Exercise 2.1

Find the principal values of the following:

1. $\sin ^{-1}\left(-\frac{1}{2}\right)$
2. $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
3. Cosec $^{-1}(2)$
4. $\tan ^{-1}(-\sqrt{3})$
5. $\cos ^{-1}\left(\frac{-1}{2}\right)$
6. $\tan ^{-1}(-1)$
7. $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
8. $\cot ^{-1}(\sqrt{3})$
9. $\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$
10. $\operatorname{cosec}^{-1}(-\sqrt{2})$

Solution 1: Consider $y=\sin ^{-1}\left(-\frac{1}{2}\right)$
Solve the above equation, we have sin
$y=-1 / 2$
We know that $\sin \pi / 6=1 / 2$
So, $\sin y=-\sin \pi / 6$
$\sin y=\sin \left(-\frac{\pi}{6}\right)$

Since range of principle value of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Principle value of $\sin ^{-1}\left(-\frac{1}{2}\right)$ is $-\pi / 6$.

Solution 2:

Let $y=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
$\operatorname{Cos} y=\cos \pi / 6($ as $\cos \pi / 6=\sqrt{3} / 2)$
$y=\pi / 6$
Since range of principle value of $\cos ^{-1}$ is $[0, \pi]$

Therefore, Principle value of $\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\pi / 6$

Solution 3: Cosec $^{-1}$ (2)
Let $\mathrm{y}=\operatorname{Cosec}^{-1}(2)$
Cosec $y=2$
We know that, $\operatorname{cosec} \pi / 6=2$
So Cosec $y=\operatorname{cosec} \pi / 6$
Since range of principle value of $\operatorname{cosec}^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Therefore, Principle value of $\operatorname{Cosec}^{-1}(2)$ is $\Pi / 6$.
Solution 4: $\tan ^{-1}(-\sqrt{3})$

Let $y=\tan ^{-1}(-\sqrt{3})$
$\tan y=-\tan \pi / 3$
or $\tan y=\tan (-\pi / 3)$
Since range of principle value of $\tan ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Therefore, Principle value of $\tan ^{-1}(-\sqrt{3})$ is $-\pi / 3$.
Solution 5: $\cos ^{-1}\left(\frac{-1}{2}\right)$
$y=\cos ^{-1}\left(\frac{-1}{2}\right)$
$\cos y=-1 / 2$
$\cos y=-\cos \frac{\pi}{3}$
$\cos y=\cos (\pi-\pi / 3)=\cos (2 \pi / 3)$
Since principle value of $\cos ^{-1}$ is $[0, \pi]$

Therefore, Principle value of $\cos ^{-1}\left(\frac{-1}{2}\right)$ is $2 \pi / 3$.
Solution 6: $\tan ^{-1}(-1)$
Let $\mathrm{y}=\tan ^{-1}(-1)$
$\tan (y)=-1$
$\tan y=-\tan \pi / 4$
$\tan y=\tan \left(-\frac{\pi}{4}\right)$

Since principle value of $\tan ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Therefore, Principle value of $\tan ^{-1}(-1)$ is $-\pi / 4$.
Solution 7: $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
$y=\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
$\sec y=2 / \sqrt{3}$
$\sec y=\sec \frac{\pi}{6}$
Since principle value of $\sec ^{-1}$ is $[0, \pi]$
Therefore, Principle value of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\pi / 6$

Solution 8: $\cot ^{-1}(\sqrt{3})$
$y=\cot ^{-1}(\sqrt{3})$
$\cot y=\sqrt{3}$
$\cot y=\pi / 6$

Since principle value of $\cot ^{-1}$ is $[0, \pi]$

Therefore, Principle value of $\cot ^{-1}(\sqrt{3})$ is $\pi / 6$.

Solution 9: $\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$

$$
\begin{aligned}
& \text { Let } y=\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right) \\
& \cos y=-\frac{1}{\sqrt{2}} \\
& \cos y=-\cos \frac{\pi}{4} \\
& \cos y=\cos \left(\pi-\frac{\pi}{4}\right)=\cos \frac{3 \pi}{4}
\end{aligned}
$$

Since principle value of $\cos ^{-1}$ is $[0, \pi]$
Therefore, Principle value of $\cos ^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ is $3 \pi / 4$.
Solution 10. $\operatorname{cosec}^{-1}(-\sqrt{2})$

Ley $\mathrm{y}=\operatorname{cosec}^{-1}(-\sqrt{2})$

$$
\begin{aligned}
& \operatorname{cosec} y=-\sqrt{2} \\
& \operatorname{cosec} y=\operatorname{cosec} \frac{-\pi}{4}
\end{aligned}
$$

Since principle value of $\operatorname{cosec}^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Therefore, Principle value of $\operatorname{cosec}^{-1}(-\sqrt{2})$ is $-\pi / 4$

Find the values of the following:
11. $\tan ^{-1}(1)+\cos ^{-1}-\frac{1}{2}+\sin ^{-1} \quad-\frac{1}{2}$
12. $\cos ^{-1} \frac{1}{2}+2 \sin ^{-1} \frac{1}{2}$
13. If $\sin ^{-1} x=y$, then
(A) $0 \leq y \leq \pi$
(B) $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
(C) $0<y<\pi$
(D) $-\frac{\pi}{2}<y<\frac{\pi}{2}$
14. $\tan ^{-1}\left(\sqrt{3}{ }^{-}\right)-\sec ^{-1}(-2)$ is equal to
(A) π
(B) $-\pi / 3$
(C) $\pi / 3$
(D) $2 \pi / 3$

Solution 11. $\tan ^{-1}(1)+\cos ^{-1}\left(\frac{-1}{2}\right)+\sin ^{-1}\left(\frac{-1}{2}\right)$

$$
\begin{aligned}
& =\tan ^{-1} \tan \frac{\pi}{4}+\cos ^{-1}\left(-\cos \frac{\pi}{3}\right)+\sin ^{-1}\left(-\sin \frac{\pi}{6}\right) \\
& =\frac{\pi}{4}+\cos \left(\pi-\frac{\pi}{3}\right)+\sin ^{-1} \sin \left(-\frac{\pi}{6}\right) \\
& =\frac{\pi}{4}+\frac{2 \pi}{3}-\frac{\pi}{6} \\
& =\frac{3 \pi+8 \pi-2 \pi}{12} \\
& =\frac{9 \pi}{12}=\frac{3 \pi}{4}
\end{aligned}
$$

Solution 12:

Let $\cos ^{-1}\left(\frac{1}{2}\right)=x$. Then, $\cos x=\frac{1}{2}=\cos \left(\frac{\pi}{3}\right)$

$$
\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}
$$

Let $\sin ^{-1}\left(\frac{1}{2}\right)=y$. Then, $\sin y=\frac{1}{2}=\sin \left(\frac{\pi}{6}\right)$

$$
\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

Now,

$$
\begin{aligned}
\cos ^{-1}\left(\frac{1}{2}\right)+2 \sin ^{-1}\left(\frac{1}{2}\right) & =\frac{\pi}{3}+\frac{2 \pi}{6} \\
& =\frac{\pi}{3}+\frac{\pi}{3} \\
& =\frac{2 \pi}{3}
\end{aligned}
$$

Solution 13: Option (B) is correct.
Given $\sin ^{-1} x=y$,
The range of the principle value of $\sin ^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Therefore, $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

Solution 14:

Option (B) is correct.
$\tan ^{-1}(\sqrt{3})-\sec ^{-1}(-2)=\tan ^{-1}(\tan \pi / 3)-\sec ^{-1}(-\sec \pi / 3)$
$=\pi / 3-\sec ^{-1}(\sec (\pi-\pi / 3))$
$=\pi / 3-2 \pi / 3=-\pi / 3$

Exercise 2.2

Prove the following

1.

$3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right), x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$

Solution:

$3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right), x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
(Use identity: $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
Let $x=\sin \theta$ then
$\theta=\sin ^{-1} x$

Now, RHS
$=\sin ^{-1}\left(3 x-4 x^{3}\right)$
$=\sin ^{-1}\left(3 \sin \theta-4 \sin ^{3} \theta\right)$
$=\sin ^{-1}(\sin 3 \theta)$
$=3 \theta$
$=3 \sin ^{-1} \mathrm{x}$
$=$ LHS
Hence Proved
2.

$$
3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]
$$

Solution:

$$
3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]
$$

Using identity: $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$
Put $x=\cos \theta$
$\theta=\cos ^{-1}(x)$
Therefore, $\cos 3 \theta=4 x^{3}-3 x$
RHS:

$\cos ^{-1}\left(4 x^{3}-3 x\right)$
$=\cos ^{-1}(\cos 3 \theta)$
$=3 \theta$
$=3 \cos ^{-1}(x)$

Wisdomising Knawledge
= LHS
Hence Proved.
3.
$\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}$
Solution:

$$
\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}
$$

Using identity: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}$

LHS $=\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}$
$=\tan ^{-1} \frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11} \times \frac{7}{24}}$
$=\tan ^{-1} \frac{48+77}{264-14}$
$=\tan ^{-1}(125 / 250)$
$=\tan ^{-1}(1 / 2)$
$=$ RHS
Hence Proved
4.

$$
2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}
$$

Solution:

Use identity: $2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}$.
LHS
$=2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}$
$=\tan ^{-1} \frac{2 \times \frac{1}{2}}{1-\left(\frac{1}{2}\right)^{2}}+\tan ^{-1} \frac{1}{7}$
$=\tan ^{-1}(4 / 3)+\tan ^{-1}(1 / 7)$

Again using identity:

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
$$

We have,
$\tan ^{-1} \frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{4}{3} \times \frac{1}{7}}$
$=\tan ^{-1}\left(\frac{28+3}{21-4}\right)$
$=\tan ^{-1}(31 / 17)$
RHS

Write the following functions in the simplest form:

5. $\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}, x \neq 0$

Solution:

Let's say $x=\tan \theta$ then $\theta=\tan ^{-1} x$
We get,

$$
\begin{aligned}
& \tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}=\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right) \\
& =\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right) \\
& =\tan ^{-1}\left(\tan \frac{\theta}{2}\right)=\frac{\theta}{2}=\frac{1}{2} \tan ^{-1} x
\end{aligned}
$$

This is simplest form of the function.
6. $\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}},|x|>1$

Solution:

Let us consider, $x=\sec \theta$, then $\theta=\sec ^{-1} x$

Wisdamising Knawledge

$$
\begin{aligned}
& \tan ^{-1} \frac{1}{\sqrt{x^{2}-1}}=\tan ^{-1} \frac{1}{\sqrt{\sec ^{2} \theta-1}} \\
& =\tan ^{-1} \frac{1}{\sqrt{\tan ^{2} \theta}} \\
& =\tan ^{-1}\left(\frac{1}{\tan \theta}\right) \\
& =\tan ^{-1}(\cot \theta) \\
& =\tan ^{-1} \tan (\pi / 2-\theta) \\
& =(\pi / 2-\theta) \\
& =\pi / 2-\sec ^{-1} x
\end{aligned}
$$

This is simplest form of the given function.
7. $\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), 0<\mathrm{x}<\pi$

Solution:

$\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)=\tan ^{-1}\left(\sqrt{\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}}\right)$
$=\tan ^{-1}\left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right)$
$=\tan ^{-1}\left(\tan \frac{x}{2}\right)=\frac{x}{2}$
8. $\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), \frac{-\pi}{4}<x<\frac{3 \pi}{4}$

Solution:

Divide numerator and denominator by $\cos \mathrm{x}$, we have

$$
\tan ^{-1}\left(\frac{\frac{\operatorname{cox}(x)}{\cos (x)}-\frac{\sin (x)}{\cos (x)}}{\frac{\cos (x)}{\cos (x)}+\frac{\sin (x)}{\cos (x)}}\right)
$$

$$
=\tan ^{-1}\left(\frac{1-\frac{\sin (x)}{\cos (x)}}{1+\frac{\sin (x)}{\cos (x)}}\right)
$$

$$
=\tan ^{-1}\left(\frac{1-\tan x}{1+\tan x}\right)
$$

$$
\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \tan x}\right)
$$

$$
=\tan ^{-1} \tan (\pi / 4-x)
$$

$$
=\pi / 4-x
$$

EDUGRロSS

$$
\begin{aligned}
& \tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}=\tan ^{-1}\left(\frac{a \sin \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right) \\
& =\tan ^{-1}\left(\frac{a \sin \theta}{a \sqrt{1-\sin ^{2} \theta}}\right) \\
& =\tan ^{-1}\left(\frac{a \sin \theta}{a \cos \theta}\right) \\
& =\tan ^{-1}(\tan \theta) \\
& =\theta \\
& =\sin ^{-1}(\mathrm{x} / \mathrm{a})
\end{aligned}
$$

10.

$$
\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right), a>0 ; \frac{-a}{\sqrt{3}}<x<\frac{a}{\sqrt{3}}
$$

Solution:

After dividing numerator and denominator by a^3 we have

Put $\mathrm{x} / \mathrm{a}=\tan \theta$ and $\theta=\tan ^{-1}(\mathrm{x} / \mathrm{a})$
$=\tan ^{-1}\left(\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right)$
$=\tan ^{-1}(\tan 3 \theta)$
$=3 \theta$
$=3 \tan ^{-1}(x / a)$

Find the values of each of the following:
11.

$$
\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]
$$

Solution:

$$
\begin{aligned}
& =\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \sin \frac{\pi}{6}\right)\right] \\
& =\tan ^{-1}\left[2 \cos \left(2 \times \frac{\pi}{6}\right)\right] \\
& =\tan ^{-1}(2 \cos \pi / 3) \\
& =\tan ^{-1}(2 \times 1 / 2) \\
& =\tan ^{-1}(1) \\
& =\tan ^{-1}(\tan (\pi / 4)) \\
& =\pi / 4
\end{aligned}
$$

12. $\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)$

Solution:
$\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)=\cot \pi / 2=0$
Using identity: $\tan ^{-1} \mathrm{a}+\cot ^{-1} \mathrm{a}=\pi / 2$
13.

$$
\tan \frac{1}{2}\left[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right],|x|<1, y>0 \text { and } x y<1
$$

Solution:

Put $x=\tan \theta$ and $y=\tan \Phi$, we have

$$
\tan \frac{1}{2}\left[\sin ^{-1} \frac{2 \tan \theta}{1+\tan ^{2} \theta}+\cos ^{-1} \frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi}\right]
$$

$=\tan 1 / 2\left[\sin ^{-1} \sin 2 \theta+\cos ^{-1} \cos 2 \Phi\right]$
$=\tan (1 / 2)[2 \theta+2 \Phi]$
$=\tan (\theta+\Phi)$
$=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}$
$=(x+y) /(1-x y)$
14. If $\sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1$, then find the value of x.

Solution:

We know that, $\sin 90$ degrees $=\sin \pi / 2=1$
So, given equation turned as,
$\sin ^{-1} \frac{1}{5}+\cos ^{-1} x=\frac{\pi}{2}$
$\cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} \frac{1}{5}$

Using identity: $\sin ^{-1} t+\cos ^{-1} t=\pi / 2$
We have, $\cos ^{-1} x=\cos ^{-1} \frac{1}{5}$

Which implies, the value of x is $1 / 5$.
15. If $\tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x+2}=\frac{\pi}{4}$, then find the value of \mathbf{x}.

Solution:

We have reduced the given equation using below identity:

$$
\begin{aligned}
& \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y} \\
& \tan ^{-1} \frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1-\left(\frac{x-1}{x-2}\right)\left(\frac{x+1}{x+2}\right)}=\frac{\pi}{4}
\end{aligned}
$$

or
$\tan ^{-1} \frac{(x-1)(x+2)+(x+1)(x-2)}{(x-2)(x+2)-(x-1)(x+1)}=\frac{\pi}{4}$
or
$\tan ^{-1} \frac{x^{2}+2 x-x-2+x^{2}-2 x+x-2}{x^{2}-4-\left(x^{2}-1\right)}=\frac{\pi}{4}$
or $\frac{2 x^{2}-4}{x^{2}-4-x^{2}+1}=\tan \left(\frac{\pi}{4}\right)$
or $\left(2 x^{\wedge} 2-4\right) /-3=1$
or $2 x^{\wedge} 2=1$
or $x= \pm \frac{1}{\sqrt{2}}$
The value of x is either $\frac{1}{\sqrt{2}}$ or $-\frac{1}{\sqrt{2}}$

Find the values of each of the expressions in Exercises 16 to 18.
16. $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$

Solution:

Given expression is $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$
First split $\frac{2 \pi}{3}$ as $\frac{(3 \pi-\pi)}{3}$ or $\pi-\frac{\pi}{3}$
After substituting in given we get,

$$
\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)=\sin ^{-1}\left(\sin \left(\pi-\frac{\pi}{3}\right)\right)=\frac{\pi}{3}
$$

Therefore, the value of $\sin ^{-1}\left(\sin \left(\frac{2 \pi}{3}\right)\right)$ is $\frac{\pi}{3}$
17. $\tan ^{-1}\left(\tan \left(\frac{3 \pi}{4}\right)\right)$

Solution:

Given expression is $\tan ^{-1}\left(\tan \left(\frac{3 \pi}{4}\right)\right)$
First split $\frac{3 \pi}{4}$ as $\frac{(4 \pi-\pi)}{4}$ or $\pi-\frac{\pi}{4}$
After substituting in given we get,

$$
\tan ^{-1}\left(\tan \left(\frac{3 \pi}{4}\right)\right)=\tan ^{-1}\left(\tan \left(\pi-\frac{\pi}{4}\right)\right)=-\frac{\pi}{4}
$$

The value of $\tan ^{-1}\left(\tan \left(\frac{3 \pi}{4}\right)\right)$ is $\frac{-\pi}{4}$.
18. $\tan \left(\sin ^{-1}\left(\frac{3}{5}\right)+\cot ^{-1} \frac{3}{2}\right)$

Solution:
Given expression is $\tan \left(\sin ^{-1}\left(\frac{3}{5}\right)+\cot ^{-1} \frac{3}{2}\right)$

Putting, $\sin ^{-1}\left(\frac{3}{5}\right)=x$ and $\cot ^{-1}\left(\frac{3}{2}\right)=y$

Or $\sin (x)=3 / 5$ and $\cot y=3 / 2$
Now, $\sin (x)=3 / 5=>\cos x=\sqrt{1-\sin ^{2} x}=4 / 5$ and $\sec x=5 / 4$
(using identities: $\cos x=\sqrt{1-\sin ^{2} x}$ and $\sec x=1 / \cos x$)
Again, $\tan \mathrm{x}=\sqrt{\sec ^{2} x-1}=\sqrt{\frac{25}{16}-1}=3 / 4$ and $\tan \mathrm{y}=1 / \cot (\mathrm{y})=2 / 3$
Now, we can write given expression as,
$\tan \left(\sin ^{-1}\left(\frac{3}{5}\right)+\cot ^{-1} \frac{3}{2}\right)=\tan (x+y)$
$=\frac{\tan x+\tan y}{1-\tan x \tan y}=\frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \times \frac{2}{3}}$
$=17 / 6$
19. $\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)$ is equal to
(A) $7 \pi / 6$
(B) $5 \pi / 6$
(C) $\pi / 3$
(D) $\pi / 6$

Solution:

Option (B) is correct.
Explanation:

$$
\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)=\cos ^{-1}\left(\cos \left(2 \pi-\frac{7 \pi}{6}\right)\right.
$$

$($ As cos $(2 \pi-A)=\cos A)$
Now $2 \pi-\frac{7 \pi}{6}=\frac{12 \pi-7 \pi}{6}=\frac{5 \pi}{6}$
20. $\sin \left[\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right]$ is equal to
(A) $1 / 2$ (B) $1 / 3$ (C) $1 / 4$ (D) 1

Solution:

Option (D) is correct
Explanation:
First solve for: $\sin ^{-1}\left(-\frac{1}{2}\right)$

$$
\begin{aligned}
& \sin ^{-1}\left(-\frac{1}{2}\right)=\sin ^{-1}\left(-\sin \frac{\pi}{6}\right)=\sin ^{-1}\left[\sin \left(-\frac{\pi}{6}\right)\right] \\
& =-\pi / 6
\end{aligned}
$$

Again,

$$
\begin{aligned}
& \sin \left[\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right] \\
& =\sin \left[\frac{\pi}{3}-\left(-\frac{\pi}{6}\right)\right] \\
& =\sin \left[\frac{\pi}{3}+\frac{\pi}{6}\right]
\end{aligned}
$$

$=\sin (\pi / 2)$
$=1$
21. $\tan ^{-1} \sqrt{3}--\cot ^{-1}(-\sqrt{3}-)$ is equal to
(A) π
(B) $-\pi / 2$
(C) 0
(D) $2 \sqrt{3}$

Solution:

Option (B) is correct.
Explanation:
$\tan ^{-1} \sqrt{3} _-\cot ^{-1}(-\sqrt{3}-)$ can be written as

$$
\begin{aligned}
& =\tan ^{-1} \tan \frac{\pi}{3}-\cot ^{-1}\left(-\cot \frac{\pi}{6}\right) \\
& \left.=\frac{\pi}{3}-\cot ^{-1}\left[\cot \left(\pi-\frac{\pi}{6}\right)\right]\right) \\
& =\frac{\pi}{3}-\left(\pi-\frac{\pi}{6}\right) \\
& =\frac{\pi}{3}-\frac{5 \pi}{6} \\
& =\frac{-3 \pi}{6} \\
& =-\pi / 2
\end{aligned}
$$

Miscellaneous Exercise

Find the value of the following:

1. $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$

Solution:

First solve for, $\cos \frac{13 \pi}{6}=\cos \left(2 \pi+\frac{\pi}{6}\right)=\cos \frac{\pi}{6}$
Now: $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\cos ^{-1}\left(\cos \frac{\pi}{6}\right)=\frac{\pi}{6} \in[0, \pi]$
$\left[\right.$ As $\cos ^{-1} \cos (x)=x$ if $\left.x \in[0, \pi]\right]$
So the value of $\cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)$ is $\frac{\pi}{6}$.
2. $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$

Solution:

First solve for, $\tan \frac{7 \pi}{6}=\tan \left(\pi+\frac{\pi}{6}\right)=\tan \frac{\pi}{6}$

Now: $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)=\tan ^{-1}\left(\tan \frac{\pi}{6}\right)=\frac{\pi}{6} \in(-\pi / 2, \pi / 2)$
[As $\tan ^{-1} \tan (\mathrm{x})=\mathrm{x}$ if $\mathrm{x} \in(-\pi / 2, \pi / 2)$]
So the value of $\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)$ is $\frac{\pi}{6}$.
3. Prove that $2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}$

Solution:

Step 1: Find the value of $\cos x$ and $\tan x$
Let us consider $\sin ^{-1} \frac{3}{5}=x$, then $\sin \mathrm{x}=3 / 5$
So, $\cos x=\sqrt{1-\sin ^{2} x}=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=4 / 5$
$\tan x=\sin x / \cos x=3 / 4$
Therefore, $x=\tan ^{-1}(3 / 4)$, substitute the value of x,

$$
\begin{equation*}
\Rightarrow \sin ^{-1} \frac{3}{5}=\tan ^{-1}\left(\frac{3}{4}\right) \tag{1}
\end{equation*}
$$

Step 2: Solve LHS

$2 \sin ^{-1} \frac{3}{5}=2 \tan ^{-1} \frac{3}{4}$
Using identity: $2 \tan ^{-1} \mathrm{x}=\tan ^{-1}=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$, we get
$=\tan ^{-1}\left(\frac{2\left(\frac{3}{4}\right)}{1-\left(\frac{3}{4}\right)^{2}}\right)$
$=\tan ^{-1}(24 / 7)$
$=$ RHS

Hence Proved.

4. Prove that $\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{77}{36}$

Solution:

Let $\sin ^{-1}\left(\frac{8}{17}\right)=x_{\text {then } \sin } x=8 / 17$
Again, $\cos x=\sqrt{1-\sin ^{2} x}=\sqrt{1-\frac{64}{289}}=15 / 17$
And $\tan x=\sin x / \cos x=8 / 15$

Again,
Let $\sin ^{-1}\left(\frac{3}{5}\right)=y_{\text {then } \sin } y=3 / 5$

Again, $\cos \mathrm{y}=\sqrt{1-\sin ^{2} y}=\sqrt{1-\frac{9}{25}}=4 / 5$
And $\tan y=\sin y / \cos y=3 / 4$
Solve for $\tan (x+y)$, using below identity,

$$
\begin{aligned}
& \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y} \\
= & \frac{\frac{8}{15}+\frac{3}{4}}{1-\frac{8}{15} \times \frac{3}{4}} \\
= & \frac{32+45}{60-24} \\
= & 77 / 36
\end{aligned}
$$

This implies $\mathrm{x}+\mathrm{y}=\tan ^{-1}(77 / 36)$

EDUGRロSS

Substituting the values back, we have

$$
\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{77}{36}(\text { Proved })
$$

5. Prove that $\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$

Solution:

$$
\begin{array}{r|r}
\text { Let } \cos ^{-1} \frac{4}{5}=\theta & \text { Let } \cos ^{-1} \frac{12}{13}=\phi \\
\cos \theta=\frac{4}{5} & \cos \phi=\frac{12}{13} \\
=\sqrt{1-\frac{16}{25}} & =\sqrt{1-\frac{144}{169}} \\
=\frac{3}{5} & =\frac{5}{13}
\end{array}
$$

Solve the expression, Using identity: $\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi$
$=4 / 5 \times 12 / 13-3 / 5 \times 5 / 13$
$=(48-15) / 65$
$=33 / 65$

This implies $\cos (\theta+\phi)=33 / 65$
or $\theta+\phi=\cos ^{-1}(33 / 65)$
Putting back the value of θ and ϕ, we get
$\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$
Hence Proved.
6. Prove that $\cos ^{-1}\left(\frac{12}{13}\right)+\sin ^{-1}\left(\frac{3}{5}\right)=\sin ^{-1}\left(\frac{56}{65}\right)$

Solution:

$$
\begin{array}{r|r}
\text { Let } \cos ^{-1} \frac{12}{13}=\theta & \text { Let } \sin ^{-1} \frac{3}{5}=\phi \\
\text { So } \cos \theta=\frac{12}{13} & \text { So } \quad \begin{aligned}
& \sin \phi=\frac{3}{5} \\
& \sin \theta=\sqrt{1-\cos ^{2} \theta} \\
&=\sqrt{1-\frac{144}{169}} \begin{aligned}
\cos \phi & =\sqrt{1-\sin ^{2} \phi} \\
& =\sqrt{1-\frac{9}{25}} \\
= & \frac{5}{13}
\end{aligned}
\end{aligned} \begin{aligned}
=
\end{aligned}
\end{array}
$$

Solve the expression, Using identity: $\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi$ $=12 / 13 \times 3 / 5+12 / 13 \times 3 / 5$
$=(20+36) / 65$
$=56 / 65$
or $\sin (\theta+\phi)=56 / 65$
or $\theta+\phi)=\sin ^{-1} 56 / 65$
Putting back the value of θ and ϕ, we get

$$
\cos ^{-1}\left(\frac{12}{13}\right)+\sin ^{-1}\left(\frac{3}{5}\right)=\sin ^{-1}\left(\frac{56}{65}\right)
$$

Hence Proved.
7. Prove that $\tan ^{-1}\left(\frac{63}{16}\right)=\sin ^{-1}\left(\frac{5}{13}\right)+\cos ^{-1}\left(\frac{3}{5}\right)$

Solution:

Solve the expression, Using identity:

$$
\begin{aligned}
& \tan (\theta+\phi)=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi} \\
& =\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12} \times \frac{4}{3}} \\
& =63 / 16
\end{aligned}
$$

$$
(\theta+\phi)=\tan ^{-1}(63 / 16)
$$

Putting back the value of θ and ϕ, we get

$$
\tan ^{-1}\left(\frac{63}{16}\right)=\sin ^{-1}\left(\frac{5}{13}\right)+\cos ^{-1}\left(\frac{3}{5}\right)
$$

Hence Proved.
8. Prove that $\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{8}\right)=\frac{\pi}{4}$ Solution:
$\mathrm{LHS}=\left(\tan ^{-1}\left(\frac{1}{5}\right)+\tan ^{-1}\left(\frac{1}{7}\right)\right)+\left(\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{8}\right)\right)$

$$
\begin{aligned}
& \text { Let } \sin ^{-1} \frac{5}{13}=\theta \quad \text { Let } \cos ^{-1} \frac{3}{5}=\phi \\
& \begin{array}{c|ll}
\text { so } \sin \theta=\frac{5}{13} & \text { so } \quad \cos \phi=\frac{3}{5} \\
\cos \theta=\sqrt{1-\sin ^{2} \theta} & \sin \phi=\sqrt{1-\cos ^{2} \phi}
\end{array} \\
& =\sqrt{1-\frac{25}{169}} \\
& =\frac{12}{13} \\
& \begin{array}{l}
=\sqrt{1-\frac{9}{25}} \\
=\frac{4}{5}
\end{array} \\
& \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{5}{12} \quad \tan \phi=\frac{\sin \phi}{\cos \phi}=\frac{4}{3}
\end{aligned}
$$

Solve above expressions, using below identity:

$$
\begin{aligned}
& \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y} \\
& =\tan ^{-1}\left(\frac{\frac{1}{5}+\frac{1}{7}}{1-\frac{1}{5} \times \frac{1}{7}}\right)+\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{8}}{1-\frac{1}{3} \times \frac{1}{8}}\right)
\end{aligned}
$$

After simplifying, we have
$=\tan ^{-1}(6 / 17)+\tan ^{-1}(11 / 23)$
Again, applying the formula, we get
$=\tan ^{-1}\left(\frac{\frac{6}{17}+\frac{11}{23}}{1-\frac{6}{17} \times \frac{11}{23}}\right)$
After simplifying,
$=\tan ^{-1}(325 / 325)$
$=\tan ^{-1}(1)$
$=\pi / 4$
9. Prove that $\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1} \frac{1-x}{1+x}, x \in(0,1)$

Solution:
Let $\tan ^{-1} \sqrt{x}=\theta$, then $\sqrt{x}=\tan \theta$
Squaring both the sides
$\tan ^{2} \theta=x$

EDUGRロSS

Now, substitute the value of x in $\frac{1}{2} \cos ^{-1} \frac{1-x}{1+x}$, we get

$$
=\frac{1}{2} \cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)
$$

$=1 / 2 \cos -1(\cos 2 \theta)$
$=1 / 2(2 \theta)$
$=\theta$
$=\tan ^{-1} \sqrt{x}$
10. Prove that $\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, x \in(0, \pi / 4)$

Solution:

We can write $1+\sin x$ as,

$$
1+\sin x=\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}+2 \cos \frac{x}{2} \sin \frac{x}{2}=\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}
$$

And

$$
1-\sin x=\cos ^{2} \frac{x}{2}+\sin ^{2} \frac{x}{2}-2 \cos \frac{x}{2} \sin \frac{x}{2}=\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)^{2}
$$

LHS:

$$
\begin{aligned}
& \cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) \\
& =\cot ^{-1}\left[\frac{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)+\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)}{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)-\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)}\right]
\end{aligned}
$$

EDUGRロSS

$$
\begin{aligned}
& =\cot ^{-1}\left(\frac{2 \cos \left(\frac{x}{2}\right)}{2 \sin \left(\frac{x}{2}\right)}\right) \\
& =\cot ^{-1}(\cot (\mathrm{x} / 2) \\
& =\mathrm{x} / 2
\end{aligned}
$$

$$
\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq 1
$$

[Hint: Put $x=\cos 2 \theta]$
Solution:

Put $x=\cos 2 \theta \quad$ so, $\theta=\frac{1}{2} \cos ^{-1} x$

$$
\begin{aligned}
\text { LHS } & =\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}\right) \\
& =\tan ^{-1}\left(\frac{\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}}{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}\right) \\
= & \tan ^{-1}\left(\frac{\sqrt{2} \cos \theta-\sqrt{2} \sin \theta}{\sqrt{2} \cos \theta+\sqrt{2} \sin \theta}\right)
\end{aligned}
$$

Divide each term by $\sqrt{2} \cos \theta$

$$
\begin{aligned}
& =\tan ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right) \\
& =\tan ^{-1}\left(\frac{\tan \frac{\pi}{4}-\tan \theta}{1+\tan \frac{\pi}{4} \tan \theta}\right) \\
& =\tan ^{-1} \tan \left(\frac{\pi}{4}-\theta\right) \\
& =\frac{\pi}{4}-\theta \\
& =\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x \\
& =\text { RHS }
\end{aligned}
$$

Hence proved

12. Prove that $\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}$

Solution:

LHS $=\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}$
$=\frac{9}{4}\left(\frac{\pi}{2}-\sin ^{-1} \frac{1}{3}\right)$
$=\frac{9}{4} \cos ^{-1} \frac{1}{3}$
.......(1)
(Using identity: $\sin ^{-1} \theta+\cos ^{-1} \theta=\frac{\pi}{2}$.)
Let $\theta=\cos ^{-1}(1 / 3)$, so $\cos \theta=1 / 3$
As

$$
\sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-\frac{1}{9}}=\sqrt{\frac{8}{9}}=\frac{2 \sqrt{2}}{3}
$$

Using equation (1), $\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}$

Which is right hand side of the expression.

Solve the following equations:
13. $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$

Solution:

$$
\begin{aligned}
& 2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x) \\
& \tan ^{-1}\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)=\tan ^{-1}\left(\frac{2}{\sin x}\right) \\
& \frac{2 \cos x}{1-\cos ^{2} x}=\frac{2}{\sin x} \\
& \frac{\cos x}{\sin x}=1
\end{aligned}
$$

Cot $x=1$
$x=\pi / 4$
14. Solve $\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x,(x>0)$

Solution:
Put $x=\tan \theta$

$$
\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x
$$

This implies

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x \\
& \tan ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right)=\frac{1}{2} \tan ^{-1} \tan \theta \\
& \tan ^{-1}\left(\frac{\tan \frac{\pi}{4}-\tan \theta}{\tan \frac{\pi}{4}+\tan \theta}\right)=\frac{1}{2} \theta \\
& \tan ^{-1} \tan \left(\frac{\pi}{4}-\theta\right)=\frac{\theta}{2} \\
& \pi / 4-\theta=\theta / 2 \\
& \text { or } 3 \theta / 2=\pi / 4 \\
& \theta=\pi / 6
\end{aligned}
$$

Therefore, $x=\tan \theta=\tan \pi / 6=1 / \sqrt{3}$
15. $\sin \left(\tan ^{-1} x\right),|x|<1$ is equal to
(A) $\frac{x}{\sqrt{1-x^{2}}}$
(B) $\frac{1}{\sqrt{1-x^{2}}}$
(C) $\frac{1}{\sqrt{1+x^{2}}}$
(D) $\frac{x}{\sqrt{1+x^{2}}}$

Solution:
Option (D) is correct.
Explanation:

Let $\theta=\tan ^{-1} x$ so, $x=\tan \theta$
Again, Let's say

$$
\sin \left(\tan ^{-1} x\right)=\sin \theta
$$

This implies,

$$
\sin \left(\tan ^{-1} x\right)=\frac{1}{\operatorname{cosec} \theta}=\frac{1}{\sqrt{1+\cot ^{2} \theta}}
$$

$$
\text { Put } \cot \theta=\frac{1}{\tan \theta}=\frac{1}{x}
$$

Which shows,

$$
\sin \left(\tan ^{-1} x\right)=\frac{1}{\sqrt{1+\frac{1}{x^{2}}}}=\frac{x}{\sqrt{x^{2}+1}}
$$

16.

$\sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}$ then x is equal to
(A) $0,1 / 2$
(B) $1,1 / 2$
(C) 0 (D) $1 / 2$

Solution:

Option (C) is correct.

Explanation:

$$
\text { Put } \sin ^{-1} x=\theta \quad \text { So, } x=\sin \theta
$$

Now,

$$
\sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}
$$

$$
\begin{aligned}
& \sin ^{-1}(1-x)-2 \theta=\frac{\pi}{2} \\
& \sin ^{-1}(1-x)=\frac{\pi}{2}+2 \theta \\
& 1-x=\sin \left(\frac{\pi}{2}+2 \theta\right) \\
& 1-x=\cos 2 \theta \\
& 1-x=1-2 x^{2} \\
& \text { (As } \mathrm{x}=\sin \theta \text {) }
\end{aligned}
$$

After simplifying, we get
$x(2 x-1)=0$
$x=0$ or $2 x-1=0$
$x=0$ or $x=1 / 2$
Equation is not true for $x=1 / 2$. So the answer is $x=0$.
17. $\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{x-y}{x+y}\right)$
is equal to
(A) $\pi / 2$
(B) $\pi / 3$
(C) $\pi / 4$
(D) $-3 \pi / 4$

Solution:
Option (C) is correct.

Explanation:

Given expression can be written as,

$$
\begin{aligned}
& =\tan ^{-1}\left[\frac{\frac{x}{y}-\left(\frac{x-y}{x+y}\right)}{1+\frac{x}{y}\left(\frac{x-y}{x+y}\right)}\right] \\
& =\tan ^{-1}\left[\frac{x(x+y)-y(x-y)}{y(x+y)+x(x-y)}\right] \\
& =\tan ^{-1}\left(\frac{x^{2}+x y-x y+y^{2}}{x y+y^{2}+x^{2}-x y}\right) \\
& =\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x^{2}+y^{2}}\right) \\
& =\tan ^{-1}(1) \\
& =\pi / 4
\end{aligned}
$$

