Exercise 4.1

Page No: 108

Evaluate the following determinants in Exercise 1 and 2.

1. $\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix}$

Solution:

$$\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix} = 2(-1) - 4(-5) = 18$$

2.

 $\begin{array}{l} (i) \; |\!\cos\theta - \sin^{\,\theta}| \\ \sin\theta\cos\theta \end{array} \\ \end{array}$

(ii) $\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$

Solution:

(i) $\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \cos \theta \times \cos \theta - (-\sin \theta) \times \sin \theta = 1$

(ii)
$$\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix} = (x^2 - x + 1)(x + 1) - (x + 1)(x - 1) = x^3 - x^2 + 2$$

3. If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$ then show that |2A| = 4|A|.

Solution:

 $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$ $2A = \begin{bmatrix} 2 & 4 \\ 8 & 4 \end{bmatrix}$ $L.H.S. = |2A| = \begin{vmatrix} 2 & 4 \\ 8 & 4 \end{vmatrix} = 8 - 32 = -24$ $R.H.S. = 4|A| = 4\begin{vmatrix} 1 & 2 \\ 4 & 2 \end{vmatrix} = 4 (2 - 8) = -24$

LHS = RHS

4. If A =
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$
 then show that $|3A| = 27 |A|$

Solution:

10	3	0	3]
3 A =	0	3	6
	0	0	12

LHS:

$$\begin{vmatrix} 3 & A \\ 3 & A \end{vmatrix} = \begin{vmatrix} 3 & 0 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 12 \end{vmatrix}$$

RHS

$$27 | \mathsf{A} | = 27 \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{vmatrix}$$

= 27(4) = 108

LHS = RHS

5. Evaluate the determinants

	3	-1	-2		3	-4	5
(i) 0 0 3 -5	0	0	$^{-1}$	-1 (ii)	1	1	-2
	-5	0		2	3	1	
	L.S.	24	~		12	-1	-2
		- 1	2		1.00		
	0		-	(iv)	0	2	-1

Solution: (i) $\begin{vmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{vmatrix} = \begin{vmatrix} 0 & -1 \\ -5 & 0 \end{vmatrix} - (-1) \begin{vmatrix} 0 & -1 \\ 3 & 0 \end{vmatrix} + (-2) \begin{vmatrix} 0 & 0 \\ 3 & -5 \end{vmatrix}$ = -15 + 3 - 0 = -12(ii) $\begin{vmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{vmatrix} = 3\begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix} - (-4)\begin{vmatrix} 1 & -2 \\ 2 & 1 \end{vmatrix} + 5\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ 1 3 = 3(7) + 4(5) + 5(1)= 46 (iii) $\begin{vmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{vmatrix} = 0 \begin{vmatrix} 0 & -3 \\ 3 & 0 \end{vmatrix} -1 \begin{vmatrix} -1 & -3 \\ -2 & 0 \end{vmatrix} + 2 \begin{vmatrix} -1 & 0 \\ -2 & 3 \end{vmatrix}$ = 0 - 1(-6) + 2(-3-0) = 0 (iv) $\begin{vmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{vmatrix} = 2\begin{vmatrix} 2 & -1 \\ -5 & 0 \end{vmatrix} - (-1)\begin{vmatrix} 0 & -1 \\ 3 & 0 \end{vmatrix} + (-2)\begin{vmatrix} 0 & 2 \\ 3 & -5 \end{vmatrix}$ = 2(-5) + (0+3) - 2(0-6)= 5

6. If A =
$$\begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{bmatrix}$$
 find |A|.

Solution:

$$|A| = \begin{vmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{vmatrix}$$
$$= 1\begin{vmatrix} 1 & -3 \\ 4 & -9 \end{vmatrix} - 1\begin{vmatrix} 2 & -3 \\ 5 & -9 \end{vmatrix} + (-2)\begin{vmatrix} 2 & 1 \\ 5 & 4 \end{vmatrix}$$

= 1(-9 + 12) - (-18 + 15) - 2(8 - 5)

= 0

7. Find values of x, if

(i) $\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \end{vmatrix}$		2.x	4	(11)	2	3		x	3
	6	x	(ii) $\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} =$	-	2x	5			

Solution:

(i) $\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$ $2 - 20 = 2x^2 - 24$ $2x^2 = 6$ $x^2 = 3$

or $x = \pm \sqrt{3}$

(ii) $\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$

10 – 12 = 5x – 6x x = 2

8. If $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$ then x is equal to

(A) 6 (B) \pm 6 (C) - 6 (D) 0 Solution:

Option (B) is correct.

Explanation:

 $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$

 $x^2 - 36 = 36 - 32$

 $x^2 = 36$

 $x = \pm 6$

Exercise 4.2

Page No: 119

Using the property of determinants and without expanding in Exercises 1 to 7, prove that:

```
\begin{vmatrix} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{vmatrix} = 0
```

Solution:

L.H.S.

 $\begin{array}{cccc} x & a & x+a \\ y & b & y+b \\ z & c & z+c \end{array}$

Applying: $C_1 + C_2$

x+a	а	x+a
y+b	Ь	y + b
z + c	с	z + c

Elements of Column 1 and Column 2 are same. So determinant value is zero as per determinant properties.

= 0

= RHS

Proved.

2. $\begin{vmatrix} a-b & b-c & a-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{vmatrix} = 0$

Solution:

 $\begin{array}{cccc} a-b & b-c & a-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c \end{array}$

Applying:
$$\begin{array}{c} C_1 \rightarrow C_1 + C_2 + C_3 \\ 0 & b - c & a - a \\ 0 & c - a & a - b \\ 0 & a - b & b - c \end{array}$$
$$= 0$$

All entries of first column are zero. (As per determinant properties)

```
65
       7
   2
           75 = 0
       8
   3
3. 5
       9
           86
```

Solution:

- 65 2 7
- 75 8
- 3 5 86 9

Applying: $C_3 \rightarrow C_3 - C_1$

2	7	65		2	7	7	
3	8	65 72 81	= 9	3	8	8	
5	9	81		5	9	9	

Elements of 2 columns are same, so determinant is zero.

= 0 Proved.

4.

1 bc = a(b+c)1 $ca \quad b(c+a)$ = 0ab c(a+b

Solution:

Applying: $C_3 \rightarrow C_3 + C_2$

 $\begin{array}{ccc} 1 & bc & ab+ab+ac \\ 1 & ca & ab+ab+ac \\ 1 & ab & ab+ab+ac \end{array}$

(ab + ab + ac) is a common element in 3rd row.

$$= (ab+ab+ac) \begin{vmatrix} 1 & bc & 1 \\ 1 & ca & 1 \\ 1 & ab & 1 \end{vmatrix}$$

Two columns are identical, so determinant is zero.

= 0

5. Prove that

(b+c)	q+r	y+z	a	р	x
(c+a)	r + p	z + x =	2 b	q	\mathcal{Y}
(a+b)	p+q	x + y	с	r	z

Solution:

LHS:

Applying: $R_1 \rightarrow R_1 + R_2 + R_3$

b+c+c+a+a+b	q+r+r+p+p+q	y+z+z+x+y
c+a	r + p	z + x
a+b	p+q	x+y

EDUGROSS

WISDOMISING KNOWLEDGE

$$= 2 \begin{vmatrix} (a+b+c) & (p+q+r) & (x+y+z) \\ c+a & r+p & z+x \\ a+b & p+q & x+y \end{vmatrix}$$

Applying:

$$R_{1} \rightarrow R_{1} - R_{2}$$
and $R_{3} \rightarrow R_{3} - R_{1}$

$$2\begin{vmatrix} b & q & y \\ c+a & r+p & z+x \\ a & p & x \end{vmatrix}$$

Again, $R_2 \rightarrow R_2 - R_3$

Ь	q	\mathcal{Y}
2 c	r	z
a	р	x

Interchanging rows, we have

 $2\begin{vmatrix} a & p & x \\ b & q & y \\ c & r & z \end{vmatrix}$ = RHS

Proved.

6. Prove that

 $\begin{vmatrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix} = 0$

Solution:

Let
$$\Delta$$
 $\begin{vmatrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix} =$

www.edugrooss.com

Taking (-1) common from all the 3 rows. Again, interchanging rows and columns, we have

$$\Delta = - \begin{vmatrix} 0 & a & -b \\ -a & 0 & -c \\ b & c & 0 \end{vmatrix}$$
$$\Delta = -\Delta$$

Which shows that, $2\Delta = 0$ or $\Delta = 0$. Proved.

7. Prove that

EDUGROSS

WISDOMISING KNOWLEDGE

$$\begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} = 4a^2b^2c^2$$

Solution: LHS:

$-a^2$	ab	ac
ba	$-b^2$	bc
ca	cb	$-c^2$

Taking a, b, c from row 1, row and row 3 respectively,

$$= abc \begin{vmatrix} -a & a & a \\ a & -b & b \\ a & b & -c \end{vmatrix}$$

$$R_1 \rightarrow R_1 + R_2$$

$$= abc \begin{vmatrix} 0 & 0 & 2c \\ a & -b & c \\ a & b & -c \end{vmatrix}$$

$$= abc (2c) \begin{vmatrix} a & -b \\ a & b \end{vmatrix}$$

$$= 2abc^2 (ab + ab)$$

$$= 4a^2b^2c^2$$

= RHS

Proved.

By using properties of determinants, in Exercises 8 to 14, show that: 8.

(i)
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

(ii) $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$

Solution:

(i)LHS:

$$\begin{array}{c|c} R_{2} \rightarrow R_{2} - R_{1} \text{ and } R_{3} \rightarrow R_{3} - R_{1} \\ \hline \\ = \begin{vmatrix} 1 & a & a^{2} \\ 0 & b - a & b^{2} - a^{2} \\ 1 & c - a & c^{2} - a^{2} \end{vmatrix}$$

Expanding 1st column, = $1\begin{vmatrix} b-a & b^2-a^2 \\ c-a & c^2-a^2 \end{vmatrix}$

Taking (b-a) common from first row,

 $= (b-a)(c-a)\begin{vmatrix} 1 & b+a \\ 1 & c+a \end{vmatrix}$

Simplifying above expression, we have

$$= (b-c)(c-a)(c-b)$$

$$= (a - b)(b - c)(c - a)$$

= RHS

Proved.

(ii) LHS $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \end{vmatrix}$

 $\begin{array}{ccc} a & b & c \\ a^3 & b^3 & c^3 \end{array}$

$$C_2 \rightarrow C_2 - C_1$$
 and $C_3 \rightarrow C_3 - C_1$

	1	0	0
=	а	b-a	c-a
	a ³	$b^3 - a^3$	0 c-a c ³ -a ³

Expanding first row

$$= 1 \begin{vmatrix} b-a & c-a \\ (b-a)(b^2+a^2+ab) & (c-a)(c^2+a^2+ac) \end{vmatrix}$$
$$= (b-a)(c-a) \begin{vmatrix} 1 & 1 \\ b^2+a^2+ab \end{pmatrix} & (c^2+a^2+ac) \end{vmatrix}$$
$$= (b-a)(c-a)(c^2+a^2+ac-b^2-a^2-ab)$$
$$= (b-a)(c-a)(c^2-b^2+ac-ab)$$
$$= (b-a)(c-a)[(c-b)(c+b)+a(c-b)]$$
$$= (b-a)(c-a)(c-b)(c+b+a)$$
$$= (a-b)(b-c)(c-a)(a+b+c)$$

=RHS

Proved

9. Prove that

$$\begin{vmatrix} x & x^{2} & yz \\ y & y^{2} & zx \\ z & z^{2} & xy \end{vmatrix} = (x - y)(y - z)(z - x)(xy + yz + zx)$$

Solution: LHS

 $\begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix}$

Mulitiplying R_1 , R_2 , R_3 by x, y, z respectively $= \frac{xyz}{xyz} \begin{vmatrix} x^2 & x^3 & 1 \\ y^2 & y^3 & 1 \\ z^2 & z^3 & 1 \end{vmatrix} = \begin{vmatrix} x^2 & x^3 & 1 \\ y^2 & y^3 & 1 \\ z^2 & z^3 & 1 \end{vmatrix}$ $R_2 \rightarrow R_2 - R_1, R_3 \rightarrow R_3 - R_1$ $= \begin{vmatrix} x^2 & x^3 & 1 \\ y^2 - x^2 & y^3 - x^3 & 0 \\ z^2 - x^2 & z^3 - x^3 & 0 \end{vmatrix}$ $= 1 \begin{vmatrix} y^2 - x^2 & y^3 - x^3 \\ z^2 - x^2 & z^3 - x^3 \end{vmatrix}$ $= \begin{vmatrix} (y-x)(y+x) & (y-x)(y^2+x^2+yx) \\ (z-x)(z+x) & (z-x)(z^2+x^2+zx) \end{vmatrix}$ $= (y-x)(z-x) \begin{vmatrix} y+x & y^2+x^2+yx \\ z+x & z^2+x^2+zx \end{vmatrix}$ $= (y-x)(z-x)\left[yz^{2} + yx^{2} + xyz + xz^{2} + x^{3} + x^{2}z - zy^{2} - zx^{2} - xyz - xy^{2} - x^{3} - x^{2}y\right]$ $=(y-x)(z-x)[yz^{2}-zy^{2}+xz^{2}-xy^{2}]$ $= (y-x)(z-x)\left[yz(z-y)+x(z^2-y^2)\right]$ $= (y-x)(z-x) \left[yz(z-y) + x(z-y)(z+y) \right]$ $= (y-x)(z-x)(z-y)\left[yz+x(z+y)\right]$ = (x-y)(y-z)(z-x)(xy+yz+zx)RHS(Proved) 10.

C ·

EDUGROSS

WISDOMISING KNOWLEDGE

(i)
$$\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \end{vmatrix} = (5x+4)(4-x)^2$$

(ii) $\begin{vmatrix} y+k & y & y \\ y & y+k & y \\ y & y+k & y \\ y & y & y+k \end{vmatrix} = k^2(3y+k)$

Solution:

(i) LHS

$$\begin{vmatrix} x+4 & 2x & 2x \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \\ \end{bmatrix}$$

$$[R_1 \rightarrow R_1 + R_2 + R_3]$$

$$= \begin{vmatrix} 5x+4 & 5x+4 & 5x+4 \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \\ \end{vmatrix}$$

$$= (5x+4) \begin{vmatrix} 1 & 1 & 1 \\ 2x & x+4 & 2x \\ 2x & 2x & x+4 \\ \end{vmatrix}$$

$$C_2 \rightarrow C_2 - C_1 \text{ and } C_3 \rightarrow C_3 - C_1$$

$$= (5x+4) \begin{vmatrix} 1 & 0 & 0 \\ 2x & 4-x & 0 \\ 2x & 0 & 4-x \\ \end{vmatrix}$$

$$= (5x+4) \cdot 1 \begin{vmatrix} 4-x & 0 \\ 0 & 4-x \end{vmatrix}$$

$$= (5x+4) (4-x)^2$$

$$= \text{RHS (Proved)}$$

(ii)LHS

$$\begin{vmatrix} y+k & y & y \\ y & y+k & y \\ y & 2x & y+k \end{vmatrix}$$

$$C_{1} \rightarrow C_{1}+C_{2}+C_{3}$$

$$= \begin{vmatrix} 3y+k & y & y \\ 3y+k & y+k & y \\ 3y+k & y & y+k \end{vmatrix}$$

$$= (3y+k)\begin{vmatrix} 1 & y & y \\ 1 & y+k & y \\ 1 & y+k & y \\ 1 & y & y+k \end{vmatrix}$$

$$C_{2} \rightarrow C_{2} - C_{1} \text{ and } C_{3} \rightarrow C_{3} - C_{1}$$

$$= (3y+k)\begin{vmatrix} 1 & y & y \\ 0 & k & 0 \\ 0 & 0 & k \end{vmatrix}$$

$$= (3y+k).1\begin{vmatrix} k & 0 \\ 0 & k \end{vmatrix}$$

$$= k^{2}(3y+k)$$
RHS (Proved)

11. Prove that,

(i)
$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$$

(ii) $\begin{vmatrix} x+y+2z \\ z & z & z \end{vmatrix}$

$$\begin{vmatrix} (1) \\ x + y + 2z \\ z \\ z \\ z \\ z \\ z \\ x \\ x \\ x \\ z + x + 2y \end{vmatrix} = 2(x + y + z)^{3}$$

.0

Solution: LHS

a-b-c	2a	2a
2b	b-c-a	26
2c	2c	c-a-b

 $R_1 \rightarrow R_1 + R_2 + R_3$

 $= \begin{vmatrix} a+b+c & a+b+c & a+b+c \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$ $= (a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$ $C_1 \rightarrow C_1 - C_1$ and $C_3 \rightarrow C_3 = (a+b+c) \begin{vmatrix} 1 & 0 & 0 \\ 2b & -b-c-a & 0 \\ 2c & 0 & -c-a-b \end{vmatrix}$ $= (a+b+c)(1) \begin{vmatrix} -b-c-a & 0 \\ 0 & -c-a-b \end{vmatrix}$ $= (a+b+c) \bigl(-\bigl(b+c+a\bigr) \bigr) \bigl(-\bigl(c+a+b\bigr) \bigr]$ $=(a+b+c)^3$ (ii) LHS $\begin{vmatrix} x+y+2z & x & y \\ z & y+z+2x & y \\ z & x & z+x+2y \end{vmatrix}$ $C_{1} \rightarrow C_{1} + C_{2} + C_{3}$ $= \begin{vmatrix} 2(x+y+z) & x & y \\ 2(x+y+z) & y+z+2x & y \\ 2(x+y+z) & x & z+x+2y \end{vmatrix}$

Taking 2(x + y + z) common from first column. Then apply operations:

 $R_2 \rightarrow R_2 - R_1$ and $R_3 \rightarrow R_3 - R_1$

$$= 2(x+y+z) \begin{vmatrix} 1 & x & y \\ 0 & x+y+z & 0 \\ 0 & 0 & x+y+z \end{vmatrix}$$
$$= 2(x+y+z)(1) \begin{vmatrix} x+y+z & 0 \\ 0 & x+y+z \end{vmatrix}$$
$$= 2(x+y+z)[(x+y+z)^2 - 0]$$

 $= 2(x + y + z)^{3}$ = RHS (Proved)

12. Prove that

$$\begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} = (1 - x^3)^2$$

Solution: LHS

 $\begin{vmatrix} 1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1 \end{vmatrix}$ $R_{1} \rightarrow R_{1} + R_{2} + R_{3}$ $= \begin{vmatrix} 1 + x + x^{2} & 1 + x + x^{2} & 1 + x + x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1 \end{vmatrix}$ $= (1 + x + x^{2}) \begin{vmatrix} 1 & 1 & 1 \\ x^{2} & 1 & x \\ x & x^{2} & 1 \end{vmatrix}$ $C_{2} \rightarrow C_{2} - C_{1} \text{ and } C_{3} \rightarrow C_{3} - C_{1}$ $= (1 + x + x^{2}) \begin{vmatrix} 1 & 0 & 0 \\ x^{2} & 1 - x^{2} & x - x^{2} \\ x & x^{2} - x & 1 - x \end{vmatrix}$

$$= (1+x+x^{2}) \begin{vmatrix} 1-x^{2} & x-x^{2} \\ x^{2}-x & 1-x \end{vmatrix}$$
$$= (1+x+x^{2}) \begin{vmatrix} (1-x)(1+x) & x(1-x) \\ -x(1-x) & 1-x \end{vmatrix}$$
$$= (1+x+x^{2}) [(1-x)^{2}(1+x)+x^{2}(1-x)^{2}]$$
$$= (1+x+x^{2})^{2}(1-x)^{2}$$
$$= (1-x+x-x^{2}+x^{2}-x^{3})^{2}$$
$$= (1-x^{3})^{2}$$

RHS Proved.

13. Prove that

$$\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = (1+a^2+b^2)$$

Solution:

LHS

$$\begin{vmatrix} 1+a^2-b^2 & 2ab \\ 2ab & 1-a^2+b^2 \\ 2b & -2a & 1 \end{vmatrix}$$

$$C_{1} \rightarrow C_{1} - b C_{3} \text{ and } C_{2} \rightarrow C_{2} + a C_{3}$$

$$= \begin{vmatrix} 1 + a^{2} + b^{2} & 0 & -2b \\ 0 & 1 + a^{2} + b^{2} & 2a \\ b(1 + a^{2} + b^{2}) & -a(1 + a^{2} + b^{2}) & 1 - a^{2} - b^{2} \end{vmatrix}$$

-2b2a

$$= \left(1+a^{2}+b^{2}\right)^{2} \begin{vmatrix} 1 & 0 & -2b \\ 0 & 1 & 2a \\ b & -a & 1-a^{2}-b^{2} \end{vmatrix}$$

$$R_3 \rightarrow R_3 - b R_1$$

$$= (1+a^{2}+b^{2})^{2} \begin{vmatrix} 1 & 0 & -2b \\ 0 & 1 & 2a \\ 0 & -a & 1-a^{2}+b^{2} \end{vmatrix}$$

$$= \left(1 + a^{2} + b^{2}\right)^{2} \begin{vmatrix} 1 & 2a \\ -a & 1 - a^{2} + b^{2} \end{vmatrix}$$
$$= \left(1 + a^{2} + b^{2}\right)^{2} \left(1 - a^{2} + b^{2} + 2a^{2}\right)$$
$$= \left(1 + a^{2} + b^{2}\right)^{3}$$

RHS Proved

14. Prove that

 $\begin{vmatrix} a^{2} + 1 & ab & ac \\ ab & b^{2} + 1 & bc \\ ca & cb & c^{2} + 1 \end{vmatrix} = 1 + a^{2} + b^{2} + c^{2}$

Solution: LHS

 $\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix}$

Multiply, C1, C2, C3 by a, b, c respectively

Then divide the determinant by abc

$$= \frac{1}{abc} \begin{vmatrix} a(a^{2}+1) & ab^{2} & ac^{2} \\ a^{2}b & b(b^{2}+1) & bc^{2} \\ a^{2}c & b^{2}c & c(c^{2}+1) \end{vmatrix}$$

$= \frac{abc}{abc} \begin{vmatrix} a^{2} + 1 & b^{2} & c^{2} \\ a^{2} & b^{2} + 1 & c^{2} \\ a^{2} & b^{2} & c^{2} + 1 \end{vmatrix}$ $C_{1} \rightarrow C_{1} + C_{2} + C_{3}$ $= \frac{abc}{abc} \begin{vmatrix} 1 + a^{2} + b^{2} + c^{2} & b^{2} & c^{2} \\ 1 + a^{2} + b^{2} + c^{2} & b^{2} + 1 & c^{2} \\ 1 + a^{2} + b^{2} + c^{2} & b^{2} & c^{2} + 1 \end{vmatrix}$ $= (1 + a^{2} + b^{2} + c^{2}) \begin{vmatrix} 1 & b^{2} & c^{2} \\ 1 & b^{2} & c^{2} + 1 \end{vmatrix}$

$$R_2 \rightarrow R_2 - R_1 \text{ and } R_3 \rightarrow R_3 - R_1$$

$$= (1+a^{2}+b^{2}+c^{2})\begin{vmatrix} 1 & b^{2} & c^{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
$$= (1+a^{2}+b^{2}+c^{2})(1)(1-0)$$
$$= 1+a^{2}+b^{2}+c^{2}$$
LHS

(Proved)

Choose the correct answer in Exercises 15 and 16

15. Let A be a square matrix of order 3 × 3, then | kA| is equal to

(A) $k | A | (B) k^2 | A | (C) k^3 | A |$ (D) 3k | A |

Solution: Option (C) is correct.

16. Which of the following is correct (A)

Determinant is a square matrix.

(B) Determinant is a number associated to a matrix.

(C) Determinant is a number associated to a square matrix.

(D) None of these

Solution: Option (C) is correct.

Exercise 4.3

Page No: 122

1. Find area of the triangle with vertices at the point given in each of the following:

(i) (1, 0), (6, 0), (4, 3)
(ii) (2, 7), (1, 1), (10, 8)
(iii)(-2, -3), (3, 2), (-1, -8) Solution:
Formula for Area of triangle:

 $\frac{1}{2}\begin{vmatrix} x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1 \end{vmatrix}$ (i) $\frac{1}{2}\begin{vmatrix} 1 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1 \end{vmatrix}$ $= \frac{1}{2}[1(0-3)-0(6-4)+1(18-0)]$ $= \frac{15}{2} \text{ sq. units}$ (ii) Area = $\frac{1}{2}\begin{vmatrix} 2 & 7 & 1 \\ 1 & 1 & 1 \\ 10 & 8 & 1 \end{vmatrix}$ $= \frac{1}{2}[2(1-8)-7(1-10)+1(8-10)]$ $= \frac{47}{2} \text{ sq. unit}$

(iii)

Area =
$$\frac{1}{2} \begin{vmatrix} -2 & -3 & 1 \\ 3 & 2 & 1 \\ -1 & -8 & 1 \end{vmatrix}$$

= $\frac{1}{2} \begin{bmatrix} -2(10) + 3(4) - 22 \end{bmatrix}$

= 15 sq. Units

2. Show that points: A (a, b + c), B (b, c + a), C (c, a + b) are collinear.

Solution:

Points are collinear if area of triangle is equal to zero. i.e. Area of triangle = 0

Area of Triangle =
$$\frac{1}{2} \begin{vmatrix} a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1 \end{vmatrix}$$

= $\frac{1}{2} \Big[a(c+a-a-b)-(b+c)(b-c)+1\{b(a+b)-c(c+a)\} \Big]$
= $\frac{1}{2} (ac-ab-b^2+c^2+ab+b^2-c^2-ac)$
= 0

Therefore, points are collinear.

3. Find values of k if area of triangle is 4 sq. units and vertices are

(i) (k, 0), (4, 0), (0, 2) (ii) (-2, 0), (0, 4), (0, k)

Solution:

(i) Area of triangle = ± 4 (Given)

$$\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 4$$
$$\frac{1}{2} \begin{bmatrix} k(0-2) - 0 + 1(8-0) \end{bmatrix} = 4$$

 $\frac{1}{2}(-2k+4) = 4$

-k + 4 = 4Now: $-k + 4 = \pm 4 - k + 4 = 4$ and -k + 4 = -4 = -4 = 0and k = 8

(ii)
$$\frac{\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \\ = 4 \end{vmatrix}}{= 4$$

$$\frac{1}{2} \begin{vmatrix} -2 & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1 \end{vmatrix} = 4$$

 $\frac{1}{2}(-8+2k) = 4$

```
or -k + 4 = 4 Now: -k + 4 = \pm 4 - k + 4 = 4 and -k + 4 = -4 k = 0 and k = 8
```

4. (i) Find equation of line joining (1, 2) and (3, 6) using determinants. (ii) Find equation of line joining (3, 1) and (9, 3) using determinants.

Solution:

Let A(x, y) be any vertex of a triangle. All points are on one line if area of triangle is zero.

$$\frac{1}{2} \begin{vmatrix} 1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1 \end{vmatrix} = 0$$

$$\frac{1}{2} \begin{bmatrix} x(2-6) - y(1-3) + 1(6-6) \end{bmatrix} = 0$$

-4x + 2y = 0

y = 2x

Which is equation of line.

(ii) Let A(x, y) be any vertex of a triangle.All points are on one line if area of triangle is zero.

$$\frac{1}{2} \begin{vmatrix} x & y & 1 \\ 3 & 1 & 1 \\ 9 & 3 & 1 \end{vmatrix} = 0$$

$$\frac{1}{2} \Big[x(1-3) - y(3-9) + 1(9-9) \Big] = 0$$

-2x + 6y = 0

$$x - 3y = 0$$

Which is equation of line.

12. If area of triangle is 35 sq units with vertices (2, – 6), (5, 4) and (k, 4). Then k is

(A) 12 (B) -2 (C) -12, -2 (D) 12, -2

Solution:

Option (D) is correct.

Explanation:

 $\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = 35$

 $\frac{1}{2} \left[2(4-4) - (-6)(5-k) + 1(20-4k) \right] = 35$

Solving above expression, we have

 $25 - 5k = \pm 35$

25 - 5k = 35 and 25 - 5k = -35

k = -2 and k = 12.

Exercise 4.4

Page No: 126

Write Minors and Cofactors of the elements of following determinants:

1.

(i) $\begin{vmatrix} 2 & -4 \\ 0 & 3 \end{vmatrix}$ (ii) $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$

Solution:

Find Minors of elements:

Say, Mij is minor of element aij

 M_{11} = Minor of element a_{11} = 3

 M_{12} = Minor of element a_{12} = 0

 M_{21} = Minor of element a_{21} = -4

 M_{22} = Minor of element a_{22} = 2

Find cofactor of aij

Let cofactor of aij is Aij, which is (-1)i+j Mij

4

$$A_{11} = (-1)^{1+1} M_{11} = (-1)^2 (3) = 3$$

$$A_{12} = (-1)^{1+2} M_{12} = (-1)^3 (0) = 0$$

$$A_{21} = (-1)^{2+1} M_{21} = (-1)^3 (-4) =$$

 $A_{22} = (-1)^{2+2} M_{22} = (-1)^4 (2) = 2$

(ii) $\begin{vmatrix} a & c \\ b & d \end{vmatrix}$

Solution:

Find Minors of elements:

Say, Mij is minor of element aij

 M_{11} = Minor of element a_{11} = d

 M_{12} = Minor of element a_{12} = b

 M_{21} = Minor of element a_{21} = c

 M_{22} = Minor of element a_{22} = a

Find cofactor of aij

Let cofactor of aij is Aij, which is (-1)i+j Mij

$$A_{11} = (-1)^{1+1} M_{11} = (-1)^2 (d) = d$$

$$A_{12} = (-1)^{1+2} M_{12} = (-1)^3 (b) = -b$$

 $A_{21} = (-1)^{2+1} M_{21} = (-1)^3 (c) = -c$

 $A_{22} = (-1)^{2+2} M_{22} = (-1)^4 (a) = a$

2.

(i) $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$

 $\begin{array}{c|cccc} \text{(ii)} & 1 & 0 & 4 \\ 3 & 5 & -5 \\ 0 & 2 & 2 \end{array}$

Solution:

(i) 1 0 0 0 1 0 0 0 1 Find Minors and cofactors of elements:

Say, M_{ij} is minor of element a_{ij} and A_{ij} is cofactor of a_{ij}

Find Minors and cofactors of elements:

Say, Mij is minor of element aij and Aij is cofactor of aij

$$\Delta = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{vmatrix}$$

Solution:

Find Cofactors of elements of second row:

=

$$A_{21} = \text{Cofactor of element } a_{21} \qquad (-1)^{2+1} \begin{vmatrix} 3 & 8 \\ 2 & 3 \end{vmatrix} = (-1)^3 (9-16) = 7$$

$$A_{22} = \text{Cofactor of element } a_{22} \qquad (-1)^{2+2} \begin{vmatrix} 5 & 8 \\ 1 & 3 \end{vmatrix} = (-1)^4 (15-8) = 7$$

$$\begin{vmatrix} 2 & 2 \\ -1 \end{vmatrix}^{2+2} \begin{vmatrix} 5 & 8 \\ 1 & 3 \end{vmatrix} = (-1)^4 (15-8) = 7 (-1)^{2+3} \begin{vmatrix} 5 & 3 \\ 1 & 2 \end{vmatrix} = (-1)^5 (10-3) = -7$$

A₂₃ = Cofactor of element a₂₃ =

Now, $\Delta = a_{21} A_{21} + a_{22} A_{22} + a_{23} A_{23} = 14 + 0 - 7 = 7$

4. Using Cofactors of elements of third column, evaluate Δ .

	1	х	yz
Δ =	1	у	zx
	1	Ζ	хy

Solution:

Find Cofactors of elements of $A_{13} = \text{Cofactor of element } a_{13} = \begin{pmatrix} (-1)^{1+3} & 1 & y \\ 1 & z \\ -1 \end{pmatrix} = \begin{pmatrix} (-1)^{2+3} & 1 & x \\ 1 & z \\ -1 \end{pmatrix} = \begin{pmatrix} (-1)^{2+3} & 1 & x \\ -1 & 2 \end{pmatrix} = (-1)^{5} (z-x) = x-z$ $A_{23} = \text{Cofactor of element } a_{23} = \begin{pmatrix} (-1)^{2+3} & 1 & x \\ -1 & 2 \end{pmatrix} = (-1)^{5} (y-x) = y-x$

 A_{33} = Cofactor of element a_{33} =

Now, $\Delta = a_{13}A_{13} + a_{23}A_{23} + a_{33}A_{33}$ = yz(z-y) + zx(x-z) + xy(y-x) $= (yz^2 - y^2z) + (xy^2 - xz^2) + (xz^2 - x^2y)$ $= (y-z)[-yz + x(y+z) - x^2]$ = (y-z)[-y(z-x) + x(z-x)] third column:

$$= (x - y)(y - x)(z - x)$$

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
5. If

and A_{ij} is cofactor of a_{ij} then value of Δ is given by:

(A) $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33}$

(B)
$$a_{11}A_{11} + a_{12}A_{21} + a_{13}A_{31}$$

(C)
$$a_{21}A_{11} + a_{22}A_{12} + a_{23}A_{13}$$

(D)
$$a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$$

Solution: Option (D) is correct. Exercise 4.5

Page No: 131

Find adjoint of each of the matrices in Exercises 1 and 2.

1.

 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

2.

 $\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$

Solution:

1. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Cofactors of the above matrix are $A_{11} = 4$ $A_{12} = -3$ $A_{21} = -2$

A₂₂ = 1
adj. A =
$$\begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$$

2.

Let A =
$$\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$$

Cofactors of the above matrix are

$$\begin{aligned} A_{11} &= + \begin{vmatrix} 3 & 5 \\ 0 & 1 \end{vmatrix} = 3 \qquad A_{21} = - \begin{vmatrix} -1 & 2 \\ 0 & 1 \end{vmatrix} = 1 \qquad A_{31} = + \begin{vmatrix} -1 & 2 \\ 3 & 5 \end{vmatrix} = -11 \\ A_{12} &= - \begin{vmatrix} 2 & 5 \\ -2 & 1 \end{vmatrix} = -12 \qquad A_{22} = + \begin{vmatrix} 1 & 2 \\ -2 & 1 \end{vmatrix} = 5 \qquad A_{32} = - \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = -11 \\ A_{33} &= + \begin{vmatrix} 2 & 3 \\ -2 & 0 \end{vmatrix} = 6 \qquad A_{23} = - \begin{vmatrix} 1 & -1 \\ -2 & 0 \end{vmatrix} = 2 \qquad A_{33} = + \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} = 5 \end{aligned}$$

Therefore,

adj. A =
$$\begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} 3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5 \end{bmatrix}$$

Verify A (adj A) = (adj A) A = |A| I in Exercises 3 and 4

Let
$$A = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$

adj. $A = \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix}$
A.(adj. A) $= \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix} \begin{bmatrix} -6 & -3 \\ 4 & 2 \end{bmatrix}$
 $= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
Again, $|A| = \begin{vmatrix} 2 & 3 \\ -4 & -6 \end{vmatrix} = -12 + 12 = 0$
 $|A|I = (0) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

LHS = RHS Verified.

4.

Let $A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$

Cofactors of A,

$$\begin{aligned} A_{11} &= + \begin{vmatrix} 0 & -2 \\ 0 & 3 \end{vmatrix} = 0 \qquad A_{21} = - \begin{vmatrix} -1 & 2 \\ 0 & 3 \end{vmatrix} = 3 \qquad A_{31} = + \begin{vmatrix} -1 & 2 \\ 0 & -2 \end{vmatrix} = 2 \\ A_{12} &= - \begin{vmatrix} 3 & -2 \\ 1 & 3 \end{vmatrix} = -11 \qquad A_{22} = + \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = 1 \qquad A_{32} = - \begin{vmatrix} 1 & 2 \\ 3 & -2 \end{vmatrix} = 8 \\ A_{13} &= + \begin{vmatrix} 3 & 0 \\ 1 & 0 \end{vmatrix} = 0 \qquad A_{23} = - \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} = -1 \qquad A_{33} = + \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix} = 3 \end{aligned}$$

Now,

adj. A =
$$\begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$$

Now, Verify A (adj A) = (adj A) A = |A| I

$$A(adj, A) = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$
$$(adj, A)A = \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{vmatrix} = 1(0) \cdot (-1)(11) + 2(0) = 11$$
$$|A| = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

Verified.

Find the inverse of each of the matrices (if it exists) given in Exercises 5 to 11.

5.

 $\begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$

Solution:

Let
$$A = \begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$$

 $|A| = \begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix} = 14 \neq 0$

Since determinant of the matrix is not zero, so inverse of this matrix is possible.

As we know, formula to find matrix inverse is:

$$A^{-1} = \frac{1}{|A|} adj.A$$

adj. A =
$$\begin{bmatrix} 3 & 2 \\ -4 & 2 \end{bmatrix}$$

This implies,

A ⁻¹ =	1	3	2]
	14	-4	2

6.

-1 5 -3 2

Solution:

Let
$$A = \begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$$

 $|A| = \begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix} = 13 \neq 0$

Since determinant of the matrix is not zero, so inverse of this matrix is possible.

As we know, formula to find matrix inverse is:

$$A^{-1} = \frac{1}{|A|} adj.A$$

adj. A =
$$\begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$

This implies,

·,C

$$A^{-1} = \frac{1}{13} \begin{bmatrix} 2 & -5 \\ 3 & -1 \end{bmatrix}$$
7.

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$
Solution:

Let A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$

|A| = $\begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{vmatrix}$ = 1(10) - 2(0) + 3(0) = 10 \neq 0

Therefore,

A⁻¹ exists

Find adj A:

$$A_{11} = + \begin{vmatrix} 2 & 4 \\ 0 & 5 \end{vmatrix} = 10 \qquad A_{21} = - \begin{vmatrix} 2 & 3 \\ 0 & 5 \end{vmatrix} = -10 \qquad A_{31} = + \begin{vmatrix} 2 & 3 \\ 2 & 4 \end{vmatrix} = 2$$
$$A_{12} = - \begin{vmatrix} 0 & 4 \\ 0 & 5 \end{vmatrix} = 0 \qquad A_{22} = + \begin{vmatrix} 1 & 3 \\ 0 & 5 \end{vmatrix} = 5 \qquad A_{32} = - \begin{vmatrix} 1 & 3 \\ 0 & 4 \end{vmatrix} = -4$$
$$A_{13} = + \begin{vmatrix} 0 & 2 \\ 0 & 0 \end{vmatrix} = 0 \qquad A_{23} = - \begin{vmatrix} 1 & 2 \\ 0 & 0 \end{vmatrix} = 0 \qquad A_{33} = + \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} = 2$$

As we know, formula to find matrix inverse is:

$$A^{-1} = \frac{1}{|A|} adj.A$$
$$A^{-1} = \frac{1}{10} \begin{bmatrix} 10 & -10 & 2\\ 0 & 5 & -4\\ 0 & 0 & 2 \end{bmatrix}$$

 $\begin{bmatrix}
 1 & 0 & 0 \\
 3 & 3 & 0 \\
 5 & 2 & -1
 \end{bmatrix}$

Solution:

Let A =
$$\begin{bmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 1 & 0 & 0 \\ 3 & 3 & 0 \\ 5 & 2 & -1 \end{vmatrix} = 1(-3) - 0 + 0 = -3 \neq 0$$

Therefore,

A⁻¹ exists

Find adj A:

$$A_{11} = + \begin{vmatrix} 3 & 0 \\ 2 & -1 \end{vmatrix} = -3 \quad A_{21} = - \begin{vmatrix} 0 & 0 \\ 2 & -1 \end{vmatrix} = 0 \quad A_{31} = + \begin{vmatrix} 0 & 0 \\ 3 & 0 \end{vmatrix} = 0$$
$$A_{12} = - \begin{vmatrix} 3 & 0 \\ 5 & -1 \end{vmatrix} = 3 \quad A_{22} = + \begin{vmatrix} 1 & 0 \\ 5 & -1 \end{vmatrix} = -1 \quad A_{32} = - \begin{vmatrix} 1 & 0 \\ 3 & 0 \end{vmatrix} = 0$$
$$A_{13} = + \begin{vmatrix} 3 & 3 \\ 5 & 2 \end{vmatrix} = -9 \quad A_{23} = - \begin{vmatrix} 1 & 0 \\ 5 & 2 \end{vmatrix} = -2 \quad A_{33} = + \begin{vmatrix} 1 & 0 \\ 3 & 3 \end{vmatrix} = 3$$
$$adj. A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$

As we know, formula to find matrix inverse is:

$$A^{-1} = \frac{1}{|A|} adj.A$$

EDUGROSS

$$A^{-1} = \frac{-1}{3} \begin{bmatrix} -3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3 \end{bmatrix}$$

9.
$$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{bmatrix}$$

Solution:

Let A =
$$\begin{bmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 2 & 1 & 3 \\ 4 & -1 & 0 \\ -7 & 2 & 1 \end{vmatrix}$$
$$= 2(-1)-1(4) + 3(1) = -3$$
$$\neq 0$$
Therefore,

A⁻¹ exists

Find adj A:

$$A_{11} = + \begin{vmatrix} -1 & 0 \\ 2 & 1 \end{vmatrix} = -1 \quad A_{21} = - \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = 5 \qquad A_{31} = + \begin{vmatrix} 1 & 3 \\ -1 & 0 \end{vmatrix} = 3$$

$$A_{12} = - \begin{vmatrix} 4 & 0 \\ -7 & 1 \end{vmatrix} = -4 \quad A_{22} = + \begin{vmatrix} 2 & 3 \\ -7 & 1 \end{vmatrix} = 23 \quad A_{32} = - \begin{vmatrix} 2 & 3 \\ 4 & 0 \end{vmatrix} = 12$$

$$A_{13} = + \begin{vmatrix} 4 & -1 \\ -7 & 2 \end{vmatrix} = 1 \quad A_{23} = - \begin{vmatrix} 2 & 1 \\ -7 & 2 \end{vmatrix} = -11 \quad A_{33} = + \begin{vmatrix} 2 & 1 \\ 4 & -1 \end{vmatrix} = -6$$
adj.
$$A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} -1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & -11 & -6 \end{bmatrix}$$

.

As we know, formula to find matrix inverse is:

$$A^{-1} = \frac{1}{|A|} adj.A$$
$$A^{-1} = \frac{-1}{3} \begin{bmatrix} -1 & 5 & 3\\ -4 & 23 & 12\\ 1 & -11 & -6 \end{bmatrix}$$

10. 「1

 $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$

Solution:

Let $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}$ $|A| = \begin{vmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{vmatrix}$ =1(2)+1(9)+2(-6) = -1 $\neq 0$ Therefore, A^{-1} exists Find adj A:

$$\begin{aligned} A_{11} &= + \begin{vmatrix} 2 & -3 \\ -2 & 4 \end{vmatrix} = 2 \quad A_{21} = - \begin{vmatrix} -1 & 2 \\ -2 & 4 \end{vmatrix} = 0 \quad A_{31} = + \begin{vmatrix} -1 & 2 \\ 2 & -3 \end{vmatrix} = -1 \\ A_{12} &= - \begin{vmatrix} 0 & -3 \\ 3 & 4 \end{vmatrix} = -9 \quad A_{22} = + \begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix} = -2 \quad A_{32} = - \begin{vmatrix} 1 & 2 \\ 0 & -3 \end{vmatrix} = 3 \\ A_{13} &= + \begin{vmatrix} 0 & 2 \\ 3 & -2 \end{vmatrix} = -6 \quad A_{23} = - \begin{vmatrix} 1 & -1 \\ 3 & -2 \end{vmatrix} = -1 \quad A_{33} = + \begin{vmatrix} 1 & -1 \\ 0 & 2 \end{vmatrix} = 2 \\ adj. A &= \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{bmatrix} \end{aligned}$$

As we know, formula to find matrix inverse is:

$$A^{-1} = \frac{1}{|A|} adj.A$$
$$A^{-1} = \begin{bmatrix} -2 & 0 & 1\\ 9 & 2 & -3\\ 6 & 1 & -2 \end{bmatrix}$$

11.

- $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \end{bmatrix}$
- $\begin{bmatrix} 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$

Solution:

Let A =
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{bmatrix}$$
$$|A| = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{vmatrix}$$
$$= (-\cos^2 \alpha - \sin^2 \alpha) - 0 + 0$$
$$= -(\cos^2 \alpha + \sin^2 \alpha) = -1 \neq 0$$

Therefore,

Find adj A:

$$A_{11} = + \begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{vmatrix} = -1 \quad A_{21} = - \begin{vmatrix} 0 & 0 \\ \sin \alpha & -\cos \alpha \end{vmatrix} = 0 \qquad A_{21} = + \begin{vmatrix} 0 & 0 \\ \cos \alpha & \sin \alpha \end{vmatrix} = 0$$

$$A_{12} = - \begin{vmatrix} 0 & \sin \alpha \\ 0 & -\cos \alpha \end{vmatrix} = 0 \qquad A_{22} = + \begin{vmatrix} 1 & 0 \\ 0 & -\cos \alpha \end{vmatrix} = -\cos \alpha \quad A_{22} = - \begin{vmatrix} 1 & 0 \\ 0 & \sin \alpha \end{vmatrix} = -\sin \alpha$$

$$A_{13} = + \begin{vmatrix} 0 & \cos \alpha \\ 0 & \sin \alpha \end{vmatrix} = 0 \qquad A_{22} = - \begin{vmatrix} 1 & 0 \\ 0 & \sin \alpha \end{vmatrix} = \sin \alpha \qquad A_{23} = + \begin{vmatrix} 1 & 0 \\ 0 & \cos \alpha \end{vmatrix} = \cos \alpha$$

$$adj. A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{vmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha \end{vmatrix}$$
As we know, formula to find matrix inverse is:
$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha \end{vmatrix}$$
12. Let $A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \\ \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$ verify that $(AB)^{-1} = B^{-1} A^{-1}$.
Solution:

$$A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 3 & 7 \\ 2 & 5 \end{vmatrix} = 1 \neq 0$$
$$A^{-1} = \frac{1}{|A|} \text{ adj. } A$$
$$A^{-1} = \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$

Again,

$$B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$$
$$|B| = \begin{vmatrix} 6 & 8 \\ 7 & 9 \end{vmatrix} = -2 \neq 0$$
$$B^{-1} = \frac{1}{-2} \begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix}$$

Now Multiply A and B,

$$\mathsf{AB} = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix} = \begin{bmatrix} 67 & 87 \\ 47 & 61 \end{bmatrix}$$

Find determinant of AB:

$$|AB| = \begin{vmatrix} 67 & 87 \\ 47 & 61 \end{vmatrix} = 4087 - 4089 = -2 \neq 0$$

Now, Verify $(AB)^{-1} = B^{-1} A^{-1}$

LHS: $|AB| = \begin{vmatrix} 67 & 87 \\ 47 & 61 \end{vmatrix} = 4087 - 4089 = -2 \neq 0$ and $(AB)^{-1} = \frac{1}{-2} \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix}$ RHS:

$$B^{-1}A^{-1} = \frac{1}{-2} \begin{bmatrix} 9 & -8 \\ -7 & 6 \end{bmatrix} \begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix}$$
$$= \frac{1}{-2} \begin{bmatrix} 61 & -87 \\ -47 & 67 \end{bmatrix}$$

This implies, LHS = RHS (Verified)

13. If A =
$$\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, show that A² – 5A + 7I = O. Hence find A⁻

Solution:

 $A^2 = AA$

$$A^{2} = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$

 $LHS = A^2 - 5A + 7I$

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} - 5 \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 8 - 15 + 7 & 5 - 5 + 0 \\ -5 + 5 + 0 & 3 - 10 + 7 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$$
$$= \text{RHS. (Proved)}$$

To Find A⁻¹

Multiply $A^2 - 5A + 7I$ by A^{-1} , we have (Consider I is 2x2 matrix)

$$A^{2}A^{-1} - 5A \cdot A^{-1} + 7I A^{-1} = 0 \cdot A^{-1}$$

$$A - 5I + 7A^{-1} = 0$$

$$7A^{-1} = -A + 5I$$

$$= \begin{bmatrix} -3 & -1 \\ 1 & -2 \end{bmatrix} + \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

14. For the matrix A = $\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, find the numbers a and b such that A² + aA + bI = O.

Solution:

 $A^{2} = AA = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 8 \\ 4 & 3 \end{bmatrix}$

```
Since A^2 + aA + bI = O
```

$\begin{bmatrix} 11\\ 4 \end{bmatrix}$	8]+	$a \begin{bmatrix} 3 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2 \\ 1 \end{bmatrix} +$	$b\begin{bmatrix}1\\0\end{bmatrix}$	0	= 0		
L	_	L_	_	$+\begin{bmatrix}b\\0\end{bmatrix}$	_	=	0	0
[11-	_	ь : 5	8+2a	+0]		0]		

Equate corresponding elements, we get

 $11 + 3a + b = 0 \dots (1)$ $8 + 2a = 0 \Rightarrow a = -4$

Substitute the value of a in equation (1),

11 + 3(-4) + b = 011 - 12 + b = 0 b= 1.

15. For the matrix A = $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$. Show that A³- 6A² + 5A + 11 I = 0. Hence, find A⁻¹

Solution:

.

Solution:

$$A^{2} = AA = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1+1+1 & 1+2-1 & 1-3+3 \\ 1+2-6 & 1+4+3 & 1-6-9 \\ 2-1+6 & 2-2-3 & 2+3+9 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix}$$
$$A^{3} = A^{2} A = \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 4+2+2 & 4+4-1 & 4-6+3 \\ -3+8-28 & -3+16+14 & -3-24-42 \\ 7-3+28 & 7-6-14 & 7+9+42 \end{bmatrix}$$
$$= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix}$$

Now, LHS = $A^3 - 6A^2 + 5A + 11 I$

$$= \begin{bmatrix} 8 & 7 & 1 \\ -23 & 27 & -69 \\ 32 & -13 & 58 \end{bmatrix} - \begin{bmatrix} 24 & 12 & 6 \\ -18 & 48 & -84 \\ 42 & -18 & 84 \end{bmatrix} + \begin{bmatrix} 5 & 5 & 5 \\ 5 & 10 & -15 \\ 10 & -5 & 15 \end{bmatrix} + \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix}$$

$$= \begin{bmatrix} 8 - 24 + 5 + 11 & 7 - 12 + 5 & 1 - 6 + 5 \\ -23 + 18 + 5 & 27 - 48 + 10 + 11 & -69 + 84 - 15 \\ 32 - 42 + 10 & -13 + 18 - 5 & 58 - 84 + 15 + 11 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= 0$$
RHS (Proved)
Now, find A⁻¹
Multiply A³ - 6A² + 5A + 11 | by A⁻¹, we have
(Consider I is 3x3 matrix)
A³A⁻¹ - 6A²A⁻¹ + 5AA⁻¹ + 11I A⁻¹ = 0A⁻¹
A² - 6A + 51 + 11A⁻¹ = 0
11A⁻¹ = 6 \begin{bmatrix} 1 & 1 & 1 \\ 12 & -3 \\ 2 - 1 & 3 \end{bmatrix} - 5 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14 \end{bmatrix}
$$= \begin{bmatrix} 6 -5 -4 & 6 -2 & 6 -1 \\ 6 + 3 & 12 - 5 - 8 & -18 + 14 \\ 12 - 7 & -6 + 3 & 18 - 5 - 14 \end{bmatrix}$$

Therefore,

$$\mathbf{A}^{-1} = \frac{1}{11} \begin{bmatrix} -3 & 4 & 5\\ 9 & -1 & -4\\ 5 & -3 & -1 \end{bmatrix}$$

16. If A =
$$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
. Verify that A³ – 6A² + 9A – 4I = O and hence find A

Solution:

 $A^2 = AA$

```
\begin{bmatrix} 4+1+1 & -2-2-1 & 1+1+2 \\ -2-2-1 & 1+4+1 & -1-2-2 \\ 2+1+2 & -1-2-2 & 1+1+4 \end{bmatrix}
```

```
= \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix}
```

Again, $A^3 = A^2 A$

 $\begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ $= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix}$

Now, A³ - 6A² + 9A - 4I

$$= \begin{bmatrix} 22 & -21 & 21 \\ -21 & 22 & -21 \\ 21 & -21 & 22 \end{bmatrix} - 6 \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} + 9 \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} - 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 22 - 36 & -21 + 30 & 21 - 30 \\ -21 + 30 & 22 - 36 & -21 + 30 \\ 21 - 30 & -21 + 30 & 22 - 36 \end{bmatrix} + \begin{bmatrix} 18 - 4 & -9 - 0 & 9 - 0 \\ -9 - 0 & 18 - 4 & -9 - 0 \\ 9 - 0 & -9 - 0 & 18 - 4 \end{bmatrix}$$
$$= \begin{bmatrix} -14 + 14 & 9 - 9 & -9 + 9 \\ 9 - 9 & -14 + 14 & 9 - 9 \\ -9 + 9 & 9 - 9 & -14 + 14 \end{bmatrix}$$

Multiply $A^3 - 6A^2 + 9A - 4I = O$ by A^{-1} , (here I is 3x3 matrix) $A^3A^{-1} - 6A^2A^{-1} + 9AA^{-1} - 4IA^{-1} = 0A^{-1}$

 $A^2 - 6A + 9I - 4A^{-1} = 0$

 $4A^{-1} = A^2 - 6A + 9I$ Now Placing all the matrices,

$$4A^{-1} = \begin{bmatrix} 6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6 \end{bmatrix} - 6\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix} + 9\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$4A^{-1} = \begin{bmatrix} 6-12+9 & -5+6+0 & 5-6+0 \\ -5+6+0 & 6-12+9 & -5+6+0 \\ 5-6+0 & -5+6+0 & 6-12+9 \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$$

Inverse of the matrix is :

 $\mathbf{A}^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$

17. Let A be a non-singular matrix of order 3 x 3. Then |adj. A| is equal to: (A) |A| (B) $|A|^2$ (C) $|A|^3$ (D) 3|A|Solution:

Option (B) is correct. Explanation: $|adj. A| = |A|^{n-1} = |A|^2$ (for n = 3)

18. If A is an invertible matrix of order 2, then det (A⁻¹) is equal to:

(A) det A (B) 1/ det A (C) 1 (D) 0 Solution: Option (B) is correct. Explanation: $A A^{-1} = I det$ $(A A^{-1} = I)$ $det(A) det(A^{-1}) = 1$ $det(A^{-1}) = 1/det A$ Exercise 4.6 Page No: 136

Examine the consistency of the system of equations in Exercises 1 to 6.

1. x +2y = 2: and 2x + 3y = 3

Solution: Given set of equations is : x + 2y = 2: and 2x + 3y = 3

This set of equation can be written in the form of matrix as AX = B, where

$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \text{ and}$ $X = \begin{bmatrix} x \\ y \end{bmatrix}$

So, AX = B is $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$

EDUGROSS

WISDOMISING KNOWLEDGE

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1 \neq 0$$

Inverse of matrix exists. So system of equations is consistent.

2. 2x - y = 5 and x + y = 4

Solution:

Given set of equations is : 2x - y = 5 and x + y = 4

This set of equation can be written in the form of matrix as AX = B, where

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

So, AX = B is

$$\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$
$$|\mathbf{A}| = \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = 3 \neq 0$$

Inverse of matrix exists. So system of equations is consistent.

3. x + 3y and 2x + 6y = 8

Solution:

Given set of equations is : x + 3y and 2x + 6y = 8

This set of equation can be written in the form of matrix as AX = B.

a service of

$$\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$$

Where,

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 1 & 3 \\ 2 & 6 \end{vmatrix} = 0$$
$$adj. A = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$$

And

$$(adj. A)B = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \end{bmatrix} \neq 0$$

The given equations are inconsistent.

4. x + y + z =1; 2x + 3y + 2z = 2 and ax + ay + 2az = 4

Solution:

Given set of equations is : x + y + z = 1; 2x + 3y + 2z = 2 and ax + ay + 2az = 4

This set of equation can be written in the form of matrix as AX = B

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2a \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2a \end{bmatrix}$$
$$|A| = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2a \end{bmatrix} = 1(6a-2a)-1(4a-2a)+1(2a-3a)$$
$$= 4a-2a-a = a \neq 0$$

System of equations is consistent.

5. 3x - y - 2z = 2; 2y - z = -1 and 3x - 5y = 3

Solution:

Given set of equations is : 3x - y - 2z = 2; 2y - z = -1 and 3x - 5y = 3

This set of equation can be written in the form of matrix as AX = B

[3 −1 -	-2][x] [2]				
0 2 -	-1 y	=	-1				
$\begin{bmatrix} 3 & -1 & -1 \\ 0 & 2 & -1 \\ 3 & -5 \end{bmatrix}$	0] [z		3				
$A = \begin{bmatrix} 3 & -1 \\ 0 \\ 3 & -1 \end{bmatrix}$	-1 - 2 - -5 ($\begin{bmatrix} 2\\1\\0 \end{bmatrix}$					
$ \mathbf{A} = \begin{vmatrix} 3 & - \\ 0 \\ 3 & - \end{vmatrix}$	-1 - 2 - -5 0	2 1)					
= 3(-5) +(3	3) -2(-	6)					
= 15 – 15							
= 0						C	
Now,							
(adj. A) =	[- 5 :	10	5]				
(adj. A) =	-3	6	3				
	L-6	12	6]				
(adj. A)B	[−5	10	5]	[2]		-5	
(adj. A)B	= -3	6	3	-1	=	-3	≠0
	L6	12	6	[3]	8	6_	

6. Given set of equations is : 5x - y + 4z = 5 2x + 3y + 5z = 2 5x - 2y + 6z = -1

Solution:

Given set of equations is: 5x - y + 4z = 5; 2x + 3y + 5z = 2; 5x - 2y + 6z = -1

This set of equation can be written in the form of matrix as AX = B

 $\begin{bmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$ $A = \begin{bmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{bmatrix}$ $|A| = \begin{bmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{bmatrix}$ = 5(18 + 10) + 1(12 - 25) + 4(-4 - 15)= 140 - 13 - 76= 140 - 89= 51 $\neq 0$ System of equations is consistent.

Solve system of linear equations, using matrix method, in Exercises 7 to 14.

7. 5x + 2y = 4 and 7x + 3y = 5 Solution:

Given set of equations is : 5x + 2y = 4 and 7x + 3y = 5

This set of equation can be written in the form of matrix as AX = B

$$\begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

Where,

$$\mathsf{A} = \begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}$$

And $|A| = 1 \neq 0$ System is consistent. Now,

$$X = A^{-1}B = \frac{1}{|A|} (adj. A)B$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{1} \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
$$\begin{bmatrix} 12 - 10 \\ -28 + 25 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

= x = 2 and y = -3

8. 2x - y = -2 and 3x + 4y = 3

Solution:

Given set of equations is : 2x - y = -2 and 3x + 4y = 3This set of equation can be written in the form of matrix as AX = B

$$\begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$

 $|\mathsf{A}| = 11 \neq 0$

System is consistent. So,

 $X = A^{-1}B = \frac{1}{|A|} (adj. A)B$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 4 & 1 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -8+3 \\ 6+6 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -5 \\ 12 \end{bmatrix}$$

Therefore, x = -5/11 and y = 12/11

9. 4x - 3y = 3 and 3x - 5y = 7

Solution:

Given set of equations is : 4x - 3y = 3 and 3x - 5y = 7This set of equation can be written in the form of matrix as AX = B

 $\begin{bmatrix} 4 & -3 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$

Where,

 $A = \begin{bmatrix} 4 & -3 \\ 3 & -5 \end{bmatrix}$

And $|A| = -20 + 9 = -11 \neq 0$ System is consistent.

So,

Therefore, x = 6/-11 and y = 19/-11

10. 5x + 2y = 3 and 3x + 2y = 5

Solution:

Given set of equations is : 5x + 2y = 3 and 3x + 2y = 5

This set of equation can be written in the form of matrix as AX = B

$$\begin{bmatrix} 5 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

Where

EDUGROSS

WISDOMISING KNOWLEDGE

$$A = \begin{bmatrix} 5 & 2 \\ 3 & 2 \end{bmatrix}$$

And $|A| = 4 \neq 0$

System is consistent. So,

$$X = A^{-1}B = \frac{1}{|A|} (adj. A)B$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 & -2 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

Therefore, x = -1 and y = 4.

11. 2x + y + z = 1 and x - 2y - z = 3/2 and 3y - 5z = 9

Solution:

Given set of equations is : 2x + y + z = 1 and x - 2y - z = 3/2 and 3y - 5z = 9

This set of equation can be written in the form of matrix as AX = B

 $\begin{bmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{3}{2} \\ 9 \end{bmatrix}$

Where

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5 \end{bmatrix}$$

And

$$|\mathbf{A}| = \begin{vmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5 \end{vmatrix}$$
$$= 34 \neq 0$$

System is consistent. So,

$$X = A^{-1}B = \frac{1}{|A|}(adj. A)B$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{34} \begin{bmatrix} 13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ -2 \\ -2 \\ -2 \end{bmatrix}$$

 $= \frac{1}{34} \begin{bmatrix} 13+12+9\\5-15+27\\3-9-45 \end{bmatrix} = \frac{1}{34} \begin{bmatrix} 34\\17\\-51 \end{bmatrix}$

Therefore, x = 1, $y = \frac{1}{2}$ and $z = \frac{3}{2}$ 12. x - y + z = 4 and 2x + y - 3z = 0 and x + y + z = 2

3 2 9

Solution:

Given set of equations is : x - y + z = 4 and 2x + y - 3z = 0 and x + y + z = 2This set of equation can be written in the form of matrix as AX = B $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$

Where,

 $\mathsf{A} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$

And

WISDOMISING KNOWLEDGE

$$|\mathbf{A}| = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{vmatrix}$$

= 10 ≠ 0System is consistent.So,

$$X = A^{-1}B = \frac{1}{|A|} (adj. A)B$$

 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$

$$= \frac{1}{10} \begin{bmatrix} 16+0+4\\-20+0+10\\4-0+6 \end{bmatrix} = \begin{bmatrix} 2\\-1\\1 \end{bmatrix}$$

Therefore, x = 2, y = -1 and z = 1

13. 2x + 3y + 3z = 5 x - 2y + z = -4 3x - y y - 2z = 3Solution:

Given set of equations is : 2x + 3y + 3z = 5 x - 2y+ z = -43x - y - 2z = 3

This set of equation can be written in the form of matrix as AX = B

 $\begin{bmatrix} 2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix}$

Where

 $A = \begin{bmatrix} 2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2 \end{bmatrix}$

And,

$$|\mathbf{A}| = \begin{vmatrix} 2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2 \end{vmatrix}$$
$$= 40 \neq 0$$

$$X = A^{-1}B = \frac{1}{|A|}(adj. A)B$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{40} \begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix}$$

$$= \frac{1}{40} \begin{bmatrix} 25 - 12 + 27\\ 25 + 52 + 3\\ 25 - 44 - 21 \end{bmatrix} = \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$$

Therefore, x = 1, y = 2 and z = -1.

14. x – y + 2z = 7 3x

+4y - 5z = -52x - y + 3z = 12

Solution:

Given set of equations is : x - y + 2z = 7 3x + 4y - 5z = -52x - y + 3z = 12

This set of equation can be written in the form of matrix as AX = B

1	-1	2	$\begin{bmatrix} x \end{bmatrix}$	1 1	7
3	4	-5	y	=	-5
2	-1	3	z		12

Where,

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix}$$

And

 $|\mathbf{A}| = \begin{vmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{vmatrix}$

System is consistent. So,

$$X = A^{-1}B = \frac{1}{|A|} (adj. A)B$$

 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix} \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$ $= \frac{1}{4} \begin{bmatrix} 49 - 5 - 36 \\ -133 + 5 + 132 \\ -77 + 5 + 84 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$

Therefore, x = 2, y = 1 and z = 3.

$$\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$$
, find A⁻¹. Using A⁻¹ solve the system of equations.
2x - 3y + 5z = 11 3x
+ 2y - 4z = -5
x + y - 2z = -3

Solution:

	2	-3	5]
A =	3	2	-4
	1	1	-2
	2	-3	5
A =	3	2	-4
	1	1	-2

= $-1 \neq 0$; Inverse of matrix exists.

Find the inverse of matrix: Cofactors

of matrix:

 $A_{11} = 0, A_{12} = 2, A_{13} = 1$ $A_{21} = -1, A_{22} = -9, A_{23} = -5$ $A_{31} = 2, A_{32} = 23, A_{33} = 13$

adj. A =
$$\begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix}$$

So,

$$\mathbf{A}^{-1} = \frac{1}{-1} \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix}$$

Now, matrix of equation can be written as:

AX = B

[2	-3	5]	[x]	1	[11]	
3	2	-4	y	=	-5	
1	1	-2]	z		_3	

And, $X = A^{-1} B$

$\begin{bmatrix} x \end{bmatrix}$		0	1	-2 7	[11]		
y	=	-2	9	- 23	-5		
z		-1	5	-23 -13	_3		
x		0	1	-2]	[11]		٢1
y	=	-2	9	- 23 -13	-5	=	2
Z		-1	5	-13	-3		3

Therefore, x = 1, y = 2 and z = 3.

16. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs. 60. The cost of 2 kg onion, 4 kg wheat and 2 kg rice is Rs. 90. The cost of 6 kg onion, 2 k wheat and 3 kg rice is Rs. 70. Find cost of each item per kg by matrix method.

Solution:

Let x, y and z be the per kg. prices of onion, wheat and rice respectively. According to given statement, we have following equations, 4x + 3y + 2z = 602x + 4y + 6z = 906x + 2y + 3z = 70

The above system of equations can be written in the form of matrix as, AX = B

 $\begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}$

Where,

$$A = \begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{bmatrix}$$

And

 $|\mathbf{A}| = \begin{vmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{vmatrix}$ = 4(0) - 3(-30) + 2(-20)

= 50 ≠ 0

System is consistent, and $X = A^{-1} B$

First find invers of A. Cofactors of all the elements of A are:

 $A_{11} = 0, A_{12} = 30, A_{13} = -20$ $A_{21} = -5, A_{22} = 0, A_{23} = 10$ $A_{31} = 10, A_{32} = -20, A_{33} = 10$

$$adj. A = \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$$

Again,

$\begin{bmatrix} x \end{bmatrix}$		0	-5	10]	[60]
y :	$=\frac{1}{50}$	30	0	-20	90
z	50	-20	10	10	70

$$= \frac{1}{50} \begin{bmatrix} -450 + 700 \\ 1800 - 1400 \\ -1200 + 900 + 700 \end{bmatrix}$$

$$= \frac{1}{50} \begin{bmatrix} 250\\400\\400 \end{bmatrix} = \begin{bmatrix} 5\\8\\8 \end{bmatrix}$$

EDUGROSS

WISDOMISING KNOWLEDGE

Therefore, x = 5, y = 8 and z = 8.

The cost of onion, wheat and rice per kg are Rs. 5, Rs, 8 and Rs. 8 respectively.

Solution:

Start with LHS:

 $\begin{bmatrix} a & a^2 & bc \\ b & b^2 & ca \\ c & c^2 & ab \end{bmatrix}$

Multiplying R1 by a R2 by b and R3 by c, we have

a² a³ abcb² b³ abcc² c³ abc

Taking out common elements

	a^2	a³	1
abc	b^2	b^3	1
aoc	c ²	c ³	1

Interchanging C_1 and C_3

 $= \begin{vmatrix} a^2 & a^3 & 1 \\ b^2 & b^3 & 1 \\ c^2 & c^3 & 1 \end{vmatrix} = - \begin{vmatrix} 1 & a^3 & a^2 \\ 1 & b^3 & b^2 \\ 1 & c^3 & c^2 \end{vmatrix}$

Interchanging C2 and C3

	1	a ²	a ³		1	a^2	a³
=	1	b^2	b^3 c^3	=	1	a^2 b^2	b^3
	1	c^2	c ³		1	c^2	c³

=RHS (proved)

3. Evaluate

$\cos \alpha \cos \beta$	$\cos \alpha \sin \beta$	$-\sin \alpha$
$-\sin\beta$	$\cos eta$	0
$\sin lpha \cos eta$	$\sin lpha \sin eta$	cosα

Solution:

EDUGROSS

$$\begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$$

= $\cos \alpha \cos \beta (\cos \alpha \cos \beta - 0) - \cos \alpha \sin \beta (-\cos \alpha \sin \beta - 0) - \sin \alpha (-\sin \alpha \sin^2 \beta - \sin \alpha \cos^2 \beta)$
= $\cos^2 \alpha \cos^2 \beta + \cos^2 \alpha \sin^2 \beta + \sin^2 \alpha (\sin^2 \beta + \cos^2 \beta)$
= $\cos^2 \alpha (\cos^2 \beta + \sin^2 \beta) + \sin^2 \alpha (\sin^2 \beta + \cos^2 \beta)$
= $\cos^2 \alpha + \sin^2 \alpha = 1$

4. If a, b and c are real numbers, and

 $\Delta = \begin{vmatrix} b+c & c+a & a+b \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} = 0$

Show that either a + b + c = 0 or a = b = c

Solution:

 $b+c \quad c+a \quad a+b$ $c+a \quad a+b \quad b+c$ $a+b \quad b+c \quad c+a$

Applying: $R_1 \rightarrow R_1 + R_2 + R_3$

 $\begin{vmatrix} 2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$ $2(a+b+c) \begin{vmatrix} 1 & 1 & 1 \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix}$ Since $\Delta = 0$ This implies,

Either 2(a + b + c) = 0 or

EDUGROSS

WISDOMISING KNOWLEDGE

1 1 1 a+b b+c = 0b+cc + aa+bCase 1: If 2(a + b + c) = 0Then (a + b + c) = 0Case 2: 1 1 $\begin{vmatrix} 1 & 1 & 1 \\ c+a & a+b & b+c \\ a+b & b+c & c+a \end{vmatrix} = 0$ Applying: $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$ $\begin{vmatrix} 1 & 0 & 0 \\ c+a & a+b-c-a & b+c-c-a \\ a+b & b+c-a-b & c+a-a-b \end{vmatrix} = 0$ 1 $\begin{vmatrix} b-c & b-a \\ c-a & c-b \end{vmatrix} = 0$ =>(b-c)(c-b) - (b-a)(c-a) = 0 $-bc - b^{2} - c^{2} + bc - bc + ab + ac - a^{2} = 0$ $= -a^2 - b^2 - c^2 + ab + bc + ca = 0$ $a^{2} + a^{2} + b^{2} + b^{2} + c^{2} + c^{2} - 2ab - 2bc - 2ca = 0$ $= (a^{2} + b^{2} - 2ab) + (b^{2} + c^{2} - 2bc) + (a^{2} + c^{2} - 2ca) = 0$ $=>(a-b)^{2} + (b-c)^{2} + (c-a)^{2} = 0$ Above expression only possible, if (a - b) = 0 and (b - c) = 0 and (c - a) = 0

That is a = b and b = c and c = aTherefore, we have result, either a+b+c = 0 or a=b=c.

5. Solve the equation

$$\Delta = \begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0, a \neq 0$$

Solution:

 $\begin{vmatrix} x+a & x & x \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$

Applying:
$$R_1 \rightarrow R_1 + R_2 + R_3$$

$$\begin{vmatrix} 3x+a & 3x+a & 3x+a \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$

$$(3x+a) \begin{vmatrix} 1 & 1 & 1 \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0$$

Case 1: Either 3x + a = 0

then x = -a/3

Case 2: or

```
\begin{vmatrix} 1 & 1 & 1 \\ x & x+a & x \\ x & x & x+a \end{vmatrix} = 0
```

Applying:

 $C_2 \rightarrow C_2 - C_1$ and $C_3 \rightarrow C_3 - C_1$

 $\begin{vmatrix} 1 & 0 & 0 \\ x & a & 0 \\ x & 0 & a \end{vmatrix} = 0$

 $a^2 = 0$

or a = 0

Not possible, as we are given $a \neq 0$.

So , x = -a/3 is only the solution.

$$\Delta = \begin{vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end{vmatrix} = 4a^2b^2c^2$$

Solution:

LHS:

$$\begin{vmatrix} a^2 & bc & ac+c^2 \\ a^2+ab & b^2 & ac \\ ab & b^2+bc & c^2 \end{vmatrix}$$

Taking a, b, and c from all the row1, row 2 and row 3 respectively.

$$= abc \begin{vmatrix} a & c & (a+c) \\ (a+b) & b & a \\ b & (b+c) & c \end{vmatrix}$$

$$R_{1} \rightarrow R_{1} - R_{2} - R_{3}$$

$$= abc \begin{vmatrix} a-a-b-b & c-b-b-c & a+c-a-c \\ a+b & b & a \\ b & b+c & c \end{vmatrix}$$

$$C_{2} \rightarrow C_{2} - C_{1}$$

$$= abc \begin{vmatrix} -2b & -2b & 0 \\ a+b & b & a \\ b & b+c & c \end{vmatrix} = abc \begin{vmatrix} -2b & -2b & 0 \\ a+b & b & a \\ b & b+c & c \end{vmatrix} = abc \begin{vmatrix} -2b & -2b & 0 \\ a+b & a \\ b & b+c & c \end{vmatrix}$$

$$= abc(-2b)(-ac-ac) = 4a^2b^2c^2$$

RHS (Proved)

EDUGROSS

WISDOMISING KNOWLEDGE

 $A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$ and B = find (AB)⁻¹.

Solution:

As we know, $(AB)^{-1} = B^{-1}A^{-1}...(1)$

First find inverse of matrix B.

 $|\mathbf{B}| = \begin{vmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{vmatrix}$ $= \frac{1(3-0)-2(-1-0)+(-2)(2-0)}{1 \neq 0} = 1 \neq 0$ (Inverse of B is possible) Find cofactors of B: $B_{11} = 3, B_{12} = 1, B_{13} = 2$ $B_{21} = 2, B_{22} = 1, B_{23} = 2$ and $B_{31} = 6, B_{32} = 2, B_{33} = 5$ So adj. of B is 3 2 6 1 2 1 2 5 2 Now, $(adj. B) = \frac{1}{1} \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$ $B^{-1} =$ From equation (1),

=

$$(AB)^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix} \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 3 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix},$$

(adj. A)⁻¹ = adj. (A⁻¹) , verify
(i)
(i) (A⁻¹)⁻¹ = A

Solution:

 $\begin{array}{ccc}
 -2 & 1 \\
 3 & 1 \\
 1 & 5
 \end{array}$ -2 1 |A| = -21

= $-13 \neq 0$ (Inverse of A exists)

Cofactors of A are: $A_{11} = 14, A_{12} = 11, A_{13} = -5$ $A_{21} = 11, A_{22} = 4, A_{23} = -3$ $A_{31} = -5, A_{32} = -3, A_{33} = -1$

So, adjoint of A is

[14 -5] 11 3 11 -5 -3 1

Again,

 $|\mathbf{B}| = \begin{vmatrix} 14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1 \end{vmatrix}$

= 169 \neq 0 (Inverse of A exists)

Cofactors of B are:

$$\begin{split} B_{11} &= -13, B_{12} = 26, B_{13} = -13 \\ B_{21} &= 26, B_{22} = -39, B_{23} = -13 \\ B_{31} &= -13, B_{32} = -13, B_{33} = -65 \end{split}$$

Therefore, Inverse of B is

1	1	-2	1]
$\frac{-1}{13}$	-2	3	1
	1	1	5

Find: adj A⁻¹

 $|A^{-1}| = -1/13 \neq 0$ (After solving the determinant we get the value. Try at your own) Inverse of A^{-1} exists.

Let say cofactors of A $^{\text{-1}}\,$ are represented as C_{ij} , we have

EDUGROSS

WISDOMISING KNOWLEDGE

$$C_{11} = \frac{-1}{13}, C_{12} = \frac{2}{13}, C_{13} = \frac{-1}{13}$$

 $C_{21} = \frac{2}{13}, C_{22} = \frac{-3}{13}, C_{23} = \frac{-1}{13}$ and

$$C_{31} = \frac{-1}{13}, C_{32} = \frac{-1}{13}, C_{33} = \frac{-5}{13}$$

Therefore:

$$(A^{-1})^{-1} = C^{-1} = \frac{1}{|C|} (adj. C)$$

Which implies,

$$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$$

= A

Which is again given matrix A.

 $(adj. A)^{-1} = adj. (A^{-1})$ (i) -2 3 1 1 2 1 $\frac{-1}{13}$ 1 -2 3 1 13 5 1 1 5 $\left(A^{-1}\right)^{-1} = A$ (ii) $\begin{bmatrix} 1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$ -2 1] 1 $\frac{-1}{13}$ 1 3 -2 5 1 1

9. Evaluate

-)-

Solution:

EDUGROSS

WISDOMISING KNOWLEDGE

Consider,

$$\Delta = \begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$

Operation: $\begin{bmatrix} R_1 \rightarrow R_1 + R_2 + R_3 \end{bmatrix}$

2(x+y)	2(x+y) $x+y$ x	2(x+y)
У	x+y	x
x + y	x	У

Taking 2(x + y) common from first row

$$2(x+y)\begin{vmatrix} 1 & 1 & 1 \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$$

Operation: $\begin{bmatrix} C_2 \rightarrow C_2 - C_1 \text{ and } C_3 \rightarrow C_3 \end{bmatrix}$
$$2(x+y)\begin{vmatrix} 1 & 0 & 0 \\ y & x+y-y & x+y \\ x+y & x-x-y & y-x-y \end{vmatrix}$$

$$2(x+y).1\begin{vmatrix} x & x-y \\ -y & -x \end{vmatrix}$$

$$2(x+y)\{-x^2+y(x-y)\}$$

$$-2(x+y)(x^2-xy+y^2)$$

=-2(x^3 + y^3)

-C₁]

 $\Delta = -2(x^3 + y^3)$

10. Evaluate

Solution:

Consider

 $\Delta = \begin{vmatrix} 1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y \end{vmatrix}$

Operation: $\begin{bmatrix} R_2 \rightarrow R_2 - R_1 \text{ and } R_3 \rightarrow R_3 - R_1 \end{bmatrix}$

 $\begin{vmatrix} 1 & x & y \\ 0 & x+y-x & 0 \\ 0 & 0 & x+y-y \end{vmatrix}$ $\begin{vmatrix} 1 & x & y \\ 0 & y & 0 \\ 0 & 0 & x \end{vmatrix}$

=xy

 $\Rightarrow \Delta = xy$

Using properties of determinants in Exercises 11 to 15, prove that:

11. $\begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ \beta & \beta^2 & \gamma + \alpha \\ \gamma & \gamma^2 & \alpha + \beta \end{vmatrix} = (\beta - \gamma)(\gamma - \alpha)(\alpha - \beta)(\alpha + \beta + \gamma)$

Solution:

LHS $\begin{vmatrix} \alpha & \alpha^2 & \beta + \gamma \\ \beta & \beta^2 & \gamma + \alpha \\ \gamma & \gamma^2 & \alpha + \beta \end{vmatrix}$

Operation: $\begin{bmatrix} C_3 \rightarrow C_3 + C_1 \end{bmatrix}$

 $\begin{array}{ccc} \alpha & \alpha^2 & \alpha + \beta + \gamma \\ \beta & \beta^2 & \alpha + \beta + \gamma \\ \gamma & \gamma^2 & \alpha + \beta + \gamma \end{array}$

$$(\alpha + \beta + \gamma) \begin{vmatrix} \alpha & \alpha^2 & 1 \\ \beta & \beta^2 & 1 \\ \gamma & \gamma^2 & 1 \end{vmatrix}$$

Operation: $\begin{bmatrix} R_2 \rightarrow R_2 - R_1 \text{ and } R_3 \rightarrow R_3 - R_1 \end{bmatrix}$

$$\begin{array}{c|c} \alpha & \alpha^2 & 1 \\ \beta - \alpha & \beta^2 - \alpha^2 & 0 \\ \gamma - \alpha & \gamma^2 - \alpha^2 & 0 \\ \end{array}$$

$$\begin{array}{c|c} (\alpha + \beta + \gamma) \begin{vmatrix} \beta - \alpha & (\beta - \alpha)(\beta + \alpha) \\ \gamma - \alpha & (\gamma - \alpha)(\gamma + \alpha) \end{vmatrix} \\ = \\ (\alpha + \beta + \gamma)(\beta - \alpha)(\gamma - \alpha) \begin{vmatrix} 1 & (\beta + \alpha) \\ 1 & (\gamma + \alpha) \end{vmatrix}$$

$$= (\alpha + \beta + \gamma)(\beta - \alpha)(\gamma - \alpha)(\gamma + \alpha - \beta - \alpha)$$

= $(\alpha + \beta + \gamma) [-(\alpha - \beta)](\gamma - \alpha) [-(\beta - \gamma)]$ $= (\alpha + \beta + \gamma) (\alpha - \beta) (\beta - \gamma) (\gamma - \alpha)$ = RHS

12.

$$\begin{vmatrix} x & x^2 & 1+px^3 \\ y & y^2 & 1+py^3 \\ z & z^2 & 1+pz^3 \end{vmatrix} = (1+pxyz)(x-y)(y-z)(z-x)$$

Solution:

LHS= $\begin{vmatrix} x & x^{2} & 1+px^{3} \\ y & y^{2} & 1+py^{3} \\ z & z^{2} & 1+pz^{3} \end{vmatrix}$ = $\begin{vmatrix} x & x^{2} & 1 \\ y & y^{2} & 1 \\ z & z^{2} & 1 \end{vmatrix} + \begin{vmatrix} x & x^{2} & px^{3} \\ y & y^{2} & py^{3} \\ z & z^{2} & pz^{3} \end{vmatrix}$

We have two determinants, say Δ_1 and Δ_2

 $= \Delta 1 + \Delta 2$

 $\Delta_1 = \begin{vmatrix} x & x^2 & 1 \\ y & y^2 & 1 \\ z & z^2 & 1 \end{vmatrix}$

Operation: $\begin{bmatrix} R_2 \rightarrow R_2 - R_1 \text{ and } R_3 \rightarrow R_3 - R_1 \end{bmatrix}$

=

 $\begin{vmatrix} x & x^2 & 1 \\ y - x & y^2 - x^2 & 0 \\ z - x & z^2 - x^2 & 1 \end{vmatrix}$

$$\begin{vmatrix} y - x & (y - x)(y + x) \\ z - x & (z - x)(z + x) \end{vmatrix}$$

=
$$(y - x)(z - x) \begin{vmatrix} 1 & y + x \\ 1 & z + x \end{vmatrix}$$

=
$$(y - x)(z - x)(z + x - y - x)$$

=
$$(x - y)(y - z)(z - x)$$

Again:

Therefore: $\Delta_1 + \Delta_2$

LHS

EDUGROSS

WISDOMISING KNOWLEDGE

$$(y-x)(z-x)(z-y) + pxyz(y-x)(z-x)(z-y)$$

(1+ pxyz)(y-x)(z-x)(z-y)

=

=

= RHS (Proved)

13. Prove that

 $\begin{vmatrix} 3a & -a+b & -a+c \\ -b+a & 3b & -b+c \\ -c+a & -c+b & 3c \end{vmatrix} = 3(a+b+c)(ab+bc+ca)$

Solution:

LHS

3a	-a+b	-a+c	
-b+a	-a+b 3b -c+b	-b+c	
-c+a	-c+b	3 <i>c</i>	
		$C_1 + C_2 + C_3$]

$$a+b+c -a+b -a+c$$

$$a+b+c 3b -b+c$$

$$a+b+c -c+b 3c$$

$$(a+b+c) \begin{vmatrix} 1 & -a+b & -a+c \\ 1 & 3b & -b+c \\ 1 & -c+b & 3c \end{vmatrix}$$

Operation: $[R_2 \rightarrow R_2 - R_1 \text{ and } R_3 \rightarrow R_3 - R_1]$

$$\begin{array}{c|c} (a+b+c).1 \\ \hline a-c & 2c+a \\ \hline a-c & 2c+a \\ \hline a-b \\ (a+b+c) \\ \hline (2b+a)(2c+a) - (a-b)(a-c) \\ \hline a-c \\ \hline$$

$$= (a+b+c) [4bc+2ab+a^2-a^2+ac+ab-bc]$$

$$\frac{3(a+b+c)(ab+bc+ac)}{2}$$

= RHS

Hence Proved.

14. Prove that

```
\begin{vmatrix} 1 & 1+p & 1+p+q \\ 2 & 3+2p & 4+3p+2q \\ 3 & 6+3p & 10+6p+3q \end{vmatrix} = 1
```

Solution:

LHS

		1+ p+q 4+3p+2 10+6p+	
			$2R_1$ and $R_3 \rightarrow R_3 - 3R_3$
1 0 0	1+ p 1 3	$ \begin{array}{c} 1+p+q\\2+p\\7+3p\end{array} $	
$1 \begin{vmatrix} 1 \\ 3 \end{vmatrix}$	2+) 7+3	$\begin{vmatrix} p \\ 3p \end{vmatrix} = -0 + 0$	30
= 7	+3 <i>p</i> -6-	-3 <i>p</i>	
= 1	R		
=R⊦	IS		

Hence Proved.

15. Prove that

```
\begin{vmatrix} \sin\alpha & \cos\alpha & \cos(\alpha+\delta) \\ \sin\beta & \cos\beta & \cos(\beta+\delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma+\delta) \end{vmatrix} = 0
Solution:
```

LHS

=

=

$\sin lpha$	cosα	$\cos(\alpha + \delta)$
$\sin \beta$	$\cos\beta$	$\cos\left(\beta+\delta\right)$
$\sin \gamma$	$\cos \gamma$	$\cos(\gamma + \delta)$

```
\begin{array}{ll} \sin \alpha & \cos \alpha & \cos \alpha \cos \delta - \sin \alpha \sin \delta \\ \sin \beta & \cos \beta & \cos \beta \cos \delta - \sin \beta \sin \delta \\ \sin \gamma & \cos \gamma & \cos \gamma \cos \delta - \sin \gamma \sin \delta \end{array}
```

```
Operation: \begin{bmatrix} C_3 \rightarrow C_3 + (\sin \delta) C_1 \end{bmatrix}
```

$\sin lpha$	cosα	$\cos \alpha \cos \delta - \sin \alpha \sin \delta + \sin \alpha \sin \delta$
		$\cos\beta\cos\delta - \sin\beta\sin\delta + \sin\beta\sin\delta$
$\sin \gamma$	$\cos \gamma$	$\cos\gamma\cos\delta-\sin\gamma\sin\delta+\sin\gamma\sin\delta$

$$= \frac{\sin \alpha \quad \cos \alpha \quad \cos \alpha \cos \delta}{\sin \beta \quad \cos \beta \quad \cos \beta \cos \delta}$$
$$= \frac{\sin \gamma \quad \cos \gamma \quad \cos \gamma \cos \delta}{\sin \gamma \quad \cos \alpha \quad \cos \alpha}$$
$$= \frac{\sin \alpha \quad \cos \alpha \quad \cos \alpha}{\sin \beta \quad \cos \beta \quad \cos \beta}$$
$$= \frac{\sin \gamma \quad \cos \gamma \quad \cos \gamma}{\sin \gamma \quad \cos \gamma \quad \cos \gamma}$$

Column 2 and column 3 are identical, as per determinant property, value is zero.

= 0

= RHS

16. Solve the system of equations

 $\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4; \qquad \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1; \qquad \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$

Solution:

Let

$$\frac{1}{x} = u, \frac{1}{y} = v, \quad \frac{1}{z} = w$$
We have

$$2u + 3v + 10w = 4;$$

$$4u - 6v + 5w = 1; \quad \text{and}$$

$$6u + 9v - 20w = 2$$

Below is the matrix from the given equations: AX = B

$$\begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$$

Let say

$$A = \begin{bmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{bmatrix}$$

Then,

|A| = 1200 ≠ 0

A⁻¹ exists.

Cofactors of A are: $A_{11} = 75, A_{12} = 110, A_{13} = 72 \\ A_{21} = 150, A_{22} = -100, A_{23} = 0 \\ A_{31} = 75, A_{32} = 30, A_{33} = -24 \\ and$

adj. A =
$$\begin{bmatrix} 75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24 \end{bmatrix}$$

Inverse of A is

WISDOMISING KNOWLEDGE

$$A^{-1} = \frac{adj.A}{|A|} = \frac{1}{1200} \begin{bmatrix} 75 & 150 & 75\\ 110 & -100 & 30\\ 72 & 0 & -24 \end{bmatrix}$$

Resubstitute the values, to get answer in the form of x, y and z.

Since AX = B $X = A^{-1} B$ u 75 110 72 v w 1 = 1200 300+150+150 и 1 440-100+60 ν 1200 288 + 0 - 48w = 600 1 400 1200 240 Which means: $u = \frac{1}{2}$, $v = \frac{1}{3}$ and $w = \frac{1}{5}$ This implies: x = 1/u = 2 y= 1/v = 3 z

= 1/w = 5 Answer!

Choose the correct answer in Exercise 17 to 19. x + 2ax+2c17. If a, b, c are in A.P., then the determinant is (A) 0 (B) 1 (D) 2x (C) x Solution: Option (A) is correct. Explanation: Since a, b, c are in A.P. So, b - a = c - bLet $\Delta = \begin{vmatrix} x+2 & x+3 & x+2a \\ x+3 & x+4 & x+2b \\ x+4 & x+5 & x+2c \end{vmatrix}$ Operation: $[R_2 \rightarrow R_2 - R_1 \text{ and } R_3 \rightarrow R_3 - R_2]$ $x + 2 \quad x + 3 \quad x + 2a$ $\frac{2(b-a)}{2(c-b)}$ 1 1 1 1 1 1

Row 2 and row 3 are identical, so value is zero.

= 0

Now: Cofactors of A are:

$$A_{11} = yz, A_{12} = 0, A_{13} = 0$$

$$A_{21} = 0, A_{22} = xz, A_{23} = 0$$

$$A_{31} = 0, A_{32} = 0, A_{33} = xy$$

and

Therefore:

Option (D) is correct.

Explanation:

 $\sin \theta$ 1 1] $\sin \theta$ $-\sin\theta$ 1 Let $A = \begin{bmatrix} -1 & -\sin\theta \end{bmatrix}$ 1

 $|A| = 2 + 2 \sin^2 \theta \neq 0$; (A⁻¹ exists)

Since : $-1 \le \sin \theta \le 1$ $0 \le \sin^2 \theta \le 1$

(The value of θ cannot be negative)

So, $0 \le 2 \sin^2 \theta \le 2$

Add 2 in all the expressions:

 $2 \le 2 + 2\sin^2\theta \le 4$

Which is equal to

 $2 \leq Det. A \leq 4$