d} \phi=\mathrm{dt}$
So when, $\phi=0, \mathrm{t}=0$ and when $\phi=\frac{\pi}{2}, \mathrm{t}=1$
Hence,

$$
I=\int_{0}^{1} \sqrt{t}\left(1-t^{2}\right)^{2} d t
$$

Expanding and splitting the integrals, we have

$$
\begin{aligned}
& =\int_{0}^{1} t^{\frac{1}{2}}\left(1+t^{4}-2 t^{2}\right) d t \\
& =\int_{0}^{1}\left(t^{\frac{1}{2}}+t^{\frac{9}{2}}-2 t^{\frac{5}{2}}\right) d t
\end{aligned}
$$

Integrating the terms individually by standard form, we get

$$
\begin{aligned}
& =\left[\frac{t^{\frac{3}{2}}}{\frac{3}{2}}+\frac{t^{\frac{11}{2}}}{\frac{11}{2}}+\frac{2 t^{\frac{7}{2}}}{\frac{7}{2}}\right]_{0}^{1} \\
& =\frac{2}{3}+\frac{2}{11}-\frac{4}{7}
\end{aligned}
$$

$$
=\frac{154+42-132}{231}=\frac{64}{231}
$$

$$
\text { Therefore, } \int_{0}^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^{5} \phi \mathrm{~d} \phi \quad \text { }=64 / 231
$$

$$
\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x
$$

Solution:

Given integral: $\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{x^{2}+1}\right) d x$
Let us take $\mathrm{x}=\tan \theta \Rightarrow \mathrm{dx}=\sec ^{2} \theta \mathrm{~d} \theta$
So when, $x=0, \theta=0$ and when $x=1, \theta=\pi / 4$

$$
\text { Let }=\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{x^{2}+1}\right) d x
$$

Now, by substitution I becomes

$$
I=\int_{0}^{\frac{\pi}{4}} \sin ^{-1}\left(\frac{2 \tan \theta}{\tan ^{2} \theta+1}\right) \sec ^{2} \theta d \theta
$$

Transforming the trigonometric ratio into its simple form, we have

$$
I=\int_{0}^{\frac{\pi}{4}} \sin ^{-1}(\sin 2 \theta) \sec ^{2} \theta d \theta
$$

Applying the inverse trigonometric ratio, we get

$$
\begin{aligned}
& I=\int_{0}^{\frac{\pi}{4}} 2 \theta \sec ^{2} \theta d \theta \\
& I=2 \int_{0}^{\frac{\pi}{4}} \theta \sec ^{2} \theta d \theta
\end{aligned}
$$

Now, by applying product rule as:

$$
\begin{aligned}
& \int u . v d x=u . \int v d x-\int \frac{d u}{d x} \cdot\left\{\int v d x\right\} d x \\
& I=2\left[\theta \int \sec ^{2} \theta d \theta-\int \frac{d}{d \theta} \theta \cdot\left\{\int \sec ^{2} \theta d \theta\right\} d \theta\right]_{0}^{\frac{\pi}{4}} \\
& =2\left[\theta \tan \theta-\int 1 \cdot \tan \theta d \theta\right]_{0}^{\frac{\pi}{4}} \\
& =2[\theta \tan \theta-\log |\sec \theta|]_{0}^{\frac{\pi}{4}}
\end{aligned}
$$

$$
\begin{aligned}
& =2\left[\frac{\pi}{4} \tan \frac{\pi}{4}-\log \left|\sec \frac{\pi}{4}\right|-0+\log |\sec 0|\right] \\
& =2\left[\frac{\pi}{4}-\log (\sqrt{2})+\log 1\right] \\
& =2\left[\frac{\pi}{4}-\frac{1}{2} \log (2)\right] \\
& =\frac{\pi}{2}+\log (2)
\end{aligned}
$$

Therefore, $\int_{0}^{1} \sin ^{-1}\left(\frac{2 x}{x^{2}+1}\right) \mathrm{dx}=\frac{\pi}{2}+\log (2)$

$$
\text { 4. } \int_{0}^{2} x \sqrt{x+2}\left(\text { Put } x+2=t^{2}\right)
$$

Solution:

Given integral:

$$
\int_{0}^{2} x \sqrt{x+2} d x
$$

Let's take $\mathrm{x}+2=\mathrm{t}^{2} \Rightarrow \mathrm{dx}=2 \mathrm{t} \mathrm{dt}$
And, $x=t^{2}-2$
So when, $x=0, t=\sqrt{2}$ and when $x=2, t=2$
Hence, after substitution the given integral can be written as:
$\int_{0}^{2} x \sqrt{x+2} d x=\int_{\sqrt{2}}^{2}\left(t^{2}-2\right) \sqrt{t^{2}} 2 t d t$
Taking the square root we have,

$$
\begin{aligned}
& =2 \int_{\sqrt{2}}^{2}\left(\mathrm{t}^{2}-2\right) \mathrm{t} \cdot \mathrm{tdt} \\
& =2 \int_{\sqrt{2}}^{2}\left(\mathrm{t}^{2}-2\right) \mathrm{t}^{2} \mathrm{dt}
\end{aligned}
$$

$=2 \int_{\sqrt{2}}^{2}\left(t^{4}-2 t^{2}\right) d t$
On integrating the terms separately, we get
$=2\left[\frac{\mathrm{t}^{5}}{5}-\frac{2 \mathrm{t}^{3}}{3}\right]_{\sqrt{2}}^{2}$
Applying the limits after integration, we have
$=2\left[\frac{(2)^{5}}{5}-\frac{2(2)^{3}}{3}-\frac{(\sqrt{2})^{5}}{5}+\frac{2(\sqrt{2})^{3}}{3}\right]_{\sqrt{2}}^{2}$
$=2\left[\frac{32}{5}-\frac{16}{3}-\frac{4 \sqrt{2}}{5}+\frac{4 \sqrt{2}}{3}\right]$
$=2\left[\frac{96-80-12 \sqrt{2}+20 \sqrt{2}}{15}\right]$
$=2\left[\frac{16+8 \sqrt{2}}{15}\right]$
$=\left[\frac{16(2+\sqrt{2}}{15}\right]$
[Taking L.C.M for addition]
[After taking common terms]
$=\frac{16 \sqrt{2}(\sqrt{2}+1)}{15}$
Therefore, $\int_{0}^{2} \mathrm{x} \sqrt{\mathrm{x}+2} \mathrm{dx}=\frac{16 \sqrt{2}(\sqrt{2}+1)}{15}$
5. $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x$

Solution:

Let $\cos x=t$
On differentiating,
$-\sin \mathrm{xdx}=\mathrm{dt}$
$\sin x d x=-d t$
So, when $\mathrm{x}=0, \mathrm{t}=1$ and when $\mathrm{x}=\pi / 2, \mathrm{t}=0$
Hence, the given integration upon substitution will change as
$\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^{2} x} d x=-\int_{1}^{0} \frac{d t}{1+t^{2}}$
On integrating, we have

$$
\begin{aligned}
&-\int_{1}^{0} \frac{\mathrm{dt}}{1+\mathrm{t}^{2}}=-\left[\frac{1}{1} \cdot \tan ^{-1} \mathrm{t}\right]_{1}^{0} \quad[\text { As w.k.t } \\
&=-\left[\tan ^{-1} 0-\tan ^{-1} 1\right] \\
&=-\left[0-\frac{\pi}{4}\right] \\
&=-\left[-\frac{\pi}{4}\right] \\
&=\frac{\pi}{4} \\
& \text { Therefore, } \mathrm{x}^{2} \\
& \int_{0}^{\frac{\pi}{2}} \frac{1}{\mathrm{a}} \cdot \tan ^{-1} \frac{\mathrm{x}}{\mathrm{a}}+\mathrm{C} \\
& \hline
\end{aligned}
$$

6.

$$
\int_{0}^{2} \frac{d x}{x+4-x^{2}}
$$

Solution:

Given integral: $\int_{0}^{2} \frac{d x}{x+4-x^{2}}$
$\int_{0}^{2} \frac{d x}{x+4-x^{2}}=\int_{0}^{2} \frac{d x}{-\left(x^{2}-x-4\right)}$
The given integral can be written as,
$\int_{0}^{2} \frac{d x}{-\left(x^{2}-x+\frac{1}{4}-\frac{1}{4}-4\right)}$
[By completing its square method]
$=\int_{0}^{2} \frac{d x}{-\left[\left(x-\frac{1}{2}\right)^{2}-\frac{17}{4}\right]}$
$=\int_{0}^{2} \frac{d x}{\left[\left(\frac{\sqrt{17}}{2}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}\right]}$
Now, taking suitable substitution
Let $\mathrm{x}-\frac{1}{2}=\mathrm{t} \Rightarrow \mathrm{dx}=\mathrm{dt}$
So when $x=0, t=-\frac{1}{2}$ and when $x=2, t=\frac{3}{2}$
After substitution, the integral changes as:
$\int_{0}^{2} \frac{d x}{\left[\left(\frac{\sqrt{17}}{2}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}\right]}=\int_{-\frac{1}{2}}^{\frac{3}{2}} \frac{d t}{\left[\left(\frac{\sqrt{17}}{2}\right)^{2}-(t)^{2}\right]}$ $\left[\right.$ As w.k.t, $\int \frac{d x}{\left[(a)^{2}-(x)^{2}\right]}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$
On integrating, we have

$$
\int_{-\frac{1}{2}}^{\frac{3}{2}} \frac{d t}{\left.\left(\frac{\sqrt{17}}{2}\right)^{2}-(t)^{2}\right]}=\left[\frac{1}{2\left(\frac{\sqrt{17}}{2}\right)} \log \frac{\left(\frac{\sqrt{17}}{2}+t\right)}{\frac{\sqrt{17}}{2}-t}\right]_{-\frac{1}{2}}^{\frac{3}{2}}
$$

Applying limits,

$$
=\frac{1}{\sqrt{17}}\left[\log \frac{\left(\frac{\sqrt{17}}{2}+\frac{3}{2}\right)}{\frac{\sqrt{17}}{2}-\frac{3}{2}}-\log \frac{\left(\frac{\sqrt{17}}{2}-\frac{1}{2}\right)}{\frac{\sqrt{17}}{2}+\frac{1}{2}}\right]
$$

$$
=\frac{1}{\sqrt{17}}\left[\log \frac{(\sqrt{17}+3)}{\sqrt{17}-3}-\log \frac{(\sqrt{17}-1)}{\sqrt{17}+1}\right]
$$

$$
=\frac{1}{\sqrt{17}}\left[\log \left\{\frac{(\sqrt{17}+3)}{\sqrt{17}-3} \times \frac{(\sqrt{17}+1)}{\sqrt{17}-1}\right\}\right]
$$

$$
=\frac{1}{\sqrt{17}}\left[\log \left\{\frac{(\sqrt{17}+3)(\sqrt{17}+1)}{(\sqrt{17}-3)(\sqrt{17}-1)}\right\}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \left[\frac{17+3+4 \sqrt{17}}{17+3-4 \sqrt{17}}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \left[\frac{20+4 \sqrt{17}}{20-4 \sqrt{17}}\right]
$$

$$
=\frac{1}{\sqrt{17}} \log \left[\frac{5+\sqrt{17}}{5-\sqrt{17}}\right]
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{17}} \log \left[\frac{(5+\sqrt{17})(5+\sqrt{17})}{(5-\sqrt{17})(5+\sqrt{17})}\right] \\
& =\frac{1}{\sqrt{17}} \log \left[\frac{(25+17+10 \sqrt{17})}{25-17}\right] \\
& =\frac{1}{\sqrt{17}} \log \left[\frac{(42+10 \sqrt{17})}{8}\right]=\frac{1}{\sqrt{17}} \log \left[\frac{(21+5 \sqrt{17})}{4}\right] \\
& \text { [Rationalisi }] \\
& \int_{-1}^{1} \frac{d x}{x^{2}+2 x+5} \\
& \text { Solution: }
\end{aligned}
$$

Given integral: $\int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}$
$=\int_{-1}^{1} \frac{d x}{\left(x^{2}+2 x+1\right)+4}$
$=\int_{-1}^{1} \frac{d x}{(x+1)^{2}+(2)^{2}}$
[By completing the square]
Taking substitution, $\mathrm{x}+1=\mathrm{t}$
So, $\mathrm{dx}=\mathrm{dt}$
When $\mathrm{x}=-1, \mathrm{t}=0$ and when $\mathrm{x}=1, \mathrm{t}=2$
Hence, the given integral is now changed as

$$
\begin{aligned}
\int_{-1}^{1} \frac{d x}{(x+1)^{2}+(2)^{2}}= & \int_{0}^{2} \frac{d t}{(t)^{2}+(2)^{2}} \\
& \quad\left[\text { As w.k.t } \int \frac{d t}{x^{2}+a^{2}}=\frac{1}{a} \cdot \tan ^{-1} \frac{x}{a}+C\right.
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\begin{aligned}
\int_{0}^{2} \frac{\mathrm{dt}}{(\mathrm{t})^{2}+(2)^{2}} & =\left[\frac{1}{2} \tan ^{-1} \frac{\mathrm{t}}{2}\right]_{0}^{2} \\
& =\frac{1}{2} \tan ^{-1} 1-\frac{1}{2} \tan ^{-1} 0 \\
& =\frac{1}{2}\left(\frac{\pi}{4}\right)=\frac{\pi}{8}
\end{aligned} \\
\text { Therefore, } \int_{-1}^{1} \frac{d x}{x^{2}+2 x+5}=\frac{\pi}{8}
\end{aligned}
\end{aligned}
$$

$\int_{1}^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x} d x$
Solution:

EDUGRロSS

Given integral: $\int_{1}^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x} d x$
Taking substitution, $2 \mathrm{x}=\mathrm{t} \Rightarrow 2 \mathrm{dx}=\mathrm{dt}$
So when $\mathrm{x}=1, \mathrm{t}=2$ and when $\mathrm{x}=2, \mathrm{t}=4$
Hence, the given integral will change as:

$$
\begin{aligned}
& \int_{1}^{2}\left(\frac{1}{\mathrm{x}}-\frac{1}{2 \mathrm{x}^{2}}\right) \mathrm{e}^{2 \mathrm{x}} \mathrm{dx}=\int_{2}^{4}\left(\frac{1}{\left(\frac{\mathrm{t}}{2}\right)}-\frac{1}{2\left(\frac{\mathrm{t}}{2}\right)^{2}}\right) \mathrm{e}^{t}\left(\frac{\mathrm{dt}}{2}\right) \\
& =\frac{1}{2} \int_{2}^{4}\left(\frac{2}{\mathrm{t}}-\frac{2}{\mathrm{t}^{2}}\right) \mathrm{e}^{\mathrm{t}} \mathrm{dt} \\
& =\int_{2}^{4} \frac{1}{2} \cdot(2)\left(\frac{1}{\mathrm{t}}-\frac{1}{\mathrm{t}^{2}}\right) \mathrm{e}^{\mathrm{t} d t} \\
& =\int_{2}^{4}\left(\frac{1}{\mathrm{t}}-\frac{1}{\mathrm{t}^{2}}\right) \mathrm{e}^{\mathrm{t}} \mathrm{dt}
\end{aligned}
$$

Further, let $1 / t=f(t)$
Then we have, $f^{\prime}(t)=-1 / t^{2}$
Converting the integral into the required form,

$$
\begin{aligned}
& \int_{2}^{4}\left(\frac{1}{t}-\frac{1}{t^{2}}\right) e^{t} d t=\int_{2}^{4}\left(f(t)+f^{\prime}(t)\right) e^{t} d t \\
& \quad\left[\text { As, w.k.t } \int\left(f(x)+f^{\prime}(x)\right) e^{x} d x=e^{x} f(x)+C\right]
\end{aligned}
$$

Up to integration, we get

$$
\begin{aligned}
& \int_{2}^{4}\left(f(t)+f^{\prime}(t)\right) e^{t} d t=\left[e^{t} f(t)\right]_{2}^{4} \\
&=\left[e^{t} \cdot \frac{1}{t}\right]_{2}^{4} \\
&=\frac{e^{4}}{4}-\frac{e^{2}}{2} \\
&=\frac{e^{4}-2 e^{2}}{4}=\frac{e^{2}\left(e^{2}-2\right)}{4} \\
& \text { Therefore, } \int_{1}^{2}\left(\frac{1}{x}-\frac{1}{2 x^{2}}\right) e^{2 x} d x=\frac{e^{2}\left(e^{2}-2\right)}{4}
\end{aligned}
$$

Choose the correct answer in Exercise 9 and 10.
The value of the integral $\int_{\frac{1}{3}}^{1} \frac{\left(x-x^{3}\right)^{\frac{1}{3}}}{x^{4}} d x$ is
(A) 6
(B) 0
(C) 3
(D) 4

Solution:

Given integral:

$$
\int_{\frac{1}{3}}^{1}\left(\frac{\left(x-x^{3}\right)^{\frac{1}{3}}}{x^{4}}\right) d x
$$

EDUGRロSS

Let $I=\int_{\frac{1}{3}}^{1}\left(\frac{\left(x-x^{3}\right)^{\frac{1}{3}}}{x^{4}}\right) d x$
Now, taking $x=\sin \theta \Rightarrow d x=\cos \theta d \theta$
So when, $\quad \mathrm{x}=\frac{1}{3}, \theta=\sin ^{-1}\left(\frac{1}{3}\right)$ and when $\mathrm{x}=1, \theta=\pi / 2$
Hence, after substitution the given integral will become:

$$
\begin{aligned}
I & =\int_{\sin ^{-2}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}}\left(\frac{\left(\sin \theta-\sin ^{3} \theta\right)^{\frac{1}{3}}}{\sin ^{4} \theta}\right) \cos \theta \mathrm{d} \theta \\
& =\int_{\sin ^{-1}\left(\frac{1}{3}\right.}^{\frac{\pi}{2}}\left(\frac{(\sin \theta)^{\frac{1}{3}}\left(1-\sin ^{2} \theta\right)^{\frac{1}{3}}}{\sin ^{4} \theta}\right) \cos \theta \mathrm{d} \theta
\end{aligned}
$$

[Taking common]

$$
=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}}\left(\frac{(\sin \theta)^{\frac{1}{3}}\left(\cos ^{2} \theta\right)^{\frac{1}{3}}}{\sin ^{4} \theta}\right) \cos \theta \mathrm{d} \theta
$$

[Simplifying by using exponents properties]

$$
=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}}\left(\frac{(\cos \theta)^{\frac{5}{3}}}{(\sin \theta)^{\frac{5}{3}}}\right) \cdot \operatorname{cosec}^{2} \theta d \theta
$$

[Simplifying by using trigonometric identity]

$$
\begin{aligned}
& =\int_{\sin ^{-1}\left(\frac{1}{3}\right.}^{\frac{\pi}{2}}\left(\frac{(\sin \theta)^{\frac{1}{3}}(\cos \theta)^{\frac{2}{3}}}{\sin ^{2} \theta \cdot \sin ^{2} \theta}\right) \cos \theta d \theta \\
& =\int_{\sin ^{-1}\left(\frac{1}{3}\right.}^{\frac{\pi}{2}}\left(\frac{(\cos \theta)^{\frac{2}{3}+1}}{(\sin \theta)^{2-\frac{1}{3}}}\right) \cdot \frac{1}{\sin ^{2} \theta} d \theta
\end{aligned}
$$

$$
\begin{equation*}
=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}}\left((\cot \theta)^{\frac{5}{3}}\right) \cdot \operatorname{cosec}^{2} \theta d \theta \tag{i}
\end{equation*}
$$

Now, let $\cot \theta=t \Rightarrow-\operatorname{cosec}^{2} \theta d \theta$
So when, $\theta=\sin ^{-1}\left(\frac{1}{3}\right), \mathrm{t}=2 \sqrt{2}$ and when $\theta=\frac{\pi}{2}, \mathrm{t}=0$
After substitution, (i) becomes:
$=\int_{2 \sqrt{2}}^{0}-(\mathrm{t})^{\frac{5}{3}} \cdot \mathrm{dt}$
On integrating and applying limits, we have

$$
=-\left[\frac{(\mathrm{t})^{\frac{5}{3}+1}}{\frac{5}{3}+1}\right]_{2 \sqrt{2}}^{0}
$$

$$
=-\left[\frac{(\mathrm{t})^{\frac{8}{3}}}{\frac{8}{3}}\right]_{2 \sqrt{2}}^{0}
$$

$$
=-\frac{3}{8}\left[(0)^{\frac{8}{3}}-(2 \sqrt{2})^{\frac{8}{3}}\right]
$$

$$
=-\frac{3}{8}\left[-(\sqrt{8})^{\frac{8}{3}}\right]=\frac{3}{8}\left[(8)^{\frac{4}{3}}\right]
$$

$$
=\frac{3}{8}[16]
$$

$$
=6
$$

Therefore, the correct option is (A).

EDUGRロSS

If $f(x)=\int_{0}^{x} t \sin t d t$, then $f^{\prime}(x)$ is
(A) $\cos x+x \sin x$
(B) $x \sin x$
10.
(C) $x \cos x$
(D) $\sin x+x \cos x$

Solution:
Given integral function: $f(x)=\int_{0}^{x} t \sin t d t$
Applying product rule, we have

$$
\int \mathrm{u} . \mathrm{vdx}=\mathrm{u} . \int \mathrm{vdx}-\int \frac{\mathrm{du}}{\mathrm{dx}} \cdot\left\{\int \mathrm{vdx}\right\} \mathrm{dx}
$$

So,

$$
f(x)=t \int_{0}^{x} \sin t d t-\int_{0}^{x}\left\{\left(\frac{d}{d t} t\right) \cdot \int \sin t d t\right\} d t=[t(-\cos t)]_{0}^{x}-\int_{0}^{x}(-\cos t) d t
$$

Applying the limits, we get

$$
=[-t(\cos t)+\sin t]_{0}^{x}
$$

$=-\mathrm{x} \cos \mathrm{x}+\sin \mathrm{x}-0$
Thus, $\mathrm{f}(\mathrm{x})=-\mathrm{x} \cos \mathrm{x}+\sin \mathrm{x}$
On differentiating, we have

$$
f^{\prime}(x)=-\left[x \cdot \frac{d}{d x} \cos x+\cos x \cdot \frac{d}{d x} x+\frac{d}{d x} \sin x\right]
$$

$$
f(x)=-[\{x(-\sin x)\}+\cos x]+\cos x
$$

$$
=x \sin x-\cos x+\cos x
$$

$$
=x \sin x
$$

Therefore, the correct option is (B).

EXERCISE 7.11

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

1. $\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x$

Solution:
Given, $\int_{0}^{\frac{\pi}{2}} \cos ^{2} \mathrm{xdx}$
Let, $I=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x \ldots \ldots(1)$
We know that, $\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}$
By using above formula, the given question can be written as
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \cos ^{2}\left(\frac{\pi}{2}-x\right) d x$
From the standard integration formulae we have
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \sin ^{2}(x) d x \ldots .(2)$
Adding (1) and (2), we get
$2 I=\int_{0}^{\frac{\pi}{2}}\left[\sin ^{2}(x)+\cos ^{2}(x)\right] d x$

EDUGRロSS

By using standard identities the above equation can be written as
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}}[1] d x$
Now by applying the limits we get

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{I}=[\mathrm{x}]_{0}^{\frac{\pi}{2}} \\
& \Rightarrow 2 \mathrm{I}=\frac{\pi}{2}-0
\end{aligned}
$$

$$
\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}
$$

$$
\Rightarrow I=\frac{\pi}{4}
$$

2. $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$

Solution:

Given:

$$
\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x
$$

Let, $I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \ldots$.

As we know that, $\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}$

By using the above formula we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}} d x$
By substituting the standard identities we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x(2)$
Adding (1) and (2), we get

$$
\begin{aligned}
& 2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \\
& \Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}}[1] d x
\end{aligned}
$$

Integrating the above equation and applying the limits we get
$\Rightarrow 2 \mathrm{I}=[\mathrm{x}]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}-0$
$\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}$
$\Rightarrow \mathrm{I}=\frac{\pi}{4}$
3. $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x d x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}$

Solution:

Given $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x$
let, $I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x \ldots \ldots$
As we know that

$$
\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}
$$

By substituting the above formula we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)}{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)+\cos ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)} d x$
Again by substituting the standard identities we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{\frac{3}{2}} x}{\cos ^{\frac{3}{2}} x+\sin ^{\frac{3}{2}} x} d x(2)$
Adding (1) and (2), we get

$$
2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x
$$

The above equation can be written as
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}}[1] d x$
Integrating and applying the limit we get
$\Rightarrow 2 \mathrm{I}=[\mathrm{x}]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}-0$
$\Rightarrow 2 I=\frac{\pi}{2}$
$\Rightarrow I=\frac{\pi}{4}$
4. $\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x d x}{\sin ^{5} x+\cos ^{5} x}$

Solution:

Given:

$$
\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x
$$

let, $I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x$.

As we know that

$$
\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}
$$

By substituting the above formula we get

$$
\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5}\left(\frac{\pi}{2}-x\right)}{\sin ^{5}\left(\frac{\pi}{2}-x\right)+\cos ^{5}\left(\frac{\pi}{2}-x\right)} d x
$$

The above equation can be written as

$$
\begin{equation*}
\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{5} x}{\cos ^{5} x+\sin ^{5} x} d x \tag{2}
\end{equation*}
$$

Adding (1) and (2), we get
$2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{5} x+\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x$
The above equation becomes

$$
\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}}[1] d x
$$

Now by integrating and applying the limits we get
$\Rightarrow 2 \mathrm{I}=[\mathrm{x}]_{0}^{\frac{\pi}{2}}$
$\Rightarrow 2 I=\frac{\pi}{2}-0$
$\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}$
$\Rightarrow \mathrm{I}=\frac{\pi}{4}$
5. $\int_{-5}^{5}|x+2| d x$

Solution:

Given: $\int_{-5}^{5}|x+2| d x$
As we can see that $(x+2) \leq 0$ on $[-5,-2]$ and $(x+2) \geq 0$ on $[-2,5]$
As we know that

$$
\left\{\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x\right\}
$$

Now by substituting the formula we get
$\Rightarrow I=\int_{-5}^{-2}-(x+2) d x+\int_{-2}^{5}(x+2) d x$
Integrating and applying the limits we get
$\Rightarrow I=-\left[\frac{x^{2}}{2}+2 x\right]_{-5}^{-2}+\left[\frac{x^{2}}{2}+2 x\right]_{-2}^{5}$
On simplifying
$\Rightarrow \mathrm{I}=-\left[\frac{(-2)^{2}}{2}+2(-2)-\frac{(-5)^{2}}{2}-2(-5)\right]+\left[\frac{(5)^{2}}{2}+2(5)-\frac{(-2)^{2}}{2}-2(-2)\right]$

$$
\Rightarrow \mathrm{I}=-\left[2-4-\frac{25}{2}+10\right]+\left[\frac{25}{2}+10-2+4\right]
$$

On computing we get
$\Rightarrow \mathrm{I}=-2+4+\frac{25}{2}-10+\frac{25}{2}+10-2+4$
$\Rightarrow \mathrm{I}=29$
6. $\int_{2}^{8}|x-5| d x$

Solution:

Given $\int_{2}^{8}|x-5| d x$
As we can see that $(x-5) \leq 0$ on $[2,5]$ and $(x+2) \geq 0$ on $[5,8]$
As we know that

$$
\left\{\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x\right\}
$$

By applying the above formula we get
$\Rightarrow \mathrm{I}=\int_{2}^{5}-(\mathrm{x}-5) \mathrm{dx}+\int_{5}^{8}(\mathrm{x}-5) \mathrm{dx}$
Now by integrating the above equation
$\Rightarrow \mathrm{I}=-\left[\frac{\mathrm{x}^{2}}{2}-5 \mathrm{x}\right]_{2}^{5}+\left[\frac{\mathrm{x}^{2}}{2}-5 \mathrm{x}\right]_{5}^{8}$
Now by applying the limits we get

$$
\Rightarrow \mathrm{I}=-\left[\frac{(5)^{2}}{2}-5(5)-\frac{(2)^{2}}{2}+5(2)\right]+\left[\frac{(8)^{2}}{2}-5(8)-\frac{(5)^{2}}{2}+5(5)\right]
$$

On computing

$$
\begin{aligned}
& \Rightarrow \mathrm{I}=-\left[\frac{25}{2}-25-2+10\right]+\left[\frac{64}{2}-40-\frac{25}{2}+25\right] \\
& \Rightarrow \mathrm{I}=-\frac{25}{2}+17+32-15-\frac{25}{2}
\end{aligned}
$$

On simplifying we get

$$
\begin{aligned}
& \Rightarrow \mathrm{I}=34-25 \\
& \Rightarrow \mathrm{I}=9
\end{aligned}
$$

7. $\int_{0}^{1} x(1-x)^{n} d x$

Solution:
Given: $\int_{0}^{1} \mathrm{x}(1-\mathrm{x})^{\mathrm{n}} \mathrm{dx}$
let, $I=\int_{0}^{1} x(1-x)^{n} d x$
As we know that

$$
\left\{\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x}) \mathrm{dx}\right\}
$$

By using the above formula we get
$\Rightarrow \mathrm{I}=\int_{0}^{1}(1-\mathrm{x})(1-(1-\mathrm{x}))^{\mathrm{n}} \mathrm{dx}$
The above equation can be written as
$\Rightarrow \mathrm{I}=\int_{0}^{1}(1-\mathrm{x})(\mathrm{x})^{\mathrm{n}} \mathrm{dx}$
By multiplying we get
$\Rightarrow \mathrm{I}=\int_{0}^{1}(\mathrm{x})^{\mathrm{n}}-(\mathrm{x})^{\mathrm{n}+1} \mathrm{dx}$
On integrating
$\Rightarrow \mathrm{I}=\left[\frac{(\mathrm{x})^{\mathrm{n}+1}}{\mathrm{n}+1}-\frac{(\mathrm{x})^{\mathrm{n}+2}}{\mathrm{n}+2}\right]_{0}^{1}$
Now by applying the limits we get
$\Rightarrow \mathrm{I}=\left[\frac{1}{\mathrm{n}+1}-\frac{1}{\mathrm{n}+2}\right]$
$\Rightarrow \mathrm{I}=\left[\frac{(\mathrm{n}+2)-(\mathrm{n}+1)}{(\mathrm{n}+1)(\mathrm{n}+2)}\right]$
On simplification
$\Rightarrow I=\left[\frac{1}{(n+1)(n+2)}\right]$
8. $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$

Wisdamising Knawledae

Solution:

Given: $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x$
let, $I=\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x \ldots . .(1)$
As we know that

$$
\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}
$$

By using the above formula we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x$
Again we know the standard formula
$\left\{\tan (\mathrm{A}-\mathrm{B})=\frac{\tan (\mathrm{A})-\tan (\mathrm{B})}{1+\tan (\mathrm{A}) \tan (\mathrm{B})}\right\}$
By substituting the above formula we get
$\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \log \left[1+\frac{\tan \left(\frac{\pi}{4}\right)-\tan (x)}{1+\tan \left(\frac{\pi}{4}\right) \tan (x)}\right] d x$
Applying the values we get
$\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \log \left[1+\frac{1-\tan (\mathrm{x})}{1+\tan (\mathrm{x})}\right] \mathrm{dx}$

On simplification the above equation can be written as
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log \left[\frac{2}{1+\tan (x)}\right] d x$
Now by applying log formula we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \log [2] d x-\int_{0}^{\frac{\pi}{4}} \log [1+\tan (x)] d x$
From equation (1) we can write as
$\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \log [2] \mathrm{dx}-\mathrm{I}$
On integration
$\Rightarrow 2 \mathrm{I}=[\mathrm{x} \log 2]_{0}^{\frac{\pi}{4}}$
Now by applying the limits we get

$$
\Rightarrow 2 \mathrm{I}=\frac{\pi}{4} \log 2-0
$$

$$
\Rightarrow \mathrm{I}=\frac{\pi}{8} \log 2
$$

9. $\int_{0}^{2} x \sqrt{2-x} d x$

Solution:

Given:

$$
\int_{0}^{2} \mathrm{x} \sqrt{2-\mathrm{x}} \mathrm{dx}
$$

let, $I=\int_{0}^{2} x \sqrt{2-x} d x \ldots$.
As we know that

$$
\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}
$$

By using the above formula we get
$\Rightarrow \mathrm{I}=\int_{0}^{2}(2-\mathrm{x}) \sqrt{2-(2-\mathrm{x})} \mathrm{dx}$
On simplification the above equation can be written as
$\Rightarrow \mathrm{I}=\int_{0}^{2}(2-\mathrm{x}) \sqrt{(\mathrm{x})} \mathrm{dx}$
On multiplication we get
$\Rightarrow I=\int_{0}^{2}\left(2 x^{\frac{1}{2}}-x^{\frac{3}{2}}\right) d x$
On integration
$\Rightarrow I=\left[2\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)-\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right]_{0}^{2}$
$\Rightarrow \mathrm{I}=\left[\frac{4}{3}\left(\mathrm{x}^{\frac{3}{2}}\right)-\frac{2}{5}\left(\mathrm{x}^{\frac{5}{2}}\right)\right]_{0}^{2}$
Now by applying the limits the above equation can be written as

$$
\Rightarrow \mathrm{I}=\left[\frac{4}{3}\left((2)^{\frac{3}{2}}\right)-\frac{2}{5}\left((2)^{\frac{5}{2}}\right)\right]
$$

By computing
$\Rightarrow \mathrm{I}=\frac{4}{3} \times 2 \sqrt{2}-\frac{2}{5} \times 4 \sqrt{2}$
$\Rightarrow I=\frac{8 \sqrt{2}}{3}-\frac{8 \sqrt{2}}{5}$
On simplification
$\Rightarrow \mathrm{I}=\frac{40 \sqrt{2}-24 \sqrt{2}}{15}$
$\Rightarrow \mathrm{I}=\frac{16 \sqrt{2}}{15}$
10. $\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x$

Solution:

Given: $\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x$
let, $I=\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x$
Now by applying $\operatorname{Sin} 2 \mathrm{x}$ formula we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{2 \log \sin x-\log (2 \sin x \cos x)\} d x$

Applying log formula we can write above equation as
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{2 \log \sin x-\log (2)-\log (\sin x)-\log (\cos x)\} d x$
On simplification
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{\log \sin x-\log 2-\log \cos x\} d x \ldots$.
As we know that

$$
\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}
$$

By using the above formula we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\left\{\log \sin \left(\frac{\pi}{2}-x\right)-\log 2-\log \cos \left(\frac{\pi}{2}-x\right)\right\} d x$
Using allied angles formulae, the above equation becomes
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\{\log \cos x-\log 2-\log \sin x\} d x \ldots$ (2)
Adding (1) and (2), we get
$2 I=\int_{0}^{\frac{\pi}{2}}(-\log 2-\log 2) d x$
By taking common

$$
2 I=-2 \log 2 \int_{0}^{\frac{\pi}{2}}(1) d x
$$

On integrating we get

$$
\Rightarrow 2 \mathrm{I}=-2 \log 2[\mathrm{x}]_{0}^{\frac{\pi}{2}}
$$

Now by applying the limits
$\Rightarrow 2 \mathrm{I}=-2 \log 2\left[\frac{\pi}{2}-0\right]$
$\Rightarrow 2 \mathrm{I}=-2 \log 2\left(\frac{\pi}{2}\right)$
On simplification we get
$\Rightarrow \mathrm{I}=\frac{\pi}{2}(-\log 2)$
$\Rightarrow \mathrm{I}=\frac{\pi}{2}\left(\log \frac{1}{2}\right)$
11. $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x d x$

Solution:

As we can see $f(x)=\sin ^{2} x$ and $f(-x)=\sin ^{2}(-x)=(\sin (-x))^{2}=(-\sin x)^{2}=\sin ^{2} x$.
That is $f(x)=f(-x)$
So, $\sin ^{2} x$ is an even function.
It is also known that if $f(x)$ is an even function then, we have

$$
\left\{\int_{-a}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=2 \int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}\right\}
$$

Now by using this formula the given question can be written as

$$
\Rightarrow I=2 \cdot \int_{0}^{\frac{\pi}{2}}\left(\sin ^{2} x\right) d x
$$

Now by substituting $\sin ^{2} x$ formula we get
$\Rightarrow I=2 \cdot \int_{0}^{\frac{\pi}{2}} \frac{1-\cos 2 x}{2} d x$
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}(1-\cos 2 x) d x$
On integrating we get
$\Rightarrow I=\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}}$
Now by applying the limits
$\Rightarrow \mathrm{I}=\frac{\pi}{2}-\sin \pi-0+\sin 0$
$\Rightarrow I=\frac{\pi}{2}$
12. $\int_{0}^{\pi} \frac{x d x}{1+\sin x}$

Solution:

Given: $\int_{0}^{\pi} \frac{x}{1+\sin \mathrm{x}} \mathrm{dx}$

$$
\begin{equation*}
\text { let, } I=\int_{0}^{\pi} \frac{x}{1+\sin x} d x \ldots \ldots \tag{1}
\end{equation*}
$$

As we know that

$$
\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}
$$

By using above formula we get
$\Rightarrow \mathrm{I}=\int_{0}^{\pi} \frac{(\pi-\mathrm{x})}{1+\sin (\pi-\mathrm{x})} \mathrm{dx}$
Now by multiplying and simplifying the equation we get
$\Rightarrow I=\int_{0}^{\pi} \frac{(\pi-x)}{1+\sin x} d x \ldots \ldots$
Adding (1) and (2), we get

$$
\begin{aligned}
& 2 I=\int_{0}^{\pi} \frac{(\pi-x)+x}{1+\sin x} d x \\
& 2 I=\int_{0}^{\pi} \frac{\pi}{1+\sin x} d x
\end{aligned}
$$

Now by multiplying and dividing the above equation by $(1-\sin \mathrm{x})$ we get

$$
2 I=\pi \int_{0}^{\pi} \frac{(1-\sin x)}{(1+\sin x)(1-\sin x)} d x
$$

EDUGRロSS

On simplification we get
$2 I=\pi \int_{0}^{\pi} \frac{(1-\sin x)}{\cos ^{2} x} d x$
By splitting the numerator we get
$2 I=\pi \int_{0}^{\pi}\left\{\frac{1}{\cos ^{2} x}-\frac{\sin x}{\cos ^{2} x}\right\} d x$
The above equation can be written as
$2 I=\pi \int_{0}^{\pi}\left\{\sec ^{2} x-\tan x \sec x\right\} d x$
$\Rightarrow 2 \mathrm{I}=\pi[\tan \mathrm{x}-\sec \mathrm{x}]_{0}^{\pi}$
$\Rightarrow 2 \mathrm{I}=\pi[2]$
$\Rightarrow I=\pi$
13. $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x$

Solution:

$$
\int_{-}^{\frac{\pi}{2}}\left(\sin ^{7} x\right) d x
$$

Given: ${ }^{-\frac{\pi}{2}}$
let, $I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^{7} x\right) d x$
As we can see $f(x)=\sin ^{7} x$ and $f(-x)=\sin ^{7}(-x)=(\sin (-x))^{7}=(-\sin x)^{7}=-\sin ^{7} x$.

That is $f(x)=-f(-x)$
So, $\sin ^{2} x$ is an odd function.
It is also known that if $f(x)$ is an odd function then,

$$
\left\{\int_{-a}^{a} f(x) d x=0\right\}
$$

$\Rightarrow I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^{7} x\right) d x=0$
14. $\int_{0}^{2 \pi} \cos ^{5} x d x$

Solution:

let, $I=\int_{0}^{2 \pi}\left(\cos ^{5} x\right) d x$
As we see, $f(x)=\cos ^{5} x$ and $f(2 \pi-x)=\cos ^{5}(2 \pi-x)=\cos ^{5} x=f(x)$
because, $\int_{0}^{2 a} f(x) d x=2 \cdot \int_{0}^{a} f(x) d x$, if $f(2 a-x)=f(x)$
and $\int_{0}^{2 a} f(x) d x=0$, if $f(2 a-x)=-f(x)$
$\Rightarrow I=2 \cdot \int_{0}^{\pi}\left(\cos ^{5} x\right) d x$
Now $\left\{\cos ^{5}(\pi-x)=-\cos ^{5} x\right\}$
$\Rightarrow I=0$

EDUGRロSS
15. $\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x$

Solution:

Given: $\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x$
let, $I=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x \ldots \ldots$ (1)
As we know that

$$
\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}
$$

By using the above formula in given equation it can be written as
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\sin \left(\frac{\pi}{2}-x\right)-\cos \left(\frac{\pi}{2}-x\right)}{1+\sin \left(\frac{\pi}{2}-x\right) \cos \left(\frac{\pi}{2}-x\right)} d x$
Now by applying allied angle formula we get

$$
\begin{equation*}
\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\cos x \sin x} d x \tag{2}
\end{equation*}
$$

Adding (1) and (2), we get
$2 I=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x+\cos x-\sin x}{1+\sin x \cos x} d x$
$\Rightarrow 2 I=\int_{0}^{\frac{\pi}{2}} \frac{0}{1+\sin x \cos x} d x$
$\Rightarrow \mathrm{I}=0$
16. $\int_{0}^{\pi} \log (1+\cos x) d x$

Solution:

Given: $\int_{0}^{\pi} \log (1+\cos x) d x$

$$
\begin{equation*}
\text { let, } I=\int_{0}^{\pi} \log (1+\cos x) d x \ldots \ldots \tag{1}
\end{equation*}
$$

As we know that
$\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}$
Now by using the above formula we get
$\Rightarrow I=\int_{0}^{\pi} \log (1+\cos (\pi-x) d x$
Here by allied angle formula we get

$$
\Rightarrow \mathrm{I}=\int_{0}^{\pi} \log (1-\cos x) d x \ldots \ldots(2)
$$

Adding (1) and (2), we get

$$
2 I=\int_{0}^{\pi}\{\log (1+\cos x)+\log (1-\cos x)\} d x
$$

EDUGRロSS

The above equation can be written as

$$
2 I=\int_{0}^{\pi} \log \left(1-\cos ^{2} x\right) d x
$$

By using trigonometric identities we get

$$
\begin{aligned}
& 2 I=\int_{0}^{\pi} \log \left(\sin ^{2} x\right) d x \\
& 2 I=\int_{0}^{\pi} 2 \cdot \log (\sin x) d x
\end{aligned}
$$

$$
2 I=2 \cdot \int_{0}^{\pi} \log (\sin x) d x
$$

$$
I=\int_{0}^{\pi} \log (\sin x) d x \ldots \ldots(3
$$

$$
\text { because, } \int_{0}^{2 a} f(x) d x=2 \cdot \int_{0}^{a} f(x) d x \text {, if } f(2 a-x)=f(x)
$$

Here, if $f(x)=\log (\sin x)$ and $f(\pi-x)=\log (\sin (\pi-x))=\log (\sin x)=f(x)$

$$
\begin{aligned}
& \Rightarrow I=2 \cdot \int_{0}^{\frac{\pi}{2}} \log \sin x d x \ldots(4) \\
& \Rightarrow I=2 \cdot \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-x\right) d x
\end{aligned}
$$

By using trigonometric equation we get
$\Rightarrow I=2 \cdot \int_{0}^{\frac{\pi}{2}} \log \cos x d x$.

Adding (1) and (2), we get

$$
\Rightarrow 2 I=2 \cdot \int_{0}^{\frac{\pi}{2}}(\log \sin x+\log \cos x) d x
$$

Now by adding and subtracting log 2 we get
$\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}}(\log \sin \mathrm{x}+\log \cos \mathrm{x}+\log 2-\log 2) \mathrm{dx}$
The above equation can be written as
$\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}}(\log (2 \sin x \cos x)-\log 2) d x$
Now by splitting the integral we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}}\left(\log (\sin 2 x) d x-\int_{0}^{\frac{\pi}{2}} \log 2 d x\right.$
Let $2 \mathrm{x}=\mathrm{t} \Rightarrow 2 \mathrm{dx}=\mathrm{dt}$
When $\mathrm{x}=0, \mathrm{t}=0$ and when $\mathrm{x}=\pi / 2, \mathrm{t}=\pi$
$\Rightarrow I=\left[\frac{1}{2} \int_{0}^{\pi}(\log (\sin t) d t]-\left(\frac{\pi}{2} \log 2\right)\right.$
$\Rightarrow I=\left[\frac{\mathrm{I}}{2}\right]-\left(\frac{\pi}{2} \log 2\right)$
$\Rightarrow I=-\left(\frac{\pi}{2} \log 2\right)$
$\Rightarrow I=-(\pi \log 2)$

EDUGRロSコ
17. $\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$

Solution:

Given: $\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x$
let, $I=\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x \ldots$.
As we know that

$$
\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}
$$

By using the above formula we get
$\Rightarrow I=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x$.
Adding (1) and (2), we get
$2 I=\int_{0}^{a} \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}} d x$
The above equation becomes,
$\Rightarrow 2 \mathrm{I}=\int_{0}^{\mathrm{a}}[1] \mathrm{dx}$
On integrating we get
$\Rightarrow 2 \mathrm{I}=[\mathrm{x}]_{0}^{\mathrm{a}}$
Now by applying the limits

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{I}=\mathrm{a}-0 \\
& \Rightarrow 2 \mathrm{I}=\mathrm{a} \\
& \Rightarrow \mathrm{I}=\frac{\mathrm{a}}{2}
\end{aligned}
$$

18. $\int_{0}^{4}|x-1| d x$

Solution:

Given: $\int_{0}^{4}|x-1| d x$
As we can see that $(x-1) \leq 0$ when $0 \leq x \leq 1$ and $(x-1) \geq 0$ when $1 \leq x \leq 4$
As we know that

$$
\left\{\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x\right\}
$$

By substituting the above formula we get
$\Rightarrow \mathrm{I}=\int_{0}^{1}-(\mathrm{x}-1) \mathrm{dx}+\int_{1}^{4}(\mathrm{x}-1) \mathrm{dx}$
On integration

$$
\Rightarrow I=-\left[\frac{x^{2}}{2}-x\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{4}
$$

Now by applying the limit we get
$\Rightarrow \mathrm{I}=-\left[\frac{(1)^{2}}{2}-1-\frac{(0)^{2}}{2}+0\right]+\left[\frac{(4)^{2}}{2}-4-\frac{(1)^{2}}{2}+1\right]$
$\Rightarrow \mathrm{I}=-\left[\frac{1}{2}-1\right]+\left[8-4-\frac{1}{2}+1\right]$
$\Rightarrow \mathrm{I}=\frac{1}{2}+5-\frac{1}{2}$
$\Rightarrow \mathrm{I}=5$
19. Show that $\int_{0}^{a} f(x) g(x) d x=2 \int_{0}^{a} f(x) d x$, if f and g are defined as $f(x)=f(a-x)$ and $g(x)+g(a-x)=4$

Solution:

Given: $\int_{0}^{a} f(x) g(x) d x$
let, $I=\int_{0}^{a} f(x) g(x) d x \ldots . .(1)$
As we know that
$\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}$
By using the above formula we get
$\Rightarrow \mathrm{I}=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x}) \mathrm{g}(\mathrm{a}-\mathrm{x}) \mathrm{dx}$
$\Rightarrow \mathrm{I}=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{g}(\mathrm{a}-\mathrm{x}) \mathrm{dx} \ldots \ldots$ (2
Adding (1) and (2), we get

$$
\begin{aligned}
& 2 I=\int_{0}^{a}\{f(x) g(x)+f(x) g(a-x)\} d x \\
& \Rightarrow 2 I=\int_{0}^{a} f(x)\{g(x)+g(a-x)\} d x \\
& \Rightarrow 2 I=\int_{0}^{a} f(x)\{4\} d x \text { as, }\{g(x)+g(a-x)=4\} \\
& \Rightarrow I=\frac{1}{2} \int_{0}^{a} f(x) \times 4 d x \\
& \Rightarrow I=2 \cdot \int_{0}^{a} f(x) d x
\end{aligned}
$$

Choose the correct answer in Exercises 20 and 21.
20. The value of $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x$ is
(A) 0
(B) 2
(C) π
(D) 1

Solution:
(C) π

Explanation:

$$
\int^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x
$$

Given: ${ }^{-\frac{\pi}{2}}$
let, $I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x$

Now by splitting the integrals we get

$$
\Rightarrow I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}\right) d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x \cos x) d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\tan ^{5} x\right) d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1) d x
$$

It is also known that if $f(x)$ is an even function then,

$$
\left\{\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x\right\}
$$

It is also known that if $f(x)$ is an odd function then,
$\Rightarrow I=0+0+0+2 \cdot \int_{0}^{\frac{\pi}{2}}(1) d x\left\{\int_{-a}^{a} f(x) d x=0\right\}$
$\Rightarrow \mathrm{I}=2 \cdot[\mathrm{x}]_{0}^{\frac{\pi}{2}}$
$\Rightarrow \mathrm{I}=2 \cdot \frac{\pi}{2}$
$\Rightarrow \mathrm{I}=\pi$
Correct answer is C
21. The value of $\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x$ is
(A) 2
(B) $3 / 4$
(C) 0
(D) -2

Solution:

(C) 0

Explanation:

Given: $\int_{0}^{2} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x$
let, $I=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x \ldots \ldots$
As we know that
$\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}$
By using the above formula we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin \left(\frac{\pi}{2}-x\right)}{4+3 \cos \left(\frac{\pi}{2}-x\right)}\right) d x$
By applying allied angles formulae we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \cos x}{4+3 \sin }\right) d x \ldots \ldots$.
Adding (1) and (2), we get
$2 I=\int_{0}^{\frac{\pi}{2}}\left\{\log \left(\frac{4+3 \sin x}{4+3 \cos x}\right)+\left(\frac{4+3 \cos x}{4+3 \sin }\right)\right\} d x$
$\Rightarrow 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \log 1 \mathrm{dx}$
Substituting $\log 1=0$ we get

$$
\begin{aligned}
& \Rightarrow 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} 0 \cdot \mathrm{dx} \\
& \Rightarrow \mathrm{I}=0
\end{aligned}
$$

Correct answer is (c)

EDUGRロSS

1. $\frac{1}{x-x^{3}}$

Solution:

Given: $\frac{1}{x-x^{3}}$
Let $\mathrm{I}=\frac{1}{\mathrm{x}-\mathrm{x}^{2}}=\frac{1}{\mathrm{x}\left(1-\mathrm{x}^{2}\right)}=\frac{1}{\mathrm{x}(1+\mathrm{x})(1-\mathrm{x})}$
Using partial differentiation
Let $\frac{1}{\mathrm{x}(1+\mathrm{x})(1-\mathrm{x})}=\frac{\mathrm{A}}{\mathrm{x}}+\frac{\mathrm{B}}{1+\mathrm{x}}+\frac{\mathrm{C}}{1-\mathrm{x}} \ldots$
By taking LCM we get

$$
\begin{aligned}
& \Rightarrow \frac{1}{x(1+x)(1-x)}=\frac{A(1+x)(1-x)+B(x)(1-x)+C(x)(1+x)}{x(1+x)(1-x)} \\
& \Rightarrow \frac{1}{x(1+x)(1-x)}=\frac{A\left(1-x^{2}\right)+B x(1-x)+C x(1+x)}{x(1+x)(1-x)} \\
& \Rightarrow 1=A-A x^{2}+B x-B x^{2}+C x+C x^{2} \\
& \Rightarrow 1=A+(B+C) x+(-A-B+C) x^{2}
\end{aligned}
$$

Equating the coefficients of x, x^{2} and constant value. We get:
(a) $\mathrm{A}=1$
(b) $\mathrm{B}+\mathrm{C}=0 \Rightarrow \mathrm{~B}=-\mathrm{C}$
(c) $-\mathrm{A}-\mathrm{B}+\mathrm{C}=0$
$\Rightarrow-1-(-\mathrm{C})+\mathrm{C}=0$
$\Rightarrow 2 \mathrm{C}=1 \Rightarrow \mathrm{C}=1 / 2$
So, $B=-1 / 2$

EDUGRロSS

Put these values in equation (1)
$\Rightarrow \frac{1}{\mathrm{x}(1+\mathrm{x})(1-\mathrm{x})}=\frac{1}{\mathrm{x}}+\frac{-\left(\frac{1}{2}\right)}{1+\mathrm{x}}+\frac{\left(\frac{1}{2}\right)}{1-\mathrm{x}}$
$\Rightarrow \int \frac{1}{\mathrm{x}(1+\mathrm{x})(1-\mathrm{x})} \mathrm{dx}=\int \frac{1}{\mathrm{x}} \mathrm{dx}-\frac{1}{2} \int \frac{1}{1+\mathrm{x}} \mathrm{dx}+\frac{1}{2} \int \frac{1}{1-\mathrm{x}} \mathrm{dx}$
On integrating we get
$=\log |\mathrm{x}|-\frac{1}{2} \log |1+\mathrm{x}|+\frac{1}{2} \log |1-\mathrm{x}|$
By using logarithmic formula the above equation can be written as
$=\log |x|-\log \left|(1+x)^{\frac{1}{2}}\right|+\log \left|(1-x)^{\frac{1}{2}}\right|$
$=\log \left|\frac{\mathrm{x}}{(1+\mathrm{x})^{\frac{1}{2}}(1-\mathrm{x})^{\frac{1}{2}}}\right|+\mathrm{C}$
On simplification we get
$=\log \left|\frac{\left(\mathrm{x}^{2}\right)^{\frac{1}{2}}}{(1+\mathrm{x})(1-\mathrm{x})^{\frac{1}{2}}}\right|+\mathrm{C}$
$=\log \left|\frac{\left(\mathrm{x}^{2}\right)^{\frac{1}{2}}}{\left(1-\mathrm{x}^{2}\right)^{\frac{1}{2}}}\right|+\mathrm{C}$
$=\log \left|\left(\frac{x^{2}}{1-x^{2}}\right)^{\frac{1}{2}}\right|+C$
$\Rightarrow \mathrm{I}=\frac{1}{2} \log \left|\frac{\mathrm{x}^{2}}{1-\mathrm{x}^{2}}\right|+\mathrm{C}$
2. $\frac{1}{\sqrt{x+a}+\sqrt{x+b}}$

Solution:

Given: $\frac{1}{\sqrt{\mathrm{x}+\mathrm{a}}+\sqrt{\mathrm{x}+\mathrm{b}}}$

Let $I=\frac{1}{\sqrt{x+a}+\sqrt{x+b}}$
Multiply and divide by, $\sqrt{\mathrm{x}+\mathrm{a}}-\sqrt{\mathrm{x}+\mathrm{b}}$

$$
\begin{aligned}
& \Rightarrow I=\frac{1}{\sqrt{x+a}+\sqrt{x+b}} \times \frac{\sqrt{x+a}-\sqrt{x+b}}{\sqrt{x+a}-\sqrt{x+b}} \\
& =\frac{\sqrt{x+a}-\sqrt{x+b}}{(\sqrt{x+a})^{2}-(\sqrt{x+b})^{2}}
\end{aligned}
$$

On simplification we get

$$
\begin{aligned}
& =\frac{\sqrt{x+a}-\sqrt{x+b}}{(x+a)-(x+b)} \\
& =\frac{\sqrt{x+a}-\sqrt{x+b}}{a-b}
\end{aligned}
$$

Applying integration
$\Rightarrow \int \frac{1}{\sqrt{x+a}+\sqrt{x+b}} d x=\int \frac{\sqrt{x+a}-\sqrt{x+b}}{a-b} d x$
$=\frac{1}{a-b} \int(\sqrt{x+a}-\sqrt{x+b}) d x$
$=\frac{1}{a-b} \int\left((x+a)^{\frac{1}{2}}-(x+b)^{\frac{1}{2}}\right) d x$
On integrating we get
$=\frac{1}{a-b}\left[\frac{(x+a)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{(x+b)^{\frac{3}{2}}}{\frac{3}{2}}\right]$
$\Rightarrow I=\frac{2}{3(a-b)}\left[(x+a)^{\frac{3}{2}}-(x+b)^{\frac{3}{2}}\right]+C$
3. $\frac{1}{x \sqrt{a x-x^{2}}}\left[\right.$ Hint:Put $\left.x=\frac{a}{t}\right]$

EDUGRロSS

Solution:

Given: $\frac{1}{x \sqrt{a x-x^{2}}}$
Let $I=\frac{1}{x \sqrt{a x-x^{2}}}$
Put $x=\frac{a}{t} \Rightarrow d x=-\frac{a}{t^{2}} d t$
$\Rightarrow \int \frac{1}{x \sqrt{a x-x^{2}}} d x=\int \frac{1}{\frac{a}{t} \sqrt{\frac{a \cdot a}{t}-\left(\frac{a}{t}\right)^{2}}} \cdot-\frac{a}{t^{2}} d t$
By taking a common we get
$=\int \frac{-1}{\mathrm{at}} \cdot \frac{1}{\sqrt{\frac{1}{\mathrm{t}}-\left(\frac{1}{\mathrm{t}}\right)^{2}}} \mathrm{dt}$
Now by multiplying t we get
$=-\frac{1}{a} \int \frac{1}{\sqrt{\frac{t^{2}}{\mathrm{t}}-\left(\frac{\mathrm{t}}{\mathrm{t}}\right)^{2}}} \mathrm{dt}$
The above equation becomes
$=-\frac{1}{a} \int \frac{1}{\sqrt{t-1}} \mathrm{dt}$
$=-\frac{1}{a} \int(t-1)^{-\frac{1}{2}} d t$
On integrating we get
$=-\frac{1}{a}\left[\frac{\sqrt{(t-1)}}{\frac{1}{2}}\right]+C$
$=-\frac{2}{a}\left[\sqrt{\left(\frac{a}{x}-1\right)}\right]+C$ because, $t=\frac{a}{x}$
$\Rightarrow I=-\frac{2}{a}\left[\sqrt{\left(\frac{a-x}{x}\right)}\right]+C$
4. $\frac{1}{x^{2}\left(x^{4}+1\right)^{\frac{3}{4}}}$

Solution:

Given: $\frac{1}{x^{2} \cdot\left(x^{4}+1\right)^{\frac{3}{4}}}$

$$
\text { Let } \mathrm{I}=\frac{1}{\mathrm{x}^{2} \cdot\left(\mathrm{x}^{4}+1\right)^{\frac{3}{4}}}
$$

Multiply and divide by x^{-3}, we get
$\frac{x^{-3}}{x^{2} \cdot x^{-3}\left(x^{4}+1\right)^{\frac{3}{4}}}=\frac{x^{-3} \cdot\left(x^{4}+1\right)^{-\frac{3}{4}}}{x^{2} \cdot x^{-3}}$
$=\frac{\left(x^{4}+1\right)^{-\frac{3}{4}}}{x^{5} \cdot x^{-3 \times \frac{4}{4}}}$
On simplification the above equation can be written as
$=\frac{\left(x^{4}+1\right)^{-\frac{3}{4}}}{x^{5} \cdot\left(x^{4}\right)^{-\frac{3}{4}}}$
$=\frac{1}{x^{5}} \cdot\left(\frac{x^{4}+1}{x^{4}}\right)^{-\frac{3}{4}}$
On computing we get
$=\frac{1}{x^{5}} \cdot\left(1+\frac{1}{x^{4}}\right)^{-\frac{3}{4}}$
let, $\frac{1}{\mathrm{x}^{4}}=\mathrm{t}=(\mathrm{x})^{-4} \Rightarrow \frac{-4}{\mathrm{x}^{5}} \mathrm{dx}=\mathrm{dt} \Rightarrow \frac{1}{\mathrm{x}^{5}} \mathrm{dx}=-\frac{\mathrm{dt}}{4}$
$\Rightarrow \int \frac{1}{x^{2} \cdot\left(x^{4}+1\right)^{\frac{3}{4}}} \cdot d x=\int \frac{1}{x^{5}} \cdot\left(1+\frac{1}{x^{4}}\right)^{-\frac{3}{4}} \cdot d x$
Substituting the above values we get
$=\int(1+\mathrm{t})^{-\frac{3}{4}} \cdot\left(-\frac{\mathrm{dt}}{4}\right)$
$=-\frac{1}{4} \int(1+\mathrm{t})^{-\frac{3}{4}} \cdot \mathrm{dt}$
On integrating
$=-\frac{1}{4}\left[\frac{(1+\mathrm{t})^{\frac{1}{4}}}{\frac{1}{4}}\right]+\mathrm{C}$
Now by substituting the value of t we get

$$
\begin{aligned}
& =-\frac{1}{4}\left[\frac{\left(1+\frac{1}{\mathrm{x}^{4}}\right)^{\frac{1}{4}}}{\frac{1}{4}}\right]+\mathrm{C} \\
& =-\left(1+\frac{1}{\mathrm{x}^{4}}\right)^{\frac{1}{4}}+\mathrm{C}
\end{aligned}
$$

5. $\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}} \quad\left[\right.$ Hint: $\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}=\frac{1}{x^{\frac{1}{3}}\left(1+x^{\frac{1}{6}}\right)}$, put $\left.x=t^{6}\right]$

Solution:

Given $\frac{1}{x^{\frac{1}{2}+x^{\frac{1}{3}}}}$
Given question can be written as,
$\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}=\frac{1}{x^{\frac{1}{3}}\left(1+x^{\frac{1}{6}}\right)}$
Let $\mathrm{x}=\mathrm{t}^{6} \Rightarrow \mathrm{dx}=6 \mathrm{t}^{5} \mathrm{dt}$
$\Rightarrow \int \frac{1}{x^{\frac{1}{3}}\left(1+x^{\frac{1}{6}}\right)} \cdot d x=\int \frac{6 t^{5}}{t^{2}(1+t)} \cdot d t$
On computing we get
$=6 . \int \frac{\mathrm{t}^{3}}{(1+\mathrm{t})}$. dt
After division we get,
$\frac{1}{\mathrm{x}^{\frac{1}{2}}+\mathrm{x}^{\frac{1}{3}}}=6 \cdot \int\left[\left(\mathrm{t}^{2}-\mathrm{t}+1\right)-\frac{1}{(1+\mathrm{t})}\right] \cdot \mathrm{dt}$
Now by splitting the integrals and computing
$=6 \cdot\left\{\int \mathrm{t}^{2} \cdot \mathrm{dt}-\int \mathrm{t} \cdot \mathrm{dt}+\int 1 \cdot \mathrm{dt}-\int\left[\frac{1}{(1+\mathrm{t})}\right] \cdot \mathrm{dt}\right\}$
On integrating
$=6\left[\left(\frac{\mathrm{t}^{3}}{3}\right)-\left(\frac{\mathrm{t}^{2}}{2}\right)+\mathrm{t}-\log (1+\mathrm{t})\right]$
Now by substituting the value of t we get
$=6\left[\left(\frac{\left(x^{\frac{1}{6}}\right)^{3}}{3}\right)-\left(\frac{\left(x^{\frac{1}{6}}\right)^{2}}{2}\right)+\left(x^{\frac{1}{6}}\right)-\log \left(1+\left(x^{\frac{1}{6}}\right)\right)\right]+C$
$=\left[\left(2 x^{\frac{1}{2}}\right)-\left(3 x^{\frac{1}{3}}\right)+6 \cdot x^{\frac{1}{6}}-6 \cdot \log \left(1+x^{\frac{1}{6}}\right)\right]+C$

EDUGRロSS

$=2 \sqrt{x}-3 x^{\frac{1}{3}}+6 x^{\frac{1}{6}}-6 \log \left(1+x^{\frac{1}{6}}\right)+C$
6. $\frac{5 x}{(x+1)\left(x^{2}+9\right)}$

Solution:

Given: $\frac{5 x}{(x+1)\left(x^{2}+9\right)}$
Let $\mathrm{I}=\frac{5 \mathrm{x}}{(\mathrm{x}+1)\left(\mathrm{x}^{2}+9\right)}$
Using partial fraction

$$
\begin{equation*}
\text { Let } \frac{5 x}{(x+1)\left(x^{2}+9\right)}=\frac{A}{(x+1)}+\frac{B x+C}{\left(x^{2}+9\right)} \ldots \tag{1}
\end{equation*}
$$

$\Rightarrow \frac{5 x}{(x+1)\left(x^{2}+9\right)}=\frac{A\left(x^{2}+9\right)+(B x+C)(x+1)}{(x+1)\left(x^{2}+9\right)}$
$\Rightarrow 5 x=A\left(x^{2}+9\right)+(B x+C)(x+1)$
$\Rightarrow 5 \mathrm{x}=\mathrm{A} \mathrm{x}^{2}+9 \mathrm{~A}+\mathrm{Bx} \mathrm{x}^{2}+\mathrm{Bx}+\mathrm{Cx}+\mathrm{C}$
$\Rightarrow 5 x=9 A+C+(B+C) x+(A+B) x^{2}$
Equating the coefficients of x, x^{2} and constant value, we get
(a) $9 \mathrm{~A}+\mathrm{C}=0 \Rightarrow \mathrm{C}=-9 \mathrm{~A}$
(b) $\mathrm{B}+\mathrm{C}=5 \Rightarrow \mathrm{~B}=5-\mathrm{C} \Rightarrow \mathrm{B}=5-(-9 \mathrm{~A}) \Rightarrow \mathrm{B}=5+9 \mathrm{~A}$
(c) $A+B=0 \Rightarrow A=-B \Rightarrow A=-(5+9 A) \Rightarrow 10 A=-5 \Rightarrow A=-1 / 2$

And $C=9 / 2$ and $B=1 / 2$
Put these values in equation (1) we get
$\Rightarrow \frac{5 x}{(x+1)\left(x^{2}+9\right)}=\frac{A}{(x+1)}+\frac{B x+C}{\left(x^{2}+9\right)}$

EDUGRロSS

$\Rightarrow \frac{5 x}{(x+1)\left(x^{2}+9\right)}=\frac{-\frac{1}{2}}{(x+1)}+\frac{\left(\frac{1}{2}\right) x+\frac{9}{2}}{\left(x^{2}+9\right)}$
The above equation can be written as
$\Rightarrow \frac{5 x}{(x+1)\left(x^{2}+9\right)}=-\frac{1}{2} \cdot \frac{1}{(x+1)}+\frac{1}{2} \cdot\left(\frac{x+9}{\left(x^{2}+9\right)}\right)$
Now by applying integrals on both sides we get

$$
\begin{align*}
& \Rightarrow \int \frac{5 x}{(x+1)\left(x^{2}+9\right)} d x=-\frac{1}{2} \cdot \int \frac{1}{(x+1)} d x+\frac{1}{2} \cdot \int \frac{x}{\left(x^{2}+9\right)} d x+\frac{9}{2} \int \frac{1}{\left(x^{2}+9\right)} d x \\
& \Rightarrow \int \frac{5 x}{(x+1)\left(x^{2}+9\right)} d x=-\frac{1}{2} \cdot \int \frac{1}{(x+1)} d x+I_{1}+\frac{9}{2} \int \frac{1}{\left(x^{2}+\left(3^{2}\right)\right.} d x \\
& \Rightarrow \int \frac{5 x}{(x+1)\left(x^{2}+9\right)} d x=-\frac{1}{2} \cdot \log |x+1|+I_{1}+\frac{9}{2} \cdot\left(\frac{1}{3} \tan ^{-1} \frac{x}{3}\right) \ldots(2) \tag{2}
\end{align*}
$$

Now solving for I_{1} we get
$I_{1}=\frac{1}{2} \cdot \int \frac{x}{\left(x^{2}+9\right)} d x$
Put $x^{2}=t \Rightarrow 2 x d x=d t$
$\Rightarrow I_{1}=\frac{1}{2} \cdot \int \frac{1}{(t+9)} \cdot \frac{\mathrm{dt}}{2}$
$\Rightarrow I_{1}=\frac{1}{4} \log |t+9|$
$\Rightarrow \mathrm{I}_{1}=\frac{1}{4} \log \left|\mathrm{x}^{2}+9\right|$
Put the value in equation (2)
$\Rightarrow \int \frac{5 x}{(x+1)\left(x^{2}+9\right)} d x=-\frac{1}{2} \cdot \log |x+1|+\frac{1}{4} \log \left|x^{2}+9\right|+\frac{3}{2} \cdot\left(\tan ^{-1} \frac{x}{3}\right)+C$
7. $\frac{\sin x}{\sin (x-a)}$

Solution:

Given: $\frac{\sin x}{\sin (x-a)}$
Let $I=\frac{\sin x}{\sin (x-a)}$
Let $\mathrm{x}-\mathrm{a}=\mathrm{t} \Rightarrow \mathrm{x}=\mathrm{t}+\mathrm{a} \Rightarrow \mathrm{dx}=\mathrm{dt}$
$\Rightarrow \int \frac{\sin x}{\sin (x-a)} d x=\int \frac{\sin (t+a)}{\sin (t)} d t$
As we know that, $\{\sin (A+B)=\sin A \cos B+\cos A \sin B\}$
$\Rightarrow \int \frac{\sin \mathrm{x}}{\sin (\mathrm{x}-\mathrm{a})} \mathrm{dx}=\int \frac{\sin \mathrm{t} \cos \mathrm{a}+\cos \mathrm{t} \sin \mathrm{a}}{\sin (\mathrm{t})} \mathrm{dt}$
The above equation becomes
$=\int \frac{\sin t \cos a}{\sin t}+\frac{\cos t \sin a}{\sin t} d t$
On simplification
$=\int(\cos a+\cot t \sin a) d t$
Now by splitting the integrals we get
$=\int(\cos a) d t+\int(\cot t \sin a) d t$
$=(\cos a) \int 1 \cdot d t+\sin a \cdot \int(\cot t) d t$

EDUGRロSS

On integrating we get

$$
=(\cos a) \cdot t+\sin a \cdot \log |\sin t|+C
$$

Now by substituting the value of t we get

$$
\begin{aligned}
& =(\cos a) \cdot(x-a)+\sin a \cdot \log |\sin (x-a)|+C \\
& =\sin a \cdot \log |\sin (x-a)|+x \cdot \cos a-a \cdot \cos a+C \\
& =\sin a \cdot \log |\sin (x-a)|+x \cdot \cos a+C_{2}
\end{aligned}
$$

8. $\frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}}$

Solution:

EDUGRロSコ

Given $\frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}}$
let, $I=\frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}}$
Now by taking common and above equation can be written as
$\Rightarrow \frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}}=\frac{e^{4 \log x}\left(e^{\log x}-1\right)}{e^{2 \log x}\left(e^{\log x}-1\right)}$
On simplification
$=e^{2 \log x}$
$=\mathrm{e}^{\log \mathrm{x}^{2}}$
$=\mathrm{x}^{2}$

Applying integrals

$\Rightarrow \int \frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}} d x=\int x^{2} d x$
$=\frac{x^{3}}{3}+C$
9. $\frac{\cos x}{\sqrt{4-\sin ^{2} x}}$

Solution:

EDUGRロSS

Given: $\frac{\cos \mathrm{x}}{\sqrt{4-\sin ^{2} \mathrm{x}}}$
let $I=\frac{\cos x}{\sqrt{4-\sin ^{2} x}}$
Put $\sin x=t \Rightarrow \cos x d x=d t$
The given equation can be written as

$$
\begin{aligned}
& \Rightarrow \int \frac{\cos x}{\sqrt{4-\sin ^{2} x}} d x=\int \frac{1}{\sqrt{4-t^{2}}} d t \\
& =\int \frac{1}{\sqrt{\left(2^{2}-t^{2}\right)}} d t
\end{aligned}
$$

On integrating we get
$=\sin ^{-1}\left(\frac{t}{2}\right)+C$
$\Rightarrow I=\sin ^{-1}\left(\frac{\sin x}{2}\right)+C$
10. $\frac{\sin ^{8}-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x}$

Solution:

Given: $\frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cdot \cos ^{2} x}$
let, $I=\frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cdot \cos ^{2} x}$
As we know that $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$

Now by using this formula we get

$$
\begin{aligned}
& \Rightarrow \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cdot \cos ^{2} x}=\frac{\left(\sin ^{4} x+\cos ^{4} x\right)\left(\sin ^{4} x-\cos ^{4} x\right)}{\sin ^{2} x+\cos ^{2} x-\sin ^{2} x \cdot \cos ^{2} x-\sin ^{2} x \cdot \cos ^{2} x} \\
& =\frac{\left(\sin ^{4} x+\cos ^{4} x\right)\left(\sin ^{2} x-\cos ^{2} x\right)\left(\sin ^{2} x+\cos ^{2} x\right)}{\left(\sin ^{2} x-\sin ^{2} x \cdot \cos ^{2} x\right)+\left(\cos ^{2} x-\sin ^{2} x \cdot \cos ^{2} x\right)}
\end{aligned}
$$

We know that $\cos ^{2}+\sin ^{2} x=1$, using this in above equation

$$
\begin{aligned}
& =\frac{\left(\sin ^{4} x+\cos ^{4} x\right)\left(\sin ^{2} x-\cos ^{2} x\right) \cdot(1)}{\sin ^{2} x\left(1-\cos ^{2} x\right)+\cos ^{2} x\left(1-\sin ^{2} x\right)} \\
& =\frac{-\left(\sin ^{4} x+\cos ^{4} x\right)\left(\cos ^{2} x-\sin ^{2} x\right)}{\sin ^{2} x\left(\sin ^{2} x\right)+\cos ^{2} x\left(\cos ^{2} x\right)}
\end{aligned}
$$

On simplification we get

$$
\begin{aligned}
& =\frac{-\left(\sin ^{4} x+\cos ^{4} x\right)\left(\cos ^{2} x-\sin ^{2} x\right)}{\left(\sin ^{4} x+\cos ^{4} x\right)} \\
& =\left(\sin ^{2} x-\cos ^{2} x\right) \\
& =-\cos 2 x
\end{aligned}
$$

$$
\Rightarrow \int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cdot \cos ^{2} x} d x=\int-\cos 2 x d x
$$

On integrating
$\Rightarrow \mathrm{I}=-\frac{\sin 2 \mathrm{x}}{2}+\mathrm{C}$
11.

$$
\overline{\cos (x+a) \cos (x+b)}
$$

Solution:

$$
\frac{1}{\cos (x+a) \cos (x+b)}
$$

let, $I=\frac{1}{\cos (x+a) \cos (x+b)}$
Multiply and divide by $\sin (a-b)$, we get

$$
I=\frac{1}{\sin (a-b)} \cdot\left(\frac{\sin (a-b)}{\cos (x+a) \cos (x+b)}\right)
$$

Now by adding and subtracting x from the numerator

$$
=\frac{1}{\sin (\mathrm{a}-\mathrm{b})} \cdot\left(\frac{\sin (\mathrm{a}-\mathrm{b}+\mathrm{x}-\mathrm{x})}{\cos (\mathrm{x}+\mathrm{a}) \cos (\mathrm{x}+\mathrm{b})}\right)
$$

By grouping we get

$$
=\frac{1}{\sin (a-b)} \cdot\left(\frac{\sin [(x+a)-(x+b)]}{\cos (x+a) \cos (x+b)}\right)
$$

As we know that $\{\sin (A-B)=\sin A \cos B-\cos A \sin B\}$
By using this formula we get

$$
\begin{aligned}
& \Rightarrow I=\frac{1}{\sin (a-b)} \cdot\left(\frac{\sin (x+a) \cdot \cos (x+b)-\cos (x+a) \cdot \sin (x+b)}{\cos (x+a) \cos (x+b)}\right) \\
& =\frac{1}{\sin (a-b)} \cdot\left(\frac{\sin (x+a) \cdot \cos (x+b)}{\cos (x+a) \cos (x+b)}-\frac{\cos (x+a) \cdot \sin (x+b)}{\cos (x+a) \cos (x+b)}\right)
\end{aligned}
$$

On simplification we get

$$
\begin{aligned}
& =\frac{1}{\sin (a-b)} \cdot\left(\frac{\sin (x+a)}{\cos (x+a)}-\frac{\sin (x+b)}{\cos (x+b)}\right) \\
& =\frac{1}{\sin (a-b)} \cdot[\tan (x+a)-\tan (x+b)]
\end{aligned}
$$

Taking integrals on both sides we get

$$
\Rightarrow \int \frac{1}{\cos (x+a) \cos (x+b)} d x=\int \frac{1}{\sin (a-b)} \cdot[\tan (x+a)-\tan (x+b)] d x
$$

$$
=\frac{1}{\sin (a-b)}\left\{\int \tan (x+a) d x-\int \tan (x+b) d x\right\}
$$

On integrating we get

$$
\begin{aligned}
& =\frac{1}{\sin (a-b)}[-\log |\cos (x+a)|-(-\log |\cos (x+a)|)] \\
& =\frac{1}{\sin (a-b)}[-\log |\cos (x+a)|+\log |\cos (x+a)|] \\
& \Rightarrow I=\frac{1}{\sin (a-b)} \cdot \log \left|\frac{\cos (x+b)}{\cos (x+a)}\right|+C
\end{aligned}
$$

12. $\frac{x^{3}}{\sqrt{1-x^{8}}}$

Solution:

Given: $\frac{\mathrm{x}^{3}}{\sqrt{1-\mathrm{x}^{8}}}$
let $I=\frac{x^{3}}{\sqrt{1-x^{8}}}$
Now, let $\mathrm{x}^{4}=\mathrm{t} \Rightarrow 4 \mathrm{x}^{3} \mathrm{dx}=\mathrm{dt}$
And $\mathrm{x}^{3} \mathrm{dx}=\mathrm{dt} / 4$
Substituting these values in given question we get
$\Rightarrow \int \frac{\mathrm{x}^{3}}{\sqrt{1-\mathrm{x}^{8}}} \mathrm{dx}=\int \frac{1}{\sqrt{1-\mathrm{t}^{2}}}\left(\frac{\mathrm{dt}}{4}\right)$
$=\frac{1}{4} \int \frac{1}{\sqrt{1^{2}-t^{2}}} . d t$
On integrating we get
$=\frac{1}{4} \sin ^{-1} t+C$

Now by substituting t value we get
$\Rightarrow \mathrm{I}=\frac{1}{4} \sin ^{-1}\left(\mathrm{x}^{4}\right)+\mathrm{C}$
13. $\frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)}$

Solution:

Given: $\frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)}$
let, $I=\frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)}$
Let $\mathrm{e}^{\mathrm{x}}=\mathrm{t} \Rightarrow \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
Now substituting these values in given question we get

$$
\begin{aligned}
& \Rightarrow \int \frac{e^{x}}{\left(1+e^{x}\right)\left(2+e^{x}\right)} d x=\int \frac{1}{(1+t)(2+t)} d t \\
& =\int\left[\frac{1}{(1+t)}-\frac{1}{(2+t)}\right] d t
\end{aligned}
$$

Now by splitting the integrals we get
$=\int\left[\frac{1}{(1+t)}\right] d t-\int\left[\frac{1}{(2+t)}\right] d t$
On integrating we get

$$
\begin{aligned}
& =\log |(1+t)|-\log |(2+t)|+C \\
& =\log \left|\frac{1+t}{2+t}\right|+C \\
& \Rightarrow I=\log \left|\frac{1+\mathrm{e}^{x}}{2+\mathrm{e}^{\mathrm{x}}}\right|+C
\end{aligned}
$$

14. $\frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$

Solution:

Given: $\frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$
Let $\mathrm{I}=\frac{1}{\left(\mathrm{x}^{2}+1\right)\left(\mathrm{x}^{2}+4\right)}$
Using partial fraction method, we get
let $\frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C x+D}{\left(x^{2}+4\right)} \ldots$

$$
\begin{align*}
& \Rightarrow \frac{1}{(x+1)\left(x^{2}+9\right)}=\frac{(A x+B)\left(x^{2}+4\right)+(C x+D)\left(x^{2}+1\right)}{(x+1)\left(x^{2}+9\right)} \tag{1}\\
& \Rightarrow 1=(A x+B)\left(x^{2}+4\right)+(C x+D)\left(x^{2}+1\right) \\
& \Rightarrow 1=A x^{3}+4 A x+B x^{2}+4 B+C x^{3}+C x+D x^{2}+D \\
& \Rightarrow 1=(A+C) x^{3}+(B+D) x^{2}+(4 A+C) x+(4 B+D)
\end{align*}
$$

Equating the coefficients of x, x^{2}, x^{3} and constant value. We get:
(a) $\mathrm{A}+\mathrm{C}=0 \Rightarrow \mathrm{C}=-\mathrm{A}$
(b) $\mathrm{B}+\mathrm{D}=0 \Rightarrow \mathrm{~B}=-\mathrm{D}$
(c) $4 \mathrm{~A}+\mathrm{C}=0 \Rightarrow 4 \mathrm{~A}=-\mathrm{C} \Rightarrow 4 \mathrm{~A}=\mathrm{A} \Rightarrow 3 \mathrm{~A}=0 \Rightarrow \mathrm{~A}=0 \Rightarrow \mathrm{C}=0$
(d) $4 B+D=1 \Rightarrow 4 B-B=1 \Rightarrow B=1 / 3 \Rightarrow D=-1 / 3$

Put these values in equation (1)
$\Rightarrow \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C x+D}{\left(x^{2}+4\right)}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{(0) x+\frac{1}{3}}{\left(x^{2}+1\right)}+\frac{(0) x+\left(-\frac{1}{3}\right)}{\left(x^{2}+4\right)} \\
& \Rightarrow \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{\frac{1}{3}}{\left(x^{2}+1\right)}+\frac{\left(-\frac{1}{3}\right)}{\left(x^{2}+4\right)}
\end{aligned}
$$

Now by taking integrals on both sides we get
$\Rightarrow \int \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=\frac{1}{3} \cdot \int \frac{1}{\left(x^{2}+1\right)} d x-\frac{1}{3} \cdot \int \frac{1}{\left(x^{2}+4\right)} d x$
$\Rightarrow \int \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=\frac{1}{3} \cdot \int \frac{1}{\left(x^{2}+1^{2}\right)} d x-\frac{1}{3} \cdot \int \frac{1}{\left(x^{2}+2^{2}\right)} d x$
On integrating we get

$$
\begin{aligned}
& =\frac{1}{3} \cdot \tan ^{-1} x-\frac{1}{3} \cdot \frac{1}{2} \tan ^{-1} \frac{x}{2}+C \\
& \Rightarrow I=\frac{1}{3} \cdot \tan ^{-1} x-\frac{1}{6} \tan ^{-1} \frac{x}{2}+C
\end{aligned}
$$

15. $\cos ^{3} x e^{\log \sin x}$

Solution:

EDUGRロSS

Given: $\cos ^{3} \mathrm{xe}^{\log \sin \mathrm{x}}$
Let $\mathrm{I}=\cos ^{3} \mathrm{xe}^{\log \sin \mathrm{x}}$
Logarithmic and exponential functions cancels each other in above equation then we get
$=\cos ^{3} \mathrm{x} \cdot \sin \mathrm{x}$
Let $\cos \mathrm{x}=\mathrm{t} \Rightarrow-\sin \mathrm{xdx}=\mathrm{dt} \Rightarrow \sin \mathrm{xdx}=\mathrm{dt}$
Substituting these values in given question we get
$\Rightarrow \int \cos ^{3} \mathrm{xe}^{\log \sin \mathrm{x}} \mathrm{dx}=\int \cos ^{3} \mathrm{x} \cdot \sin \mathrm{xdx}$
$=\int \mathrm{t}^{3} \cdot(-\mathrm{dt})$
$=-\int \mathrm{t}^{3} \cdot \mathrm{dt}$
On integrating

$$
=-\frac{t^{4}}{4}+c
$$

Now by substituting the value of t we get

$$
=-\frac{\cos ^{4} x}{4}+C
$$

16. $e^{3 \log x}\left(x^{4}+1\right)^{-1}$

Solution:

Given: $\mathrm{e}^{3 \log \mathrm{x}}\left(\mathrm{x}^{4}+1\right)^{-1}$
Let $\mathrm{I}=\mathrm{e}^{3 \log \mathrm{x}}\left(\mathrm{x}^{4}+1\right)^{-1}$
$=e^{\log x^{3}}\left(x^{4}+1\right)^{-1}$
Logarithmic and exponential functions cancels each other in above equation then we get
$=\frac{x^{3}}{x^{4}+1}$
Let $\mathrm{x}^{4}=\mathrm{t} \Rightarrow 4 \mathrm{x}^{3} \mathrm{dx}=\mathrm{dt} \Rightarrow \mathrm{x}^{3} \mathrm{dx}=\mathrm{dt} / 4$
Now by substituting these values in given question we get
$\Rightarrow \int \mathrm{e}^{3 \log \mathrm{x}}\left(\mathrm{x}^{4}+1\right)^{-1}=\int \frac{\mathrm{x}^{3}}{\mathrm{x}^{4}+1} \mathrm{dx}$
$=\int \frac{1}{t+1} \cdot \frac{d t}{4}$
$=\frac{1}{4} \cdot \int \frac{1}{\mathrm{t}+1} \cdot \mathrm{dt}$
On integration we get
$=\frac{1}{4} \log (\mathrm{t}+1)+\mathrm{C}$
Now by substituting the values of t we get
$\Rightarrow \mathrm{I}=\frac{1}{4} \log \left(\mathrm{x}^{4}+1\right)+\mathrm{C}$
17. $f^{\prime}(a x+b)[f(a x+b)]^{n}$

Solution:

EDUGRロSS

Given: $\mathrm{f}^{\prime}(\mathrm{ax}+\mathrm{b})[\mathrm{f}(\mathrm{ax}+\mathrm{b})]^{n}$
Let $\mathrm{f}(\mathrm{ax}+\mathrm{b})=\mathrm{t} \Rightarrow \mathrm{a} \cdot \mathrm{f}^{\prime}(\mathrm{ax}+\mathrm{b}) \mathrm{dx}=\mathrm{dt}$
Now by substituting these values in given question we get
$\Rightarrow \int \mathrm{f}^{\prime}(\mathrm{ax}+\mathrm{b})\left[\mathrm{f}(\mathrm{ax}+\mathrm{b})^{\mathrm{n}}\right]=\int \mathrm{t}^{\mathrm{n}}\left(\frac{\mathrm{dt}}{\mathrm{a}}\right)$
$=\frac{1}{\mathrm{a}} \int \mathrm{t}^{\mathrm{n}} \mathrm{dt}$
On integrating
$=\frac{1}{\mathrm{a}} \cdot \frac{\mathrm{t}^{\mathrm{n}+1}}{\mathrm{n}+1}+\mathrm{C}$
Here by substituting the value of t we get

$$
\begin{aligned}
& =\frac{1}{\mathrm{a}} \cdot \frac{(\mathrm{f}(\mathrm{ax}+\mathrm{b}))^{\mathrm{n}+1}}{\mathrm{n}+1}+\mathrm{C} \\
& =\frac{1}{\mathrm{a}(\mathrm{n}+1)} \cdot(\mathrm{f}(\mathrm{ax}+\mathrm{b}))^{\mathrm{n}+1}+\mathrm{C}
\end{aligned}
$$

18. $\frac{1}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}$

Solution:

Given: $\frac{1}{\sqrt{\sin ^{3} \mathrm{x} \sin (\mathrm{x}+\alpha)}}$
let $I=\frac{1}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}$
As we know that, $\{\sin (A+B)=\sin A \cos B+\cos A \sin B\}$
Using this formula we get
$\Rightarrow I=\frac{1}{\sqrt{\sin ^{3} x(\sin x \cos \alpha+\cos x \sin \alpha)}}$
Multiplying and dividing by $\sin x$ to denominator we get
$\Rightarrow I=\frac{1}{\sqrt{\sin ^{3} x\left(\sin x \cos \alpha+\cos x \cdot \frac{\sin x}{\sin x} \sin \alpha\right)}}$
On rearranging we get

$$
=\frac{1}{\sqrt{\sin ^{3} x\left(\sin x \cos \alpha+\sin x \cdot \frac{\cos x}{\sin x} \sin \alpha\right)}}
$$

Simplifying we get

$$
\begin{aligned}
& =\frac{1}{\sqrt{\sin ^{4} x(\cos \alpha+\cot x \sin \alpha)}} \\
& =\frac{1}{\sin ^{2} x \sqrt{(\cos \alpha+\cot x \sin \alpha)}}
\end{aligned}
$$

$$
=\frac{\operatorname{cosec}^{2} x}{\sqrt{(\cos \alpha+\cot x \sin \alpha)}}
$$

now, let $(\cos \alpha+\cot x \sin \alpha)=t \Rightarrow-\operatorname{cosec}^{2} \mathrm{x} \cdot \sin \alpha \mathrm{dx}=\mathrm{dt}$
Now by substituting these values in given question we get

$$
\begin{aligned}
& \Rightarrow \int \frac{1}{\sqrt{\sin ^{3} \mathrm{x} \sin (\mathrm{x}+\alpha)}} \mathrm{dx}=\int \frac{\operatorname{cosec}^{2} \mathrm{x}}{\sqrt{(\cos \alpha+\cot \mathrm{x} \sin \alpha)}} \mathrm{dx} \\
& =\int \frac{1}{\sqrt{t}} \cdot-\frac{d t}{\sin \alpha} \\
& =-\frac{1}{\sin \alpha} \int \frac{1}{\sqrt{\mathrm{t}}} \cdot d t \\
& =-\frac{1}{\sin \alpha} \int \mathrm{t}^{-\frac{1}{2}} \cdot d t
\end{aligned}
$$

On integrating we get

$$
\begin{aligned}
& =-\frac{1}{\sin \alpha}\left[\frac{t^{\frac{1}{2}}}{\frac{1}{2}}\right]+C \\
& =-\frac{2}{\sin \alpha}[\sqrt{t}]+C
\end{aligned}
$$

Now by substituting the value of t
$=-\frac{2}{\sin \alpha}[\sqrt{(\cos \alpha+\cot x \sin \alpha)}]+C$
Computing and simplifying
$=-\frac{2}{\sin \alpha}\left[\sqrt{\left(\cos \alpha+\frac{\cos x}{\sin x} \sin \alpha\right)}\right]+C$
$=-\frac{2}{\sin \alpha}\left[\sqrt{\frac{(\cos \alpha \sin x+\cos x \sin \alpha)}{\sin x}}\right]+C$
$\Rightarrow I=-\frac{2}{\sin \alpha}\left[\sqrt{\frac{\sin (\mathrm{x}+\alpha)}{\sin \mathrm{x}}}\right]+\mathrm{C}$
19. $\frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}}, x \in[0,1]$

Solution:

Given: $\frac{\frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}}}{}$
Let $I=\frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}}$
As we know, $\sin ^{-1} \sqrt{\mathrm{x}}+\cos ^{-1} \sqrt{\mathrm{x}}=\frac{\pi}{2}$
Now using this identity we get

$$
\begin{aligned}
& \Rightarrow I=\frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}}=\frac{\left(\frac{\pi}{2}-\cos ^{-1} \sqrt{x}\right)-\cos ^{-1} \sqrt{x}}{\left(\frac{\pi}{2}\right)} \\
& \Rightarrow \int \frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}} d x=\int \frac{\left(\frac{\pi}{2}-\cos ^{-1} \sqrt{x}\right)-\cos ^{-1} \sqrt{x}}{\left(\frac{\pi}{2}\right)} d x \\
& =\left(\frac{2}{\pi}\right) \int\left(\frac{\pi}{2}-2 \cos ^{-1} \sqrt{x}\right) d x
\end{aligned}
$$

Now by splitting the integral we get

$$
\begin{aligned}
& =\left(\frac{2}{\pi}\right) \int\left(\frac{\pi}{2} \cdot d x\right)-\left(\frac{2}{\pi}\right) \int 2 \cdot\left(\cos ^{-1} \sqrt{x} \cdot d x\right) \\
& =\int(1 \cdot d x)-\left(\frac{4}{\pi}\right) \int\left(\cos ^{-1} \sqrt{x} \cdot d x\right)
\end{aligned}
$$

On integration we get
$\Rightarrow I=x-\left(\frac{4}{\pi}\right) I_{1} \ldots$
Now, first solve for I_{1} :
as, $I_{1}=\int\left(\cos ^{-1} \sqrt{\mathrm{x}} . \mathrm{dx}\right)$

Wisdamising Knawledee

$$
\begin{aligned}
& \text { let } \sqrt{\mathrm{x}}=\mathrm{t} \Rightarrow \frac{1}{2} \mathrm{x}^{-\frac{1}{2}} d \mathrm{x}=\mathrm{dt} \Rightarrow \frac{\mathrm{dx}}{\sqrt{\mathrm{x}}}=2 . \mathrm{dt} \Rightarrow \mathrm{dx}=2 . \mathrm{tdt} \\
& \Rightarrow \mathrm{I}_{1}=\int\left(\cos ^{-1} \mathrm{t} \cdot 2 \mathrm{t} \cdot \mathrm{dt}\right) \\
& =2 \int \mathrm{t} \cdot \cos ^{-1} \mathrm{t} d \mathrm{dt}
\end{aligned}
$$

Because, $\int u . v d x=u . \int v d x-\int \frac{d u}{d x} \cdot\left\{\int v d x\right\} d x$

$$
\begin{aligned}
& \Rightarrow 2 \int \mathrm{t} \cdot \cos ^{-1} \mathrm{t} \mathrm{dt}=2 \cdot\left[\cos ^{-1} \mathrm{t} \cdot \int \mathrm{tdt}-\int \frac{\mathrm{d}\left(\cos ^{-1} \mathrm{t}\right)}{\mathrm{dt}} \cdot\left\{\int \mathrm{tdt}\right\} \mathrm{dt}\right] \\
& =2 \cdot \cos ^{-1} \mathrm{t} \cdot \frac{\mathrm{t}^{2}}{2}-2 \cdot \int\left(-\frac{1}{\sqrt{1-\mathrm{t}^{2}}}\right) \cdot\left(\frac{\mathrm{t}^{2}}{2}\right\} \mathrm{dt} \\
& =\mathrm{t}^{2} \cdot \cos ^{-1} \mathrm{t}-\int\left(\frac{-\mathrm{t}^{2}}{\sqrt{1-\mathrm{t}^{2}}}\right) \cdot \mathrm{dt}
\end{aligned}
$$

Now by adding and subtracting 1 to numerator we get
$=\mathrm{t}^{2} \cdot \cos ^{-1} \mathrm{t}-\int\left(\frac{-1+1-\mathrm{t}^{2}}{\sqrt{1-\mathrm{t}^{2}}}\right) \cdot \mathrm{dt}$
Splitting the denominator
$=\mathrm{t}^{2} \cdot \cos ^{-1} \mathrm{t}-\int\left(\frac{-1}{\sqrt{1-\mathrm{t}^{2}}}+\frac{1-\mathrm{t}^{2}}{\sqrt{1-\mathrm{t}^{2}}}\right) \cdot \mathrm{dt}$
Splitting the integral we get
$=\mathrm{t}^{2} \cdot \cos ^{-1} \mathrm{t}+\int\left(\frac{1}{\sqrt{1-\mathrm{t}^{2}}} \mathrm{dt}\right)-\int\left(\sqrt{1-\mathrm{t}^{2}}\right) \cdot \mathrm{dt}$
$=\mathrm{t}^{2} \cdot \cos ^{-1} \mathrm{t}+\int\left(\frac{1}{\sqrt{1-\mathrm{t}^{2}}} \mathrm{dt}\right)-\frac{\mathrm{t}}{2} \cdot \sqrt{1-\mathrm{t}^{2}}$
as, $\int\left(\sqrt{a^{2}-x^{2}}\right) \cdot d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)$

$$
\begin{aligned}
& \Rightarrow \mathrm{I}_{1}=\mathrm{t}^{2} \cdot \cos ^{-1} \mathrm{t}+\sin ^{-1} \mathrm{t}-\frac{\mathrm{t}}{2} \sqrt{1-\mathrm{t}^{2}}-\frac{1}{2} \sin ^{-1}(\mathrm{t}) \\
& \Rightarrow \mathrm{I}_{1}=\mathrm{t}^{2} \cdot \cos ^{-1} \mathrm{t}-\frac{\mathrm{t}}{2} \sqrt{1-\mathrm{t}^{2}}+\frac{1}{2} \sin ^{-1} \mathrm{t}
\end{aligned}
$$

Put it in equation. (2)

$$
\begin{equation*}
\Rightarrow \mathrm{I}=\mathrm{x}-\left(\frac{4}{\pi}\right)\left[\mathrm{t}^{2} \cdot \cos ^{-1} \mathrm{t}-\frac{\mathrm{t}}{2} \sqrt{1-\mathrm{t}^{2}}+\frac{1}{2} \sin ^{-1} \mathrm{t}\right] \tag{2}
\end{equation*}
$$

Now substitute the value of t we get

$$
\Rightarrow I=x-\left(\frac{4}{\pi}\right)\left[(\sqrt{x})^{2} \cdot \cos ^{-1} \sqrt{x}-\frac{\sqrt{x}}{2} \sqrt{1-(\sqrt{x})^{2}}+\frac{1}{2} \sin ^{-1} \sqrt{x}\right]
$$

Computing and simplifying we get

$$
\begin{aligned}
& =x-\left(\frac{4}{\pi}\right)\left[x \cdot \cos ^{-1} \sqrt{x}-\frac{\sqrt{x}}{2} \sqrt{1-x}+\frac{1}{2} \sin ^{-1} \sqrt{x}\right] \\
& =x-\left(\frac{4}{\pi}\right)\left[x \cdot\left(\frac{\pi}{2}-\sin ^{-1} \sqrt{x}\right)-\frac{\left(\sqrt{x-x^{2}}\right)}{2}+\frac{1}{2} \sin ^{-1} \sqrt{x}\right] \\
& =x-2 x+\frac{4 x}{\pi} \sin ^{-1} \sqrt{x}+\frac{2}{\pi} \sqrt{x-x^{2}}-\frac{2}{\pi} \sin ^{-1} \sqrt{x} \\
& =-x+\frac{2}{\pi}\left[(2 x-1) \sin ^{-1} \sqrt{x}\right]+\frac{2}{\pi} \sqrt{x-x^{2}}+C \\
& \Rightarrow I=\frac{2(2 x-1)}{\pi} \sin ^{-1} \sqrt{x}+\frac{2}{\pi} \sqrt{x-x^{2}}-x+C
\end{aligned}
$$

20. $\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$

Solution:

Given: $\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$
Let $I=\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}$
Let $x=\cos ^{2} \theta \Rightarrow d x=-2 \sin \theta \cos \theta d \theta$
$\Rightarrow \sqrt{x}=\cos \theta$ or $\theta=\cos ^{-1} \sqrt{x}$
Substituting these values in given question we get
$\Rightarrow I=\int \sqrt{\frac{1-\sqrt{\cos ^{2} \theta}}{1+\sqrt{\cos ^{2} \theta}}}(-2 \sin \theta \cos \theta) d \theta$
$=\int \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}(-2 \sin \theta \cos \theta) d \theta$
Substituting the standard formulae we get
$=\int-\sqrt{\frac{2 \sin ^{2}\left(\frac{\theta}{2}\right)}{2 \cos ^{2}\left(\frac{\theta}{2}\right)}}(2 \sin \theta \cos \theta) d \theta$
Multiplying and dividing by 2 we get
$=\int-\sqrt{\frac{\sin ^{2}\left(\frac{\theta}{2}\right)}{\cos ^{2}\left(\frac{\theta}{2}\right)}}\left(2 \sin 2 \frac{\theta}{2} \cos 2 \frac{\theta}{2}\right) d \theta$
Using standard identities the above equation can be written as
$=\int-\frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} \cdot(2) \cdot\left(2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right) \cdot\left(2 \cos ^{2}\left(\frac{\theta}{2}\right)-1\right) d \theta$
$\Rightarrow \int \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} d x=\int-4 \cdot\left[\sin ^{2}\left(\frac{\theta}{2}\right)\right]\left(2 \cos ^{2}\left(\frac{\theta}{2}\right)-1\right) d \theta$

$$
=\int-4 \cdot\left\{\left[2 \cdot \sin ^{2}\left(\frac{\theta}{2}\right) \cos ^{2}\left(\frac{\theta}{2}\right)\right]-\sin ^{2}\left(\frac{\theta}{2}\right)\right\} \mathrm{d} \theta
$$

Splitting the integrals we get
$=\int-2 \cdot\left(2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right)^{2} d \theta+4 \int \sin ^{2}\left(\frac{\theta}{2}\right) d \theta$
Again by using standard identities above equation can be written as
$=-2 . \int \sin ^{2} \theta d \theta+4 \int \sin ^{2}\left(\frac{\theta}{2}\right) d \theta$
$=-2 \cdot \int \frac{1-\cos 2 \theta}{2} d \theta+4 \int \frac{1-\cos \theta}{2} d \theta$
On integrating we get
$=-2\left[\frac{\theta}{2}-\frac{\sin 2 \theta}{4}\right]+4\left[\frac{\theta}{2}-\frac{\sin \theta}{2}\right]+C$
$=-\theta+\frac{\sin 2 \theta}{2}+2 \theta-2 \sin \theta+C$
Computing and simplifying
$=\theta+\frac{2 \cdot \sin \theta \cdot \cos \theta}{2}-2 \sin \theta+C$
$=\theta+\frac{2 \cdot \sqrt{1-\cos ^{2} \theta} \cdot \cos \theta}{2}-2 \sqrt{1-\cos ^{2} \theta}+C$
Substituting the values we get

$$
\begin{aligned}
& =\cos ^{-1} \sqrt{x}+\sqrt{1-x} \cdot \sqrt{x}-2 \sqrt{1-x}+C \\
& =\cos ^{-1} \sqrt{x}+\sqrt{x(1-x)}-2 \sqrt{1-x}+C \\
& \Rightarrow I=\cos ^{-1} \sqrt{x}+\sqrt{x-x^{2}}-2 \sqrt{1-x}+C
\end{aligned}
$$

21. $\frac{2+\sin 2 x}{1+\cos 2 x} e^{x}$

Solution:

let $\mathrm{I}=\frac{2+\sin 2 \mathrm{x}}{1+\cos 2 \mathrm{x}} \mathrm{e}^{\mathrm{x}}$
Subsisting the $\sin 2 x=2 \sin x \cos x$ formula we get
$=\left(\frac{2+2 \sin \mathrm{x} \cos \mathrm{x}}{2 \cos ^{2} \mathrm{x}}\right) \mathrm{e}^{\mathrm{x}}$
Now by taking 2 common
$=2 \cdot\left(\frac{1+\sin \mathrm{x} \cos \mathrm{x}}{2 \cos ^{2} \mathrm{x}}\right) \mathrm{e}^{\mathrm{x}}$
On simplification
$=\left(\frac{1}{\cos ^{2} x}+\frac{\sin x \cos x}{\cos ^{2} x}\right) e^{x}$
$=\left(\sec ^{2} x+\tan x\right) e^{x}$
Substituting integrals both the sides we get
$\Rightarrow \int \frac{2+\sin 2 \mathrm{x}}{1+\cos 2 \mathrm{x}} \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\int\left(\sec ^{2} \mathrm{x}+\tan \mathrm{x}\right) \mathrm{e}^{\mathrm{x}} \mathrm{dx}$
Now let $\tan \mathrm{x}=\mathrm{f}(\mathrm{x})$
$\Rightarrow f^{\prime}(\mathrm{x})=\sec ^{2} \mathrm{x} d \mathrm{x}$
$\Rightarrow \int \frac{2+\sin 2 \mathrm{x}}{1+\cos 2 \mathrm{x}} \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\int\left(\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right) \mathrm{e}^{\mathrm{x}} \mathrm{dx}$
On integrating we get
$=e^{x} f(x)+C$
$\Rightarrow \mathrm{I}=\mathrm{e}^{\mathrm{x}} \tan \mathrm{x}+\mathrm{C}$
22. $\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}$

Solution:

Given: $\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}$
Let $I=\frac{x^{2}+x+1}{(x+1)^{2}(x+2)}$
Using partial fraction we get

$$
\begin{align*}
& \text { Let } \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+2)} \ldots \text { (1) } \tag{1}\\
& \Rightarrow \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{A(x+1)(x+2)+B(x+2)+C(x+1)^{2}}{(x+1)^{2}(x+2)} \\
& \Rightarrow \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{A\left(x^{2}+3 x+2\right)+B(x+2)+C\left(x^{2}+2 x+1\right)}{(x+1)^{2}(x+2)} \\
& \Rightarrow x^{2}+x+1=A x^{2}+3 A x+2 A+B x+2 B+C x^{2}+2 C x+C \\
& \Rightarrow x^{2}+x+1=(2 A+2 B+C)+(3 A+B+2 C) x+(A+C) x^{2}
\end{align*}
$$

Equating the coefficients of x, x^{2} and constant value. We get:
(a) $A+C=1$
(b) $3 A+B+2 C=1$
(c) $2 \mathrm{~A}+2 \mathrm{~B}+\mathrm{C}=1$

After solving the above equations we get
$\mathrm{A}=-2, \mathrm{~B}=1$ and $\mathrm{C}=3$
Substituting the values of A, B and C we get
$\Rightarrow \frac{x^{2}+x+1}{(x+1)^{2}(x+2)}=\frac{-2}{x+1}+\frac{1}{(x+1)^{2}}+\frac{3}{(x+2)}$
Taking integrals on both sides
$\Rightarrow \int \frac{x^{2}+x+1}{(x+1)^{2}(x+2)} d x=\int\left(\frac{-2}{x+1}+\frac{1}{(x+1)^{2}}+\frac{3}{(x+2)}\right) d x$

Splitting the integrals we get

$$
\begin{aligned}
& =-2 \cdot \int\left(\frac{1}{x+1}\right) d x+\int\left(\frac{1}{(x+1)^{2}}\right) d x+3 \cdot \int\left(\frac{1}{(x+2)}\right) d x \\
& =-2 \cdot \int\left(\frac{1}{x+1}\right) d x+\int\left((x+1)^{-2}\right) d x+3 \cdot \int\left(\frac{1}{(x+2)}\right) d x
\end{aligned}
$$

On integrating we get

$$
\begin{aligned}
& =-2 \log |x+1|+\left(\frac{(x+1)^{-1}}{(-1)}\right)+3 \log |x+1|+C \\
& =-2 \log |x+1|-\frac{1}{(x+1)}+3 \log |x+1|+C
\end{aligned}
$$

23. $\tan ^{-1} \sqrt{\frac{1-x}{1+x}}$

Solution:

Given: $\tan ^{-1} \sqrt{\frac{1-x}{1+x}}$
let $I=\tan ^{-1} \sqrt{\frac{1-x}{1+x}}$
Let $x=\cos \theta \Rightarrow d x=-\sin \theta d \theta$
$\Rightarrow \theta=\cos ^{-1} \mathrm{x}$
Now by substituting these values in given question we get
$\Rightarrow I=\int \tan ^{-1} \sqrt{\frac{1-x}{1+x}} d x=\int \tan ^{-1} \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}(-\sin \theta) d \theta$
Using standard identities the above equation can be written as

Wisdamising Knawledee

$$
\begin{aligned}
& =-\int \tan ^{-1} \sqrt{\frac{2 \sin ^{2}\left(\frac{\theta}{2}\right)}{2 \cos ^{2}\left(\frac{\theta}{2}\right)}}(\sin \theta) \mathrm{d} \theta \\
& =-\int \tan ^{-1} \sqrt{\tan ^{2}\left(\frac{\theta}{2}\right)}(\sin \theta) \mathrm{d} \theta
\end{aligned}
$$

On simplification we get

$$
\begin{aligned}
& =-\int \tan ^{-1} \tan \frac{\theta}{2} \cdot(\sin \theta) \mathrm{d} \theta \\
& =-\frac{1}{2} \int \theta \cdot(\sin \theta) \mathrm{d} \theta
\end{aligned}
$$

Now by using product rule

$$
\begin{aligned}
& \int u \cdot v d x=u \cdot \int v d x-\int \frac{d u}{d x} \cdot\left\{\int v d x\right\} d x \\
& =-\frac{1}{2} \int \theta \cdot(\sin \theta) d \theta=-\frac{1}{2}\left[\theta \cdot \int \sin \theta d \theta-\int \frac{d \theta}{d \theta} \cdot\left\{\int \sin v d \theta\right\} d \theta\right]
\end{aligned}
$$

Computing and integrating we get

$$
\begin{aligned}
& =-\frac{1}{2}\left[\theta \cdot(-\cos \theta)-\int 1 \cdot(-\cos \theta) d \theta\right] \\
& =-\frac{1}{2}[-\theta \cdot \cos \theta+\sin \theta]
\end{aligned}
$$

Substituting the values we get

$$
\begin{aligned}
& =\frac{1}{2} \theta \cdot \cos \theta-\frac{1}{2} \sqrt{\left(1-\cos ^{2} \theta\right.} \\
& =\frac{1}{2} \cos ^{-1} x \cdot x-\frac{1}{2} \sqrt{\left(1-x^{2}\right.}+C \\
& =\frac{1}{2}\left(x \cdot \cos ^{-1} x-\sqrt{\left(1-x^{2}\right)}\right)+C
\end{aligned}
$$

EDUGRロSS

$$
\text { 24. } \frac{\sqrt{x^{2}+1}\left[\log \left(x^{2}+1\right)-2 \log x\right]}{x^{4}}
$$

Solution:

Given: $\frac{\sqrt{x^{2}+1}\left[\log \left(x^{2}+1\right)-2 \log x\right]}{x^{4}}$
let $\mathrm{I}=\frac{\sqrt{\mathrm{x}^{2}+1}\left[\log \left(\mathrm{x}^{2}+1\right)-2 \log \mathrm{x}\right]}{\mathrm{x}^{4}}$
$=\frac{\sqrt{x^{2}+1}}{x^{4}}\left[\log \left(x^{2}+1\right)-\log x^{2}\right]$
Using logarithmic identities we get
$=\frac{1}{x^{3}} \sqrt{\frac{x^{2}+1}{x^{2}}}\left[\log \left(\frac{\mathrm{x}^{2}+1}{\mathrm{x}^{2}}\right)\right]$
On computing
$=\frac{1}{\mathrm{x}^{3}} \sqrt{1+\frac{1}{\mathrm{x}^{2}}}\left[\log \left(1+\frac{1}{\mathrm{x}^{2}}\right)\right]$
now let $1+\frac{1}{\mathrm{x}^{2}}=\mathrm{t} \Rightarrow-\frac{2}{\mathrm{x}^{3}} \mathrm{dx}=\mathrm{dt}$
Substituting these values in given question we get
$\Rightarrow \int \frac{\sqrt{x^{2}+1}\left[\log \left(x^{2}+1\right)-2 \log x\right]}{x^{4}} d x=\int \frac{1}{x^{3}} \sqrt{1+\frac{1}{x^{2}}}\left[\log \left(1+\frac{1}{x^{2}}\right)\right] d x$
$=\int-\frac{1}{2} \cdot \sqrt{\mathrm{t}}[\log (\mathrm{t})] \mathrm{dt}$
By using product rule
$\int u . v d x=u . \int v d x-\int \frac{d u}{d x} \cdot\left\{\int v d x\right\} d x$
$=\int-\frac{1}{2} \cdot \sqrt{\mathrm{t}}[\log (\mathrm{t})] \mathrm{dt}=-\frac{1}{2}\left[\log \mathrm{t} . \int \sqrt{\mathrm{t}} \mathrm{dt}-\int \frac{\mathrm{d}}{\mathrm{dt}} \log \mathrm{t} \cdot\left\{\int \sqrt{\mathrm{t}} \mathrm{dt}\right\} \mathrm{dt}\right]$
Computing and simplifying we get
$=-\frac{1}{2}\left[\log t \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}}-\int \frac{1}{t} \cdot\left\{\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right\} d t\right]$
$=-\frac{1}{2}\left[\frac{2}{3} t^{\frac{3}{2}} \log t-\int\left\{\frac{t^{\frac{3}{2}-1}}{\frac{3}{2}}\right\} d t\right]$
$=-\frac{1}{2}\left[\frac{2}{3} t^{\frac{3}{2}} \log t-\frac{2}{3} \int t^{\frac{1}{2}} d t\right]$
On integration we get

$$
\begin{aligned}
& =-\frac{1}{2}\left[\frac{2}{3} t^{\frac{3}{2}} \log t-\frac{2}{3} \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right] \\
& =\left[-\frac{1}{2} \cdot \frac{2}{3} t^{\frac{3}{2}} \log t+\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot t^{\frac{3}{2}}\right] \\
& =-\frac{1}{3} t^{\frac{3}{2}}\left[\log t-\frac{2}{3}\right]
\end{aligned}
$$

Substituting the value of t we get
$\Rightarrow I=-\frac{1}{3}\left(1+\frac{1}{x^{2}}\right)^{\frac{3}{2}}\left[\log \left(1+\frac{1}{x^{2}}\right)-\frac{2}{3}\right]+C$

Evaluate the definite integrals in Exercises 25 to 33.
25. $\int_{\frac{\pi}{2}}^{\pi} e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x$

Solution:

Given: $\int_{-\frac{\pi}{2}}^{\pi}\left(e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x\right.$
let, $I=\int_{-\frac{\pi}{2}}^{\pi}\left(e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x\right.$
Substituting the standard identities for $1-\sin \mathrm{x}$ and $1-\cos \mathrm{x}$ we get
$=\int_{-\frac{\pi}{2}}^{\pi}\left(e^{x}\left(\frac{1-2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin ^{2}\left(\frac{x}{2}\right)}\right) d x\right.$
Now splitting the denominator

$$
\begin{aligned}
& =\int_{-\frac{\pi}{2}}^{\pi}\left(\mathrm{e}^{\mathrm{x}}\left(\frac{1}{2 \sin ^{2}\left(\frac{x}{2}\right)}-\frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \sin ^{2}\left(\frac{x}{2}\right)}\right) d x\right. \\
& =\int_{-\frac{\pi}{2}}^{\pi}\left(\mathrm{e}^{x}\left(\frac{1}{2} \operatorname{cosec}^{2}\left(\frac{x}{2}\right)-\cot \frac{x}{2}\right) d x\right.
\end{aligned}
$$

now let $f(x)=-\cot \frac{x}{2}$
Substituting these values we get
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=-\left(-\frac{1}{2} \operatorname{cosec}^{2}\left(\frac{\mathrm{x}}{2}\right)\right)=\frac{1}{2} \operatorname{cosec}^{2}\left(\frac{\mathrm{x}}{2}\right)$
$\Rightarrow \int_{-\frac{\pi}{2}}^{\pi}\left(\mathrm{e}^{\mathrm{x}}\left(\frac{1}{2} \operatorname{cosec}^{2}\left(\frac{\mathrm{x}}{2}\right)-\cot \frac{\mathrm{x}}{2}\right) \mathrm{dx}=\int_{-\frac{\pi}{2}}^{\pi}\left(\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right) \mathrm{e}^{\mathrm{x}} \mathrm{dx}\right.$
On integration we get
$=\left[\mathrm{e}^{\mathrm{x}}(\mathrm{x})\right]_{-\frac{\pi}{2}}^{\pi}$
$=\left[e^{x}\left(-\cot \frac{x}{2}\right)\right]_{-\frac{\pi}{2}}^{\pi}$
Now by applying the limits we get

$$
\begin{aligned}
& =-\left[e^{\pi}\left(\cot \frac{\pi}{2}\right)-e^{\frac{\pi}{2}}\left(\cot \frac{\pi}{4}\right)\right] \\
& =-\left[e^{\pi}(0)-e^{\frac{\pi}{2}}(1)\right] \\
& =-\left[0-e^{\frac{\pi}{2}}\right]
\end{aligned}
$$

On simplification we get
$\Rightarrow I=e^{\frac{\pi}{2}}$
26. $\int_{0}^{\frac{\pi}{4}} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x$

Solution:

Given: $\int_{0}^{\frac{\pi}{4}} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x$
let, $I=\int_{0}^{\frac{\pi}{4}} \frac{\sin x \cos x}{\cos ^{4} x+\sin ^{4} x} d x$
Taking $\cos ^{4} x$ as common we get
$=\int_{0}^{\frac{\pi}{4}} \frac{\sin x \cos x}{\cos ^{4} x\left(1+\frac{\sin ^{4} x}{\cos ^{4} x}\right)} d x$
$=\int_{0}^{\frac{\pi}{4}} \frac{\tan x \sec ^{2} x}{\left(1+\tan ^{4} x\right)} d x$
Now let $\tan ^{2} \mathrm{x}=\mathrm{t} \Rightarrow 2 \tan \mathrm{x} \sec ^{2} \mathrm{xdx}=\mathrm{dt}$
And when $x=0$ then $t=0$ and when $x=\pi / 4$ then $t=1$
Now by substituting these values in above equation we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{4}} \frac{\tan x \sec ^{2} x}{\left(1+\tan ^{4} x\right)} d x=\int_{0}^{1} \frac{1}{\left(1+t^{2}\right)}\left(\frac{d t}{2}\right)$
On integration
$\Rightarrow I=\frac{1}{2}\left[\tan ^{-1} \mathrm{t}\right]_{0}^{1}$
Now by applying the limits we get
$=\frac{1}{2}\left[\tan ^{-1} 1-\tan ^{-1} 0\right]$
$\Rightarrow \mathrm{I}=\frac{1}{2} \cdot \frac{\pi}{4}$
$\Rightarrow I=\frac{\pi}{8}$

EDUGRロSS

27. $\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x d x}{\cos ^{2} x+4 \sin ^{2} x}$

Solution:

Given: $\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4 \sin ^{2} x} d x$
let, $I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4 \sin ^{2} x} d x$
Substituting $\sin ^{2} x$ formula we get
$\Rightarrow I=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4\left(1-\cos ^{2} x\right)} d x$
$=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{\cos ^{2} x+4(1)-\left(4 \cos ^{2} x\right)} d x$
On computing we get
$=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{2} x}{4-3 \cos ^{2} x} d x$

Now multiplying and dividing by 3 to the numerator we get
$=\int_{0}^{\frac{\pi}{2}} \frac{\frac{1}{3} \cdot 3 \cos ^{2} x}{4-3 \cos ^{2} x} d x$
Again by adding and subtracting 4 to the numerator we get
$=-\frac{1}{3} \cdot \int_{0}^{\frac{\pi}{2}} \frac{-3 \cos ^{2} x+4-4}{4-3 \cos ^{2} x} d x$
The above equation can be written as
$=-\frac{1}{3} \cdot \int_{0}^{\frac{\pi}{2}} \frac{4-3 \cos ^{2} x-4}{4-3 \cos ^{2} x} d x$
Now splitting the integrals we get

$$
\begin{aligned}
& =-\frac{1}{3} \cdot \int_{0}^{\frac{\pi}{2}} \frac{4-3 \cos ^{2} x}{4-3 \cos ^{2} x} d x+\frac{1}{3} \cdot \int_{0}^{\frac{\pi}{2}} \frac{4}{4-3 \cos ^{2} x} d x \\
& =-\frac{1}{3} \cdot \int_{0}^{\frac{\pi}{2}}(1) d x+\frac{1}{3} \cdot \int_{0}^{\frac{\pi}{2}} \frac{4}{4-3\left(\frac{1}{\sec ^{2} x}\right)} d x
\end{aligned}
$$

Applying the limits we get

$$
\begin{align*}
& =-\frac{1}{3} \cdot[\mathrm{x}]_{0}^{\frac{\pi}{2}}+\frac{1}{3} \cdot \int_{0}^{\frac{\pi}{2}} \frac{4 \sec ^{2} \mathrm{x}}{4 \sec ^{2} \mathrm{x}-3} \mathrm{dx} \\
& =-\frac{1}{3} \cdot\left[\frac{\pi}{2}\right]+\frac{1}{3} \cdot \int_{0}^{\frac{\pi}{2}} \frac{4 \sec ^{2} \mathrm{x}}{4\left(1+\tan ^{2} \mathrm{x}\right)-3} d \mathrm{x} \\
& \Rightarrow \mathrm{I}=-\frac{\pi}{6}+\frac{2}{3} \cdot \int_{0}^{\frac{\pi}{2}} \frac{2 \sec ^{2} \mathrm{x}}{1+4 \tan ^{2} \mathrm{x}} \mathrm{dx} \\
& \Rightarrow \mathrm{I}=-\frac{\pi}{6}+\mathrm{I}_{1} \ldots \cdot(2) \tag{2}
\end{align*}
$$

First solve for l_{1} :
$I_{1}=\frac{2}{3} \cdot \int_{0}^{\frac{\pi}{2}} \frac{2 \sec ^{2} x}{1+4 \tan ^{2} \mathrm{x}} d x$
Let $2 \tan \mathrm{x}=\mathrm{t} \Rightarrow 2 \sec ^{2} \mathrm{xdx} d \mathrm{dt}$
When $\mathrm{x}=0$ then $\mathrm{t}=0$ and when $\mathrm{x}=\pi / 2$ then $\mathrm{t}=\infty$
Substituting these values for above equation we get
$\Rightarrow \frac{2}{3} \cdot \int_{0}^{\frac{\pi}{2}} \frac{2 \sec ^{2} \mathrm{x}}{1+4 \tan ^{2} \mathrm{x}} \mathrm{dx}=\frac{2}{3} \cdot \int_{0}^{\infty} \frac{1}{1+\mathrm{t}^{2}} \mathrm{dt}$
Integrating and applying the limits we get
$\Rightarrow \mathrm{I}_{1}=\frac{2}{3}\left[\tan ^{-1} \mathrm{t}\right]_{0}^{\infty}$
$=\frac{2}{3}\left[\tan ^{-1} \infty-\tan ^{-1} 0\right]$
$\Rightarrow \mathrm{I}_{1}=\frac{2}{3} \cdot \frac{\pi}{2}$
$\Rightarrow I_{1}=\frac{\pi}{3}$
Put this value in equation (2)
$\Rightarrow I=-\frac{\pi}{6}+\frac{\pi}{3}$
$\Rightarrow \mathrm{I}=\frac{\pi}{6}$
28. $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} d x$

Solution:

Given: $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} d x$
let, $I=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{\sin 2 x}} d x$
On rearranging we get
$=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{-(-\sin 2 x)}} d x$
Now by substituting the $\sin 2 x$ formula we get
$=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{-(-1+1-2 \sin x \cos x)}} d x$
1 can be written as $\sin ^{2} x+\cos ^{2} x$
Substituting this in above equation we get
$=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{1-\left(\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x\right)}} d x$
As we know $(a+b)^{2}=a^{2}+b^{2}$ using this in above equation we get
$=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{\left(1-(\sin x-\cos x)^{2}\right)}} d x$
Now let $\sin x-\cos x=t \Rightarrow(\cos x+\sin x) d x=d t$
when $x=\frac{\pi}{6} \Rightarrow t=\frac{1}{2}-\frac{\sqrt{3}}{2}=\frac{1-\sqrt{3}}{2}$ and when $x=\frac{\pi}{3} \Rightarrow t=\frac{\sqrt{3}}{2}-\frac{1}{2}=\frac{\sqrt{3}-1}{2}$
Substituting these values in above equation we get
$\Rightarrow \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{\sin x+\cos x}{\sqrt{\left(1-(\sin x-\cos x)^{2}\right)}} d x=\int_{\frac{1-\sqrt{3}}{2}}^{\frac{\sqrt{3}-1}{2}} \frac{1}{\sqrt{\left(1-(t)^{2}\right)}} d t$

$$
=\int_{-\left(\frac{\sqrt{3}-1}{2}\right)}^{\frac{\sqrt{3}-1}{2}} \frac{1}{\sqrt{\left(1-(\mathrm{t})^{2}\right)}} \mathrm{dt}
$$

$$
\text { let } \mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{\left(1-(\mathrm{t})^{2}\right)}} \text { and } \mathrm{f}(-\mathrm{x})=\frac{1}{\sqrt{\left(1-(-\mathrm{t})^{2}\right)}}=\frac{1}{\sqrt{\left(1-(\mathrm{t})^{2}\right)}}=\mathrm{f}(\mathrm{x})
$$

That is $f(x)=f(-x)$
So, $f(x)$ is an even function.
It is also known that if $f(x)$ is an even function then, we have

$$
\left\{\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x\right\}
$$

By using the above formula we get
$\Rightarrow \mathrm{I}=2 . \int_{0}^{\frac{\sqrt{3}-1}{2}} \frac{1}{\sqrt{\left(1-(\mathrm{t})^{2}\right)}} \mathrm{dt}$
On integrating
$\Rightarrow I=\left[2 . \sin ^{-1} \mathrm{t}\right]_{0}^{\frac{\sqrt{3}-1}{2}}$
Now by applying the limits
$\Rightarrow I=2 \cdot \sin ^{-1}\left(\frac{\sqrt{3}-1}{2}\right)$
29. $\int_{0}^{1} \frac{d x}{\sqrt{1+x}-\sqrt{x}}$

Solution:

Given: $\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1+\mathrm{x}}-\sqrt{\mathrm{x}}}$
let, $I=\int_{0}^{1} \frac{d x}{\sqrt{1+x}-\sqrt{x}}$
Now multiply and divide $\sqrt{1+\mathrm{x}}+\sqrt{\mathrm{x}}$ to the above equation we get
$=\int_{0}^{1} \frac{1}{\sqrt{1+x}-\sqrt{x}} \times \frac{\sqrt{1+x}+\sqrt{x}}{\sqrt{1+x}+\sqrt{x}} d x$
$=\int_{0}^{1} \frac{\sqrt{1+\mathrm{x}}+\sqrt{\mathrm{x}}}{1+\mathrm{x}-\mathrm{x}} \mathrm{dx}$
On simplification
$=\int_{0}^{1} \frac{\sqrt{1+\mathrm{x}}+\sqrt{\mathrm{x}}}{1} \mathrm{dx}$
Now by splitting the integrals we get

$$
\begin{aligned}
& =\int_{0}^{1} \sqrt{1+x} d x+\int_{0}^{1} \sqrt{x} d x \\
& =\int_{0}^{1}\left((1+x)^{\frac{1}{2}}\right) d x+\int_{0}^{1}(x)^{\frac{1}{2}} d x
\end{aligned}
$$

On integrating we get
$\Rightarrow \mathrm{I}=\left[\frac{(1+\mathrm{x})^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{1}+\left[\frac{(\mathrm{x})^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{1}$
Now by applying the limits we get

$$
=\frac{2}{3} \cdot\left[(1+1)^{\frac{3}{2}}-(1+0)^{\frac{3}{2}}\right]+\frac{2}{3} \cdot\left[(1)^{\frac{3}{2}}\right]
$$

Computing and simplifying we get

$$
=\frac{2}{3} \cdot\left[(2)^{\frac{3}{2}}-(1)^{\frac{3}{2}}\right]+\frac{2}{3} \cdot\left[(1)^{\frac{3}{2}}\right]
$$

$=\frac{2}{3} \cdot\left[(2)^{\frac{3}{2}}-1\right]+\frac{2}{3} \cdot[1]$
$=\frac{2}{3} \cdot\left[(2)^{\frac{3}{2}}\right]-\frac{2}{3} \cdot[1]+\frac{2}{3} \cdot[1]$
$=\frac{2}{3} \cdot[2 \sqrt{2}]$
$\Rightarrow I=\frac{4 \sqrt{2}}{3}$
30. $\int_{0}^{\frac{\pi}{4}} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x$

Solution:

Let $I=\int_{0}^{\frac{\pi}{4}} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x$
Also, let $\sin x-\cos x=t$
Differentiating both sides, we get,
$(\operatorname{Cos} x+\sin x) d x=d t$
When $x=0, t=-1$
And when ${ }^{x}=\frac{\pi}{4}, t=0$
Now, $(\sin x-\cos x)_{\sim}^{2}=t^{2}$
$1-2 \sin x \cos x=t^{2}$
$\operatorname{Sin} 2 x=1-t^{2}$
Putting all the values, we get the integral,
$I=\int_{-1}^{0} \frac{d t}{9+16\left(1-t^{2}\right)}$

EDUGRロSS

$I=\int_{-1}^{0} \frac{d t}{25-16 \mathrm{t}^{2}}$
The above equation can be written as
$I=\int_{-1}^{0} \frac{d t}{(5)^{2}-(4 \mathrm{t})^{2}}$
On integrating we get
$I=\frac{1}{4}\left[\frac{1}{2(5)} \log \left|\frac{5+4 t}{5-4 t}\right|\right]_{-1}^{0}$
Now by applying the limits we get
$I=\frac{1}{40}\left[\log 1-\log \frac{1}{9}\right]$
$I=\frac{1}{40} \log 9$
31. $\int_{0}^{\frac{\pi}{2}} \sin 2 x \tan ^{-1}(\sin x) d x$

Solution:

Given: $\int_{0}^{\frac{\pi}{2}} \sin 2 x \tan ^{-1}(\sin x) d x$
let, $I=\int_{0}^{\frac{\pi}{2}} \sin 2 x \tan ^{-1}(\sin x) d x$
$=\int_{0}^{\frac{\pi}{2}} 2 \sin \mathrm{x} \cos \mathrm{x} \cdot \tan ^{-1}(\sin \mathrm{x}) \mathrm{dx}$
Let $\sin \mathrm{x}=\mathrm{t} \Rightarrow \cos \mathrm{xdx}=\mathrm{dt}$
When $\mathrm{x}=0$ then $\mathrm{t}=0$ and when $\mathrm{x}=\pi / 2$ then $\mathrm{t}=1$
Now by substituting these values in above equation we get
$\Rightarrow \int_{0}^{\frac{\pi}{2}} 2 \sin \mathrm{x} \cos \mathrm{x} \cdot \tan ^{-1}(\sin \mathrm{x}) \mathrm{dx}=\int_{0}^{1} 2 \mathrm{t} \cdot \tan ^{-1}(\mathrm{t}) \mathrm{dt}$
Using product rule
$\int u . v d x=u \cdot \int v d x-\int \frac{d u}{d x} \cdot\left\{\int v d x\right\} d x$
$\Rightarrow 2 \int_{0}^{1} \mathrm{t} \cdot \tan ^{-1}(\mathrm{t}) \mathrm{dt}=2\left[\tan ^{-1}(\mathrm{t}) \cdot \int \mathrm{tdt}-\int \frac{\mathrm{d}}{\mathrm{dt}}\left(\tan ^{-1}(\mathrm{t})\right) \cdot\left\{\int \mathrm{t} . \mathrm{dt}\right\} \mathrm{dt}\right]$
Computing using product rule we get
$=2\left[\tan ^{-1}(\mathrm{t}) \cdot \frac{\mathrm{t}^{2}}{2}-\int \frac{1}{1+\mathrm{t}^{2}} \cdot \frac{\mathrm{t}^{2}}{2} \mathrm{dt}\right]$
$=2\left[\tan ^{-1}(\mathrm{t}) \cdot \frac{\mathrm{t}^{2}}{2}-\frac{1}{2} \cdot \int \frac{-1+1+\mathrm{t}^{2}}{1+\mathrm{t}^{2}} \mathrm{dt}\right]$
Splitting the integrals we get
$=2\left[\tan ^{-1}(\mathrm{t}) \cdot \frac{\mathrm{t}^{2}}{2}-\frac{1}{2} \cdot\left\{\int-\frac{1}{1+\mathrm{t}^{2}} \mathrm{dt}+\int \frac{1+\mathrm{t}^{2}}{1+\mathrm{t}^{2}} \mathrm{dt}\right\}\right]$
On simplification we get
$=2\left[\tan ^{-1}(\mathrm{t}) \cdot \frac{\mathrm{t}^{2}}{2}-\frac{1}{2} \cdot\left\{\int-\frac{1}{1+\mathrm{t}^{2}} \mathrm{dt}+\int 1 \mathrm{dt}\right\}\right]$
$=2\left[\tan ^{-1}(\mathrm{t}) \cdot \frac{\mathrm{t}^{2}}{2}-\frac{1}{2} \cdot\left\{-\tan ^{-1}(\mathrm{t})+\mathrm{t}\right\}\right]$
$=\left[\mathrm{t}^{2} \cdot \tan ^{-1}(\mathrm{t}) .-\left\{-\tan ^{-1}(\mathrm{t})+\mathrm{t}\right\}\right]$
Computing we get
$\Rightarrow 2 \int_{0}^{1} \mathrm{t} \cdot \tan ^{-1}(\mathrm{t}) \mathrm{dt}=\left[\mathrm{t}^{2} \cdot \tan ^{-1}(\mathrm{t}) \cdot-\left\{-\tan ^{-1}(\mathrm{t})+\mathrm{t}\right\}\right]_{0}^{1}$
Now by applying the limits

$$
=\left[1^{2} \cdot \tan ^{-1}(1) \cdot-\left\{-\tan ^{-1}(1)+1\right\}\right]-\left[0^{2} \cdot \tan ^{-1}(0) \cdot-\left\{-\tan ^{-1}(0)+0\right\}\right]
$$

$$
\begin{aligned}
& =\left[1 \cdot \frac{\pi}{4} \cdot-\left\{-\frac{\pi}{4}+1\right\}\right] \\
& =\left[\frac{\pi}{4}+\frac{\pi}{4}-1\right] \\
& \Rightarrow \mathrm{I}=\left[\frac{\pi}{2}-1\right] \\
& \text { 32. } \int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x
\end{aligned}
$$

Solution:

Given: $\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$
let, $I=\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x} d x$
As we know that
$\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}$
Using this in above equation we get
$\Rightarrow I=\int_{0}^{\pi} \frac{(\pi-x) \tan (\pi-x)}{\sec (\pi-x)+\tan (\pi-x)} d x$
Using standard allied angles the above equation can be written as
$=\int_{0}^{\pi} \frac{(\pi-x)(-\tan (x))}{(-\sec x)+(-\tan x)} d x$
$=\int_{0}^{\pi} \frac{-(\pi-x)(\tan (x))}{-[(\sec x)+(\tan x)]} d x$
$=\int_{0}^{\pi} \frac{(\pi-x)(\tan (x))}{\sec x+\tan x} d x \ldots$.
Adding (1) and (2), we get

$$
2 I=\int_{0}^{\pi} \frac{x \tan x}{\sec x+\tan x}+\frac{(\pi-x)(\tan (x))}{\sec x+\tan x} d x
$$

Now by adding we get

$$
2 I=\int_{0}^{\pi} \frac{\pi \tan x}{\sec x+\tan x} d x
$$

Tan x can be written as

$$
\begin{aligned}
& =\int_{0}^{\pi} \frac{\pi \cdot \frac{\sin x}{\cos x}}{\frac{1}{\cos x}+\frac{\sin x}{\cos x}} d x \\
& 2 I=\pi \cdot \int_{0}^{\pi} \frac{(\sin x)}{(1+\sin x)} d x \\
& =\pi \cdot \int_{0}^{\pi} \frac{(-1+1+\sin x)}{(1+\sin x)} d x
\end{aligned}
$$

Now by splitting the integrals we get
$=\pi \cdot \int_{0}^{\pi} \frac{(-1)}{(1+\sin x)} d x+\pi \cdot \int_{0}^{\pi} \frac{(1+\sin x)}{(1+\sin x)} d x$
Again by multiplying and dividing above equation by $1-\sin \mathrm{x}$ we get
$=\pi \cdot \int_{0}^{\pi} \frac{(-1)}{(1+\sin x)} \times \frac{(1-\sin x)}{(1-\sin x)} d x+\pi \cdot \int_{0}^{\pi} 1 . d x$
Splitting the integrals
$=-\pi \cdot \int_{0}^{\pi} \frac{(1-\sin x)}{\left(1-\sin ^{2} x\right.} d x+\pi \cdot \int_{0}^{\pi} 1 . d x$
$2 I=-\pi \cdot \int_{0}^{\pi} \frac{(1-\sin x)}{\cos ^{2} x} d x+\pi \cdot \int_{0}^{\pi} 1 \cdot d x$
$2 I=-\pi \cdot \int_{0}^{\pi}\left\{\frac{1}{\cos ^{2} x}-\frac{\sin x}{\cos ^{2} x}\right\} d x+\pi \cdot \int_{0}^{\pi} 1 . d x$
$2 I=-\pi \cdot \int_{0}^{\pi}\left\{\sec ^{2} x-\tan x \sec x\right\} d x+\pi \cdot \int_{0}^{\pi} 1 \cdot d x$
On integrating we get
$\Rightarrow 2 \mathrm{I}=-\pi \cdot[\tan \mathrm{x}-\sec \mathrm{x}]_{0}^{\pi}+[\mathrm{x}]_{0}^{\pi}$
Now by applying the limits we get

$$
\begin{aligned}
& \Rightarrow 2 I=-\pi \cdot[\tan \pi-\sec \pi-\tan 0+\sec 0]+\pi \cdot[\pi-0] \\
& \Rightarrow 2 I=-\pi \cdot[0-(-1)-0+1]+\pi \cdot[\pi] \\
& \Rightarrow 2 I=\pi \cdot[-2+\pi] \\
& \Rightarrow I=\frac{\pi}{2} \cdot[\pi-2]
\end{aligned}
$$

$$
\text { 33. } \int_{1}^{4}[|x-1|+|x-2|+|x-3|] d x
$$

Solution:

EDUGRロSS

Given: $\int_{1}^{4}[|\mathrm{x}-1|+|\mathrm{x}-2|+|\mathrm{x}-3|] \mathrm{dx}$
Let,
$\Rightarrow I=\int_{1}^{4}[|x-1|+|x-2|+|x-3|] d x$
Now by splitting the integrals we get
$\Rightarrow I=\int_{1}^{4}[|x-1|] d x+\int_{1}^{4}[|x-2|] d x+\int_{1}^{4}[|x-3|] d x$
let $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$
First solve for I_{1} :
$I_{1}=\int_{1}^{4}[|x-1|] d x$

EDUGRロSS

As we can see that $(x-1) \geq 0$ when $1 \leq x \leq 4$
$\Rightarrow I_{1}=\int_{1}^{4}(x-1) d x$
On integrating we get
$\Rightarrow I_{1}=\left[\frac{x^{2}}{2}-x\right]_{0}^{1}$
Now by applying the limits we get
$\Rightarrow I_{1}=\left[\frac{(4)^{2}}{2}-4-\frac{(1)^{2}}{2}+1\right]$
$\Rightarrow I_{1}=\left[8-4-\frac{1}{2}+1\right]$
$\Rightarrow \mathrm{I}_{1}=\left[5-\frac{1}{2}\right]$
$\Rightarrow I_{1}=\frac{9}{2}$
Now solve for I_{2} :
$I_{2}=\int_{1}^{4}[|x-2|] d x$
As we can see that $(x-2) \leq 0$ when $1 \leq x \leq 2$ and $(x-2) \geq 0$ when $2 \leq x \leq 4$
As we know that
$\left\{\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x\right\}$
By using this we get
$\Rightarrow I_{2}=\int_{1}^{2}-(x-2) d x+\int_{2}^{4}(x-2) d x$
On integrating

$$
\Rightarrow I_{2}=-\left[\frac{x^{2}}{2}-2 x\right]_{1}^{2}+\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4}
$$

Now by applying the limits we get

$$
\begin{aligned}
& \Rightarrow I_{2}=-\left[\frac{(2)^{2}}{2}-2(2)-\frac{(1)^{2}}{2}+2(1)\right]+\left[\frac{(4)^{2}}{2}-2(4)-\frac{(2)^{2}}{2}+2(2)\right] \\
& \Rightarrow I_{2}=-\left[2-4-\frac{1}{2}+2\right]+[8-8-2+4] \\
& \Rightarrow I_{2}=\left[\frac{1}{2}+2\right] \\
& \Rightarrow I_{2}=\frac{5}{2}
\end{aligned}
$$

Now solve for I_{3} :
$I_{3}=\int_{1}^{4}[|x-3|] d x$
As we can see that $(x-3) \leq 0$ when $1 \leq x \leq 3$ and $(x-3) \geq 0$ when $3 \leq x \leq 4$
As we know that
$\left\{\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x\right\}$
By using above formula we get
$\Rightarrow I_{3}=\int_{1}^{3}-(x-3) d x+\int_{3}^{4}(x-3) d x$
On integrating we get
$\Rightarrow I_{3}=-\left[\frac{x^{2}}{2}-3 x\right]_{1}^{3}+\left[\frac{x^{2}}{2}-3 x\right]_{3}^{4}$
Now by applying the limits

EDUGRロSS

$$
\begin{aligned}
& \Rightarrow I_{3}=-\left[\frac{(3)^{2}}{2}-3(3)-\frac{(1)^{2}}{2}+3(1)\right]+\left[\frac{(4)^{2}}{2}-3(4)-\frac{(3)^{2}}{2}+3(3)\right] \\
& \Rightarrow I_{3}=-\left[\frac{9}{2}-9-\frac{1}{2}+3\right]+\left[8-12-\frac{9}{2}+9\right] \\
& \Rightarrow I_{3}=\left[2+\frac{1}{2}\right] \\
& \Rightarrow I_{3}=\frac{5}{2} \\
& \text { as } I=I_{1}+I_{2}+I_{3}
\end{aligned}
$$

Substituting the above all values we get
$\Rightarrow \mathrm{I}=\frac{9}{2}+\frac{5}{2}+\frac{5}{2}$
$\Rightarrow \mathrm{I}=\frac{19}{2}$

Prove the following (Exercises 34 to 39)
34. $\int_{1}^{3} \frac{d x}{x^{2}(x+1)}=\frac{2}{3}+\log \frac{2}{3}$

Solution:

Given: $\int_{1}^{3} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}\right)(\mathrm{x}+1)}$
To Prove : $\int_{1}^{3} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}\right)(\mathrm{x}+1)}=\frac{2}{3}+\log \frac{2}{3}$
Let $I=\frac{d x}{\left(x^{2}\right)(x+1)}$
Using partial fraction
let $\frac{1}{\left(x^{2}\right)(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1} \ldots$ (1)

$$
\begin{aligned}
& \Rightarrow \frac{1}{\left(x^{2}\right)(x+1)}=\frac{A(x)(x+1)+B(x+1)+C\left(x^{2}\right)}{(x+1)\left(x^{2}\right)} \\
& \Rightarrow 1=A\left(x^{2}+x\right)+(B x+B)+C x^{2} \\
& \Rightarrow 1=A x^{2}+A x+B+B x+C x^{2} \\
& \Rightarrow 1=B+(A+B) x+(A+C) x^{2}
\end{aligned}
$$

Equating the coefficients of x, x^{2} and constant value. We get
(a) $B=1$
(b) $A+B=0 \Rightarrow A=-B \Rightarrow A=-1$
(c) $\mathrm{A}+\mathrm{C}=0 \Rightarrow \mathrm{C}=-\mathrm{A} \Rightarrow \mathrm{C}=1$

Put these values in equation (1)
$\Rightarrow \frac{1}{\left(x^{2}\right)(x+1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}$
$\Rightarrow \frac{1}{\left(x^{2}\right)(x+1)}=\frac{-1}{x}+\frac{1}{x^{2}}+\frac{1}{x+1}$
Taking integrals on both side we get

$$
\begin{aligned}
& \Rightarrow \int \frac{1}{\left(x^{2}\right)(x+1)} d x=\int-\frac{1}{x} d x+\int \frac{1}{\left(x^{2}\right)} d x+\int \frac{1}{(x+1)} d x \\
& \Rightarrow \int_{1}^{3} \frac{1}{\left(x^{2}\right)(x+1)} d x=\left[-\log |x|-x^{-1}+\log |x+1|\right]_{1}^{3} \\
& \Rightarrow \int_{1}^{3} \frac{1}{\left(x^{2}\right)(x+1)} d x=\left[-\frac{1}{x}+\log \left|\frac{x+1}{x}\right|\right]_{1}^{3}
\end{aligned}
$$

Now by applying the limits we get

$$
\begin{aligned}
& =\left[-\frac{1}{3}+\log \left|\frac{3+1}{3}\right|-\left(-\frac{1}{1}+\log \left|\frac{1+1}{1}\right|\right)\right] \\
& =\left[-\frac{1}{3}+\log \left|\frac{4}{3}\right|+\left(1-\log \left|\frac{2}{1}\right|\right)\right]
\end{aligned}
$$

Computing and simplifying we get
$=\left[-\frac{1}{3}+1+\log \left|\frac{4}{3} \times \frac{1}{2}\right|\right]$
$\Rightarrow \mathrm{I}=\left[\frac{2}{3}+\log \left|\frac{2}{3}\right|\right]$
\Rightarrow L.H.S $=$ R.H.S
Hence proved.
35. $\int_{0}^{1} x e^{x} d x=1$

Solution:

Given: $\int_{0}^{1} \mathrm{xe}^{\mathrm{x}} \mathrm{dx}$
To Prove : $\int_{0}^{1} \mathrm{xe}^{\mathrm{x}} \mathrm{dx}=1$
Let $\mathrm{I}=\int_{0}^{1} \mathrm{xe}^{\mathrm{x}} \mathrm{dx}$
Using product rule we get

$$
\begin{aligned}
& \int u \cdot v d x=u \cdot \int v d x-\int \frac{d u}{d x} \cdot\left\{\int v d x\right\} d x \\
& \Rightarrow \int_{0}^{1} x e^{x} d x=x \cdot \int_{0}^{1} e^{x} d x-\int_{0}^{1} \frac{d x}{d x} \cdot\left\{\int e^{x} d x\right\} \cdot d x
\end{aligned}
$$

On integrating
$\Rightarrow \int_{0}^{1} \mathrm{xe}^{\mathrm{x}} \mathrm{dx}=\left[\mathrm{xe}^{\mathrm{x}}\right]_{0}^{1}-\int_{0}^{1} 1 . \mathrm{e}^{\mathrm{x}} \mathrm{dx}$
Now by applying the limits we get

$$
\begin{aligned}
& \Rightarrow \int_{0}^{1} \mathrm{xe}^{\mathrm{x}} \mathrm{dx}=\left[\mathrm{xe}^{\mathrm{x}}\right]_{0}^{1}-\left[\mathrm{e}^{\mathrm{x}}\right]_{0}^{1} \\
& \Rightarrow \int_{0}^{1} \mathrm{xe}^{\mathrm{x}} \mathrm{dx}=\left[1 \cdot \mathrm{e}^{1}-0 \cdot \mathrm{e}^{0}\right]-\left[\mathrm{e}^{1}-\mathrm{e}^{0}\right] \\
& \Rightarrow \int_{0}^{1} \mathrm{xe} \mathrm{x}^{\mathrm{x}} \mathrm{dx}=\mathrm{e}-0-\mathrm{e}+1 \\
& \Rightarrow \int_{0}^{1} \mathrm{xe}^{\mathrm{x}} \mathrm{dx}=1
\end{aligned}
$$

Therefore L.H.S = R.H.S

Hence Proved.

36. $\int_{-1}^{1} x^{17} \cos ^{4} x d x=0$

Solution:

Given: $\int_{-1}^{1} \mathrm{x}^{17} \cdot \cos ^{4} \mathrm{xdx}$
To Prove : $\int_{-1}^{1} x^{17} \cdot \cos ^{4} x d x=0$
Let $I=\int_{-1}^{1} x^{17} \cdot \cos ^{4} x d x$
As we can see $f(x)=x^{17} \cdot \cos ^{4} x$ and $f(-x)=(-x)^{17} \cdot \cos ^{4}(-x)=-x^{17} \cdot \cos ^{4} x$
That is $f(x)=-f(-x)$
so, it is an odd function.
It is also known that if $f(x)$ is an odd function then we have

$$
\left\{\int_{-a}^{a} f(x) d x=0\right\}
$$

Wisdamising Knawledge
$\Rightarrow I=\int_{-1}^{1} x^{17} \cdot \cos ^{4} x d x=0$
Hence proved.
37. $\int_{0}^{\frac{\pi}{2}} \sin ^{3} x d x=\frac{2}{3}$

Solution:

EDUGRロSS

Given: $\int_{0}^{\frac{\pi}{2}} \sin ^{3} x d x$
To Prove : $\int_{0}^{\frac{\pi}{2}} \sin ^{3} x d x=\frac{2}{3}$
Let $I=\int_{0}^{\frac{\pi}{2}} \sin ^{3} x d x$
Above equation can be written as

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{2}} \sin x \cdot \sin ^{2} x d x \\
& =\int_{0}^{\frac{\pi}{2}} \sin x \cdot\left(1-\cos ^{2} x\right) d x
\end{aligned}
$$

Now by splitting the integrals

$$
\begin{align*}
& \Rightarrow I=\int_{0}^{\frac{\pi}{2}} \sin x d x-\int_{0}^{\frac{\pi}{2}} \sin x \cdot \cos ^{2} x d x \\
& \Rightarrow I=[-\cos x]_{0}^{\pi / 2}-I_{1} \ldots(2) \tag{2}
\end{align*}
$$

First solve for I_{1} :
$\Rightarrow I_{1}=\int_{0}^{\frac{\pi}{2}} \sin \mathrm{x} \cdot \cos ^{2} \mathrm{xdx}$

EDUGRロSS

Let $\cos x=t \Rightarrow-\sin x d x=d t \Rightarrow \sin x d x=-d t$
When $x=0$ then $t=1$ and when $x=\pi / 2$ then $t=0$
$\Rightarrow \mathrm{I}_{1}=\int_{1}^{0} \mathrm{t}^{2}(-\mathrm{dt})$
$=-\int_{1}^{0} \mathrm{t}^{2}(\mathrm{dt})$
On integrating we get
$=-\left[\frac{\mathrm{t}^{3}}{3}\right]_{1}^{0}$
Now by applying the limits we get
$=-\left\{-\frac{1}{3}\right\}$
$\Rightarrow I_{1}=\frac{1}{3}$
Substitute in equation (2)
$\Rightarrow I=[-\cos x]_{0}^{\pi / 2}-\frac{1}{3}$
$\Rightarrow I=-\left\{\cos \frac{\pi}{2}-\cos 0\right\}-\frac{1}{3}$
$\Rightarrow I=1-\frac{1}{3}$
$\Rightarrow \mathrm{I}=\frac{2}{3}$
L.H.S = R.H.S

Hence Proved.

EDUGRロSS

$$
\text { 38. } \int_{0}^{\frac{\pi}{4}} 2 \tan ^{3} x d x=1-\log 2
$$

Solution:

EDUGRロSS

Given: $\int_{0}^{\frac{\pi}{4}} 2 \tan ^{3} x d x$
To Prove : $\int_{0}^{\frac{\pi}{4}} 2 \tan ^{3} x d x=1-\log 2$
Let $I=\int_{0}^{\frac{\pi}{4}} 2 \tan ^{3} x d x$
The above equation can be written as
$=\int_{0}^{\frac{\pi}{4}} 2 \cdot \tan x \cdot \tan ^{2} x d x$
Substituting $\tan ^{2} \mathrm{x}$ formula we get
$=2 \cdot \int_{0}^{\frac{\pi}{4}} \tan x \cdot\left(\sec ^{2} x-1\right) d x$
Now by splitting the integral we get

$$
\begin{align*}
& \Rightarrow I=2\left\{-\int_{0}^{\frac{\pi}{4}} \tan x d x+\int_{0}^{\frac{\pi}{4}} \tan x \cdot \sec ^{2} x d x\right\} \\
& \Rightarrow I=-[2 \log \sec x]_{0}^{\pi / 4}+2 \cdot I_{1} \ldots \text { (2) } \tag{2}
\end{align*}
$$

First solve for I_{1} :
$\Rightarrow I_{1}=\int_{0}^{\frac{\pi}{4}} \tan \mathrm{x} \cdot \sec ^{2} \mathrm{x} d \mathrm{x}$
Let $\tan \mathrm{x}=\mathrm{t} \Rightarrow \sec ^{2} \mathrm{xdx}=\mathrm{dt}$
When $\mathrm{x}=0$ then $\mathrm{t}=0$ and when $\mathrm{x}=\pi / 2$ then $\mathrm{t}=1$
$\Rightarrow \mathrm{I}_{1}=\int_{0}^{1} \mathrm{t} . \mathrm{dt}$

EDUGRロSS

On integrating we get

$$
=\left[\frac{\mathrm{t}^{2}}{2}\right]_{0}^{1}
$$

Applying the limits we get

$$
\Rightarrow \mathrm{I}_{1}=\frac{1}{2}
$$

Substitute in equation (2)

$$
\Rightarrow \mathrm{I}=[2 \log \cos \mathrm{x}]_{0}^{\pi / 4}+2 \cdot \frac{1}{2}
$$

On simplification we get

$$
\Rightarrow I=2\left\{\log \cos \frac{\pi}{4}-\log \cos 0\right\}+1
$$

Substituting the values of $\cos 0=1$ we get

$$
\begin{aligned}
& \Rightarrow \mathrm{I}=2\left\{\log \frac{1}{\sqrt{2}}-\log 1\right\}+1 \\
& \Rightarrow \mathrm{I}=\left\{\log \left(\frac{1}{\sqrt{2}}\right)^{2}-\log (1)^{2}\right\}+1 \\
& \Rightarrow \mathrm{I}=1-\log 2+\log 1 \\
& \Rightarrow \mathrm{I}=1-\log 2
\end{aligned}
$$

L.H.S = R.H.S

Hence the proof.

$$
\text { 39. } \int_{0}^{1} \sin ^{-1} x d x=\frac{\pi}{2}-1
$$

Solution:

EDUGRロSS

Given: $\int_{0}^{1} \sin ^{-1} x d x$
To Prove : $\int_{0}^{1} \sin ^{-1} x d x=\frac{\pi}{2}-1$
Let $\mathrm{I}=\int_{0}^{1} \sin ^{-1} \mathrm{x} .1 \mathrm{dx}$
Using product rule we get

$$
\begin{aligned}
& \int u . v d x=u \cdot \int v d x-\int \frac{d u}{d x} \cdot\left\{\int v d x\right\} d x \\
& \Rightarrow \int_{0}^{1} x e^{x} d x=\sin ^{-1} x \cdot \int_{0}^{1} 1 \cdot d x-\int_{0}^{1} \frac{d}{d x} \sin ^{-1} x \cdot\left\{\int 1 \cdot d x\right\} \cdot d x
\end{aligned}
$$

On integrating we get

$$
\begin{align*}
& \Rightarrow \int_{0}^{1} x e^{x} d x=\left[\sin ^{-1} x \cdot x\right]_{0}^{1}-\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} \cdot x d x \\
& \Rightarrow I=\left[\sin ^{-1} x \cdot x\right]_{0}^{1}-I_{1} \ldots \text { (2) } \tag{2}
\end{align*}
$$

First solve for I_{1} :
$\Rightarrow I_{1}=\int_{0}^{1} \frac{1}{\sqrt{1-\mathrm{x}^{2}}} \cdot \mathrm{xdx}$
Let $1-\mathrm{x}^{2}=\mathrm{t} \Rightarrow-2 \mathrm{xdx}=\mathrm{dt}$
When $\mathrm{x}=0$ then $\mathrm{t}=1$ and when $\mathrm{x}=1$ then $\mathrm{t}=0$
$\Rightarrow \mathrm{I}_{1}=\int_{1}^{0} \frac{1}{\sqrt{\mathrm{t}}} \cdot \frac{-\mathrm{dt}}{2}$
$=-\frac{1}{2}\left[\frac{\mathrm{t}^{\frac{1}{2}}}{\frac{1}{2}}\right]_{1}^{0}$
$\Rightarrow I_{1}=\sqrt{1}$
$\Rightarrow I_{1}=1$
Substitute in equation (2)
$\Rightarrow \mathrm{I}=\left[\sin ^{-1} \mathrm{x} \cdot \mathrm{x}\right]_{0}^{1}-1$
$\Rightarrow I=\sin ^{-1}(1)-0-1$
$\Rightarrow I=\frac{\pi}{2}-1$
L.H.S = R.H.S

Hence Proved.
40. Evaluate $\int_{0}^{1} e^{2-3 x} d x$ as a limit of a sum.

Solution:

Given: $\int_{0}^{1} \mathrm{e}^{2-3 \mathrm{x}} \mathrm{dx}$
Let $I=\int_{0}^{1} e^{2-3 x} d x$
because, $\int_{a}^{b} f(x) d x=(b-a) \lim _{n \rightarrow \infty} \frac{1}{n}[f(a)+f(a+h)+\cdots+f(a+(n-1) h)]$
where, $\mathrm{h}=\frac{\mathrm{b}-\mathrm{a}}{\mathrm{n}}$
Here, $a=0, b=1$, and $f(x)=e^{2-3 x}$ and h
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{2}+e^{2} \cdot e^{3 h}++e^{2} \cdot e^{-6 h} \ldots+e^{2} \cdot e^{-3(n-1) h}\right]$
$=\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}}\left[\mathrm{e}^{2}\left\{1+\mathrm{e}^{3 \mathrm{~h}}+\mathrm{e}^{-6 \mathrm{~h}}+\cdots+. \mathrm{e}^{-3(\mathrm{n}-1) \mathrm{h}}\right\}\right]$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{2}\left\{\frac{1-\left(e^{-3 h}\right)^{n}}{1-\left(e^{-3 h}\right)}\right\}\right]$
$=\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}}\left[\mathrm{e}^{2}\left\{\frac{1-\left(\mathrm{e}^{-\frac{3}{n}}\right)^{\mathrm{n}}}{1-\left(\mathrm{e}^{-\frac{3}{n}}\right)}\right\}\right]$ as, $\mathrm{h}=\frac{1}{\mathrm{n}}$
$=\lim _{n \rightarrow \infty} \frac{1}{n}\left[e^{2}\left\{\frac{\left(e^{-3}\right)-1}{\left(e^{-\frac{3}{n}}\right)-1}\right\}\right]$
$=e^{2} \cdot\left(e^{-3}-1\right) \lim _{n \rightarrow \infty} \frac{1}{n} \cdot\left(-\frac{n}{3}\right)\left[\left\{\frac{-\frac{3}{n}}{\left(e^{-\frac{3}{n}}\right)-1}\right\}\right]$
On simplification we get
$=-\frac{\left(e^{2} \cdot\left(e^{-3}-1\right)\right)}{3} \lim _{n \rightarrow \infty}\left[\left\{\frac{-\frac{3}{n}}{\left(e^{-\frac{3}{n}}\right)-1}\right\}\right]$
We know that
$\lim _{n \rightarrow \infty}\left[\frac{x}{\left(e^{x}\right)-1}\right]=1$
Substituting this in above equation we get
$=\frac{-\mathrm{e}^{-1}+\mathrm{e}^{2}}{3}$
$\Rightarrow I=\frac{1}{3}\left(e^{2}-\frac{1}{e}\right)$

Choose the correct answers in Exercises 41 to 44.
41. $\int \frac{d x}{e^{x}+e^{-x}}$ is equal to
(A) $\tan ^{-1}\left(e^{x}\right)+C$
(B) $\tan ^{-1}\left(e^{-x}\right)+\mathrm{C}$
(C) $\log \left(e^{x}-e^{-x}\right)+C$
(D) $\log \left(e^{x}+e^{-x}\right)+\mathrm{C}$

Solution:

(A) $\tan ^{-1}\left(\mathrm{e}^{x}\right)+C$

Explanation:

Given: $\int \frac{\mathrm{dx}}{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}$
let $I=\int \frac{d x}{e^{x}+e^{-x}}$
The above equation can be written as

$$
\begin{aligned}
& =\int \frac{d x}{e^{-x}\left(e^{2 x}+1\right)} \\
& =\int \frac{e^{x} d x}{\left(e^{2 x}+1\right)}
\end{aligned}
$$

Put $\mathrm{e}^{\mathrm{x}}=\mathrm{t} \Rightarrow \mathrm{e}^{\mathrm{x}} \mathrm{dx}=\mathrm{dt}$
$\Rightarrow \int \frac{\mathrm{e}^{\mathrm{x}} \mathrm{dx}}{\left(\mathrm{e}^{2 \mathrm{x}}+1\right)}=\int \frac{\mathrm{dt}}{\left(\mathrm{t}^{2}+1\right)}$
$=\tan ^{-1} \mathrm{t}+\mathrm{C}$
$=\tan ^{-1}\left(\mathrm{e}^{\mathrm{x}}\right)+\mathrm{C}$
Hence, correct option is (A).
42. $\int \frac{\cos 2 x}{(\sin x+\cos x)^{2}} d x$ is equal to
(A) $\frac{-1}{\sin x+\cos x}+\mathrm{C}$
(B) $\log |\sin x+\cos x|+C$
(C) $\log |\sin x-\cos x|+C$
(D) $\frac{1}{(\sin x+\cos x)^{2}}$

Solution:

EDUGRロSS

(B) $\log |\sin x+\cos x|+C$

Explanation:

Given: $\int \frac{\cos 2 x}{(\sin x+\cos x)^{2}} d x$
let $I=\int \frac{\cos 2 x}{(\sin x+\cos x)^{2}} d x$
Substituting $\cos 2 x$ formula we get
$=\int \frac{\cos ^{2} \mathrm{x}-\sin ^{2} \mathrm{x}}{(\sin \mathrm{x}+\cos \mathrm{x})^{2}} \mathrm{dx}$
By using $a^{2}-b^{2}=(a+b)(a-b)$ we get
$=\int \frac{(\cos x-\sin x)(\cos x+\sin x)}{(\sin x+\cos x)^{2}} d x$
On simplification

$$
=\int \frac{(\cos x-\sin x)}{(\sin x+\cos x)} d x
$$

Put $\sin x+\cos x=t \Rightarrow \cos x-\sin x=d t$

$$
\begin{aligned}
& \Rightarrow \int \frac{(\cos x-\sin x)}{(\sin x+\cos x)} d x=\int \frac{d t}{t} \\
& =\log |t|+C \\
& =\log |\sin x+\cos x|+C
\end{aligned}
$$

Hence, correct option is (B).

EDUGRロSS

43. If $f(a+b-x)=f(x)$, then $\int_{a}^{b} x f(x) d x$ is equal to
(A) $\frac{a+b}{2} \int_{a}^{b} f(b-x) d x$
(B) $\frac{a+b}{2} \int_{a}^{b} f(b+x) d x$
(C) $\frac{b-a}{2} \int_{a}^{b} f(x) d x$
(D) $\frac{a+b}{2} \int_{a}^{b} f(x) d x$

Solution:

(D) $\frac{a+b}{2} \int_{a}^{b} f(x) d x$

Explanation:

EDUGRロSS

Given: $\int_{a}^{b} x f(x) d x$
let, $I=\int_{a}^{b} x f(x) d x$
As we know that
$\{\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{a}+\mathrm{b}-\mathrm{x})\}$
Using this we get

$$
\begin{aligned}
& \Rightarrow I=\int_{a}^{b}(a+b-x) f(a+b-x) d x \\
& \Rightarrow I=\int_{a}^{b}(a+b-x) f(x) d x
\end{aligned}
$$

Now by splitting the integral we get

$$
\begin{aligned}
& \Rightarrow I=\int_{a}^{b}(a+b) f(x) d x-\int_{a}^{b}(x) f(x) d x \\
& \Rightarrow I=\int_{a}^{b}(a+b) f(x) d x-I \\
& \Rightarrow 2 I=\int_{a}^{b}(a+b) f(x) d x \\
& \Rightarrow I=\frac{(a+b)}{2} \int_{a}^{b} f(x) d x
\end{aligned}
$$

Hence, correct option is (D).
44. The value of $\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x$ is
(A) 1
(B) 0
(C) -1
(D) π

Solution:

(B) 0

Explanation:

Given: $\int_{0}^{1} \tan ^{-1}\left(\frac{2 x-1}{1+x-x^{2}}\right) d x$
Let $\mathrm{I}=\int_{0}^{1} \tan ^{-1}\left(\frac{2 \mathrm{x}-1}{1+\mathrm{x}-\mathrm{x}^{2}}\right) \mathrm{dx}$
The above equation can be written as
$=\int_{0}^{1} \tan ^{-1}\left(\frac{x+x-1}{1+x(1-x)}\right) d x$
$=\int_{0}^{1} \tan ^{-1}\left(\frac{x-(1-x)}{1+x(1-x)}\right) d x$
As we know that

$$
\tan ^{-1}\left(\frac{A-B}{1+A B)}\right)=\tan ^{-1}(\mathrm{~A}) \tan ^{-1}(\mathrm{~B})
$$

By using this formula we get

$$
\begin{equation*}
=\int_{0}^{1}\left[\tan ^{-1}(x)-\tan ^{-1}(1-x)\right] d x \ldots \tag{1}
\end{equation*}
$$

Again as we know that

$$
\left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\}
$$

By using this we can write as

EDUGRロSS

$$
\begin{align*}
& =\int_{0}^{1}\left[\tan ^{-1}(1-x)-\tan ^{-1}(1-(1-x))\right] d x \\
& =\int_{0}^{1}\left[\tan ^{-1}(1-x)-\tan ^{-1}(x)\right] d x \ldots(2) \tag{2}
\end{align*}
$$

Adding (1) and (2), we get
$2 \mathrm{I}=\int_{0}^{1}\left[\tan ^{-1}(\mathrm{x})-\tan ^{-1}(1-\mathrm{x})\right] \mathrm{dx}+\int_{0}^{1}\left[\tan ^{-1}(1-x)-\tan ^{-1}(\mathrm{x})\right] \mathrm{dx}$
$2 I=\int_{0}^{1}\left[\tan ^{-1}(x)-\tan ^{-1}(1-x)+\tan ^{-1}(1-x)-\tan ^{-1}(x)\right] d x$
$\Rightarrow 2 \mathrm{I}=0$
$\Rightarrow \mathrm{I}=0$
Hence, correct option is (B).

