Exercise 4.1

Evaluate the following determinants in Exercise 1 and 2.

1. $\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$

Solution:

$$
\left|\begin{array}{cc}
2 & 4 \\
-5 & -1
\end{array}\right|=2(-1)-4(-5)=18
$$

2.

(i) $\left|\cos \theta-\sin ^{\theta}\right|$
$\boldsymbol{\operatorname { s i n }} \theta \cos \theta$
(ii) $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$

Solution:

(i) $\left|\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|=\cos \theta \times \cos \theta-(-\sin \theta) \times \sin \theta=1$
(ii) $\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|=\left(\mathrm{x}^{\wedge} 2-\mathrm{x}+1\right)(\mathrm{x}+1)-(\mathrm{x}+1)(\mathrm{x}-1)=\mathrm{x}^{\wedge} 3-\mathrm{x}^{\wedge} 2+2$
3. If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$ then show that $|2 A|=4|A|$.

Solution:
$A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$
$2 A=\left[\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right]$
L.H.S. $=|2 A|=\left|\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right|=8-32=-24$
R.H.S. $=4|A|=4\left|\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right|=4(2-8)=-24$

LHS = RHS
4. If $\mathbf{A}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$: then show that $|\mathbf{3} \mathbf{A}|=\mathbf{2 7}|\mathbf{A}|$

Solution:

$$
3 A=\left[\begin{array}{lll}
3 & 0 & 3 \\
0 & 3 & 6 \\
0 & 0 & 12
\end{array}\right]
$$

LHS:

$$
|3 A|=\left|\begin{array}{lll}
3 & 0 & 3 \\
0 & 3 & 6 \\
0 & 0 & 12
\end{array}\right|
$$

$=3 \times 36=108$
RHS
$27|A|=27\left|\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right|$
$=27(4)=108$
LHS = RHS

5. Evaluate the determinants

(i) $\left|\begin{array}{rrr}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$
(ii) $\left|\begin{array}{rrr}3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1\end{array}\right|$
(iii) $\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$
(iv) $\left|\begin{array}{rrr}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$

Solution:

(i)
$\left|\begin{array}{rrr}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|=3\left|\begin{array}{ll}0 & -1 \\ -5 & 0\end{array}\right|-(-1)\left|\begin{array}{cc}0 & -1 \\ 3 & 0\end{array}\right|+(-2)\left|\begin{array}{cc}0 & 0 \\ 3 & -5\end{array}\right|$
$=-15+3-0=-12$
(ii)

$$
\begin{aligned}
& \left|\begin{array}{rrr}
3 & -4 & 5 \\
1 & 1 & -2 \\
2 & 3 & 1
\end{array}\right|=3\left|\begin{array}{cc}
1 & -2 \\
3 & 1
\end{array}\right|-(-4)\left|\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right|+5\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right| \\
& =3(7)+4(5)+5(1) \\
& =46
\end{aligned}
$$

(iii)

$$
\left|\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & -3 \\
-2 & 3 & 0
\end{array}\right|=0\left|\begin{array}{cc}
0 & -3 \\
3 & 0
\end{array}\right|-1\left|\begin{array}{cc}
-1 & -3 \\
-2 & 0
\end{array}\right|+2\left|\begin{array}{ll}
-1 & 0 \\
-2 & 3
\end{array}\right|
$$

$$
=0-1(-6)+2(-3-0)
$$

$$
=0
$$

(iv)

$$
\left|\begin{array}{rrr}
2 & -1 & -2 \\
0 & 2 & -1 \\
3 & -5 & 0
\end{array}\right|=2\left|\begin{array}{rr}
2 & -1 \\
-5 & 0
\end{array}\right|-(-1)\left|\begin{array}{rr}
0 & -1 \\
3 & 0
\end{array}\right|+(-2)\left|\begin{array}{cc}
0 & 2 \\
3 & -5
\end{array}\right|
$$

$$
=2(-5)+(0+3)-2(0-6)
$$

$$
=5
$$

6. If $\mathbf{A}=\left[\begin{array}{ccc}1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9\end{array}\right]$ find $|\mathbf{A}|$.

Solution:

$$
\begin{aligned}
& |A|=\left|\begin{array}{lll}
1 & 1 & -2 \\
2 & 1 & -3 \\
5 & 4 & -9
\end{array}\right| \\
& =1\left|\begin{array}{ll}
1 & -3 \\
4 & -9
\end{array}\right|-1\left|\begin{array}{ll}
2 & -3 \\
5 & -9
\end{array}\right|+(-2)\left|\begin{array}{ll}
2 & 1 \\
5 & 4
\end{array}\right| \\
& =1(-9+12)-(-18+15)-2(8-5) \\
& =0
\end{aligned}
$$

7. Find values of \mathbf{x}, if
(i) $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
(ii) $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$

Solution:

(i)
$\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$
$2-20=2 x^{\wedge} 2-24$
$2 x^{\wedge} 2=6$
$x^{\wedge} 2=3$
or $x= \pm \sqrt{3}$
(ii)
$\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{cc}x & 3 \\ 2 x & 5\end{array}\right|$
$10-12=5 x-6 x x$
$=2$
8. If $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$ then \mathbf{X} is equal to
(A) 6
(B) ± 6
(C) -6
(D) 0

Solution:

Option (B) is correct.
Explanation:
$\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$
$x^{\wedge} 2-36=36-32$
$x^{\wedge} 2=36$
$x= \pm 6$

Exercise 4.2

Using the property of determinants and without expanding in Exercises 1 to 7, prove that:

1. $\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$

Solution:

L.H.S.
$\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|$
Applying: $\mathrm{C}_{1}+\mathrm{C}_{2}$
$\left|\begin{array}{lll}x+a & a & x+a \\ y+b & b & y+b \\ z+c & c & z+c\end{array}\right|$

Elements of Column 1 and Column 2 are same. So determinant value is zero as per determinant properties.
$=0$
$=$ RHS

Proved.
2. $\left|\begin{array}{lll}a-b & b-c & a-a \\ b-c & c-a & a-b \\ c-a & a-b & b-c\end{array}\right|=0$

Solution:

$$
\left|\begin{array}{lll}
a-b & b-c & a-a \\
b-c & c-a & a-b \\
c-a & a-b & b-c
\end{array}\right|
$$

$$
\begin{aligned}
& \text { Applying: } \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \\
& =\left|\begin{array}{lll}
0 & b-c & a-a \\
0 & c-a & a-b \\
0 & a-b & b-c
\end{array}\right| \\
& =0
\end{aligned}
$$

All entries of first column are zero. (As per determinant properties)
3. $\left|\begin{array}{ccc}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right|=0$

Solution:

$$
\left|\begin{array}{lll}
2 & 7 & 65 \\
3 & 8 & 75 \\
5 & 9 & 86
\end{array}\right|
$$

Applying: $\mathrm{C}_{3}->\mathrm{C}_{3}-\mathrm{C}_{1}$

$$
\left|\begin{array}{lll}
2 & 7 & 65 \\
3 & 8 & 72 \\
5 & 9 & 81
\end{array}\right|=9\left|\begin{array}{lll}
2 & 7 & 7 \\
3 & 8 & 8 \\
5 & 9 & 9
\end{array}\right|
$$

Elements of 2 columns are same, so determinant is zero.
$=0$
Proved.
4.
$\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=0$

Solution:

$$
\left|\begin{array}{lll}
1 & b c & a(b+c) \\
1 & c a & b(c+a) \\
1 & a b & c(a+b)
\end{array}\right|
$$

Applying: $\mathrm{C}_{3}->\mathrm{C}_{3}+\mathrm{C}_{2}$
$\left|\begin{array}{lll}1 & b c & a b+a b+a c \\ 1 & c a & a b+a b+a c \\ 1 & a b & a b+a b+a c\end{array}\right|$
$(a b+a b+a c)$ is a common element in $3^{\text {rd }}$ row.

$$
=(a b+a b+a c)\left|\begin{array}{lll}
1 & b c & 1 \\
1 & c a & 1 \\
1 & a b & 1
\end{array}\right|
$$

Two columns are identical, so determinant is zero.

$$
=0
$$

5. Prove that

$$
\left|\begin{array}{lll}
(b+c) & q+r & y+z \\
(c+a) & r+p & z+x \\
(a+b) & p+q & x+y
\end{array}\right|=2\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|
$$

Solution:

LHS:
Applying: $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$

$$
\left|\begin{array}{ccc}
b+c+c+a+a+b & q+r+r+p+p+q & y+z+z+x+x+y \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|
$$

$$
=2\left|\begin{array}{ccc}
(a+b+c) & (p+q+r) & (x+y+z) \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|
$$

Applying:

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}
$$

$$
\text { and } R_{3} \rightarrow R_{3}-R_{1}
$$

$$
2\left|\begin{array}{ccc}
b & q & y \\
c+a & r+p & z+x \\
a & p & x
\end{array}\right|
$$

Again, $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3}$

$$
2\left|\begin{array}{lll}
b & q & y \\
c & r & z \\
a & p & x
\end{array}\right|
$$

Interchanging rows, we have
$2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right|$
$=$ RHS

Proved.

6. Prove that

$$
\left|\begin{array}{ccc}
0 & a & -b \\
-a & 0 & -c \\
b & c & 0
\end{array}\right|=0
$$

Solution:

Let $\Delta \quad\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=$

Taking (-1) common from all the 3 rows. Again, interchanging rows and columns, we have

$$
\begin{gathered}
\Delta=-\left|\begin{array}{llr}
0 & a & -b \\
-a & 0 & -c \\
b & c & 0
\end{array}\right| \\
\Delta=-\Delta
\end{gathered}
$$

Which shows that, $2 \Delta=0$ or $\Delta=0$. Proved.

7. Prove that

$$
\left|\begin{array}{ccc}
-a^{2} & a b & a c \\
b a & -b^{2} & b c \\
c a & c b & -c^{2}
\end{array}\right|=4 a^{2} b^{2} c^{2}
$$

Solution: LHS:

$$
\left|\begin{array}{ccc}
-a^{2} & a b & a c \\
b a & -b^{2} & b c \\
c a & c b & -c^{2}
\end{array}\right|
$$

Taking a, b, c from row 1 , row and row 3 respectively,

$$
\begin{aligned}
& =a b c\left|\begin{array}{ccc}
-a & a & a \\
a & -b & b \\
a & b & -c
\end{array}\right| \\
& \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}
\end{aligned}
$$

$$
=a b c\left|\begin{array}{ccc}
0 & 0 & 2 c \\
a & -b & c \\
a & b & -c
\end{array}\right|
$$

$$
=\operatorname{abc}(2 \mathrm{c})\left|\begin{array}{rr}
a & -b \\
a & b
\end{array}\right|
$$

$$
=2 a b c^{\wedge} 2(a b+a b)
$$

$$
=4 a^{2} b^{2} c^{2}
$$

$=$ RHS
Proved.

By using properties of determinants, in Exercises 8 to 14, show that: 8.
(i) $\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$
(ii) $\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3}\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)$

Solution:

(i)LHS:
$\left|\begin{array}{lll}1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2}\end{array}\right|$

$$
\begin{aligned}
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \text { and } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1} \\
& =\left|\begin{array}{ccc}
1 & a & a^{2} \\
0 & b-a & b^{2}-a^{2} \\
1 & c-a & c^{2}-a^{2}
\end{array}\right|
\end{aligned}
$$

Expanding $1^{\text {st }}$ column,
$=1\left|\begin{array}{ll}b-a & b^{2}-a^{2} \\ c-a & c^{2}-a^{2}\end{array}\right|$
Taking (b-a) common from first row,
$=(b-a)(c-a)\left|\begin{array}{ll}1 & b+a \\ 1 & c+a\end{array}\right|$

Simplifying above expression, we have
$=(b-c)(c-a)(c-b)$
$=(a-b)(b-c)(c-a)$
$=$ RHS
Proved.
(ii) LHS

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|: \\
& \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1} \text { and } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1} \\
& =\left|\begin{array}{ccc}
1 & 0 & 0 \\
a & b-a & c-a \\
a^{3} & b^{3}-a^{3} & c^{3}-a^{3}
\end{array}\right|
\end{aligned}
$$

Expanding first row

$$
\begin{aligned}
& =1\left|\begin{array}{cc}
b-a & c-a \\
(b-a)\left(b^{2}+a^{2}+a b\right) & (c-a)\left(c^{2}+a^{2}+a c\right)
\end{array}\right| \\
& =(b-a)(c-a)\left|\begin{array}{cc}
1 & 1 \\
\left(b^{2}+a^{2}+a b\right) & \left(c^{2}+a^{2}+a c\right)
\end{array}\right| \\
& =(b-a)(c-a)\left(c^{2}+a^{2}+a c-b^{2}-a^{2}-a b\right) \\
& =(b-a)(c-a)\left(c^{2}-b^{2}+a c-a b\right) \\
& =(b-a)(c-a)[(c-b)(c+b)+a(c-b)] \\
& =(b-a)(c-a)(c-b)(c+b+a) \\
& =(a-b)(b-c)(c-a)(a+b+c)
\end{aligned}
$$

=RHS

Proved
9. Prove that
$\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$

Solution: LHS

$$
\left|\begin{array}{lll}
x & x^{2} & y z \\
y & y^{2} & z x \\
z & z^{2} & x y
\end{array}\right|
$$

Mulitiplying $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$ by x, y, z respectively

$$
\begin{aligned}
& \left|\begin{array}{lll}
x^{2} & x^{3} & x y z \\
y^{2} & y^{3} & x y z \\
z^{2} & z^{3} & x y z
\end{array}\right| \\
& =\frac{x y z}{x y z}\left|\begin{array}{lll}
x^{2} & x^{3} & 1 \\
y^{2} & y^{3} & 1 \\
z^{2} & z^{3} & 1
\end{array}\right|=\left|\begin{array}{lll}
x^{2} & x^{3} & 1 \\
y^{2} & y^{3} & 1 \\
z^{2} & z^{3} & 1
\end{array}\right| \\
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1} \\
& =\left|\begin{array}{ccc}
x^{2} & x^{3} & 1 \\
y^{2}-x^{2} & y^{3}-x^{3} & 0 \\
z^{2}-x^{2} & z^{3}-x^{3} & 0
\end{array}\right| \\
& =1\left|\begin{array}{ll}
y^{2}-x^{2} & y^{3}-x^{3} \\
z^{2}-x^{2} & z^{3}-x^{3}
\end{array}\right| \\
& =\left|\begin{array}{ll}
(y-x)(y+x) & (y-x)\left(y^{2}+x^{2}+y x\right) \\
(z-x)(z+x) & (z-x)\left(z^{2}+x^{2}+z x\right)
\end{array}\right| \\
& =(y-x)(z-x)\left|\begin{array}{ll}
y+x & y^{2}+x^{2}+y x \\
z+x & z^{2}+x^{2}+z x
\end{array}\right| \\
& =(y-x)(z-x)\left[y z^{2}+y x^{2}+x y z+x z^{2}+x^{3}+x^{2} z-z y^{2}-z x^{2}-x y z-x y^{2}-x^{3}-x^{2} y\right] \\
& =(y-x)(z-x)\left[y z^{2}-z y^{2}+x z^{2}-x y^{2}\right] \\
& =(y-x)(z-x)\left[y z(z-y)+x\left(z^{2}-y^{2}\right)\right] \\
& =(y-x)(z-x)[y z(z-y)+x(z-y)(z+y)] \\
& =(y-x)(z-x)(z-y)[y z+x(z+y)] \\
& =(x-y)(y-z)(z-x)(x y+y z+z x)
\end{aligned}
$$

RHS(Proved)

10.

(i) $\left|\begin{array}{lrc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2}$
(ii) $\left|\begin{array}{ccc}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|=k^{2}(3 y+k)$

Solution:

(i) LHS

$$
\begin{aligned}
& \left|\begin{array}{lrr}
x+4 & 2 x & 2 x \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right| \\
& =\left|\begin{array}{ccc}
5 x+4 & 5 x+4 & 5 x+4 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right| \\
& =(5 x+4)\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right| \\
& \left.\mathrm{C}_{2} \rightarrow \mathrm{R}_{2}+\mathrm{R}_{3}\right]
\end{aligned}
$$

$$
=(5 x+4)\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 x & 4-x & 0 \\
2 x & 0 & 4-x
\end{array}\right|
$$

$$
=(5 x+4) \cdot 1\left|\begin{array}{cc}
4-x & 0 \\
0 & 4-x
\end{array}\right|
$$

$$
=(5 x+4)(4-x)^{2}
$$

$=$ RHS (Proved)
(ii) LHS

$$
\begin{aligned}
& \left|\begin{array}{lrc}
y+k & y & y \\
y & y+k & y \\
y & 2 x & y+k
\end{array}\right| \\
& =\left|\begin{array}{ccc}
3 y+k & y & y \\
3 y+k & y+k & y \\
3 y+k & y & y+k
\end{array}\right| \\
& =(3 y+k)\left|\begin{array}{ccc}
1 & y & y \\
1 & y+k & y \\
1 & y & y+k
\end{array}\right| \\
& \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{3}-\mathrm{C}_{1} \text { and } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1} \\
& =(3 y+k)\left|\begin{array}{ccc}
1 & y & y \\
0 & k & 0 \\
0 & 0 & k
\end{array}\right| \\
& =(3 y+k) \cdot 1\left|\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right| \\
& =k^{2}(3 y+k)
\end{aligned}
$$

RHS (Proved)

11. Prove that,

(i) $\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$
(ii) $\left|\begin{array}{ccc}x+y+2 z & x & y \\ z & y+z+2 x & y \\ z & x & z+x+2 y\end{array}\right|=2(x+y+z)^{3}$

Solution: LHS
$\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|$
$\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right| \\
& =(a+b+c)\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right| \\
& \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1} \text { and } \\
& \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}
\end{aligned}\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 b & -b-c-a & 0 \\
2 c & 0 & -c-a-b
\end{array}\right|, \begin{gathered}
0 \\
=(a+b+c)(1)\left|\begin{array}{cc}
-b-c-a & 0 \\
0 & -c-a-b
\end{array}\right| \\
=(a+b+c)[-(b+c+a)][-(c+a+b)] \\
=(a+b+c)^{3}
\end{gathered}
$$

(ii) LHS

$$
\begin{aligned}
& \left|\begin{array}{lcc}
x+y+2 z & x & y \\
z & y+z+2 x & y \\
z & x & z+x+2 y
\end{array}\right| \\
& \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \\
& =\left|\begin{array}{ccc}
2(x+y+z) & x & y \\
2(x+y+z) & y+z+2 x & y \\
2(x+y+z) & x & z+x+2 y
\end{array}\right|
\end{aligned}
$$

Taking $2(x+y+z)$ common from first column. Then apply operations:

$$
\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \text { and } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}
$$

$$
\begin{aligned}
& =2(x+y+z)\left|\begin{array}{ccc}
1 & x & y \\
0 & x+y+z & 0 \\
0 & 0 & x+y+z
\end{array}\right| \\
& =2(x+y+z)(1)\left|\begin{array}{cc}
x+y+z & 0 \\
0 & x+y+z
\end{array}\right| \\
& =2(x+y+z)\left[(x+y+z)^{2}-0\right] \\
& =2(\mathrm{x}+\mathrm{y}+\mathrm{z})^{\wedge} 3 \\
& =\text { RHS (Proved) }
\end{aligned}
$$

12. Prove that
$\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$
Solution:

LHS

$$
\left|\begin{array}{ccc}
1 & x & x^{2} \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|
$$

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}
$$

$$
=\left|\begin{array}{ccc}
1+x+x^{2} & 1+x+x^{2} & 1+x+x^{2} \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|
$$

$$
=\left(1+x+x^{2}\right)\left|\begin{array}{ccc}
1 & 1 & 1 \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|
$$

$$
\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1} \text { and } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}
$$

$$
=\left(1+x+x^{2}\right)\left|\begin{array}{ccc}
1 & 0 & 0 \\
x^{2} & 1-x^{2} & x-x^{2} \\
x & x^{2}-x & 1-x
\end{array}\right|
$$

$$
\begin{aligned}
& =\left(1+x+x^{2}\right)\left|\begin{array}{cc}
1-x^{2} & x-x^{2} \\
x^{2}-x & 1-x
\end{array}\right| \\
& =\left(1+x+x^{2}\right)\left|\begin{array}{cc}
(1-x)(1+x) & x(1-x) \\
-x(1-x) & 1-x
\end{array}\right| \\
& =\left(1+x+x^{2}\right)\left[(1-x)^{2}(1+x)+x^{2}(1-x)^{2}\right] \\
& =\left(1+x+x^{2}\right)^{2}(1-x)^{2} \\
& =\left(1-x+x-x^{2}+x^{2}-x^{3}\right)^{2} \\
& =\left(1-x^{3}\right)^{2}
\end{aligned}
$$

RHS

Proved.

13. Prove that

$$
\left|\begin{array}{ccc}
1+a^{2}-b^{2} & 2 a b & -2 b \\
2 a b & 1-a^{2}+b^{2} & 2 a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}
$$

Solution:

LHS

$\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|$

$$
\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-b \mathrm{C}_{3} \text { and } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+a \mathrm{C}_{3}
$$

$$
=\left|\begin{array}{ccc}
1+a^{2}+b^{2} & 0 & -2 b \\
0 & 1+a^{2}+b^{2} & 2 a \\
b\left(1+a^{2}+b^{2}\right) & -a\left(1+a^{2}+b^{2}\right) & 1-a^{2}-b^{2}
\end{array}\right|
$$

$$
=\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{ccc}
1 & 0 & -2 b \\
0 & 1 & 2 a \\
b & -a & 1-a^{2}-b^{2}
\end{array}\right|
$$

$$
\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-b \mathrm{R}_{1}
$$

$$
\begin{aligned}
& =\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{ccc}
1 & 0 & -2 b \\
0 & 1 & 2 a \\
0 & -a & 1-a^{2}+b^{2}
\end{array}\right| \\
& =\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{cc}
1 & 2 a \\
-a & 1-a^{2}+b^{2}
\end{array}\right| \\
& =\left(1+a^{2}+b^{2}\right)^{2}\left(1-a^{2}+b^{2}+2 a^{2}\right) \\
& =\left(1+a^{2}+b^{2}\right)^{3}
\end{aligned}
$$

RHS

Proved

14. Prove that

$$
\left|\begin{array}{ccc}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
c a & c b & c^{2}+1
\end{array}\right|=1+a^{2}+b^{2}+c^{2}
$$

Solution: LHS

$$
\left|\begin{array}{ccc}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
c a & c b & c^{2}+1
\end{array}\right|
$$

Multiply, $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ by $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively
Then divide the determinant by abc

$$
=\frac{1}{a b c}\left|\begin{array}{ccc}
a\left(a^{2}+1\right) & a b^{2} & a c^{2} \\
a^{2} b & b\left(b^{2}+1\right) & b c^{2} \\
a^{2} c & b^{2} c & c\left(c^{2}+1\right)
\end{array}\right|
$$

$$
\begin{aligned}
& =\frac{a b c}{a b c}\left|\begin{array}{ccc}
a^{2}+1 & b^{2} & c^{2} \\
a^{2} & b^{2}+1 & c^{2} \\
a^{2} & b^{2} & c^{2}+1
\end{array}\right| \\
& \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \\
& =\frac{a b c}{a b c}\left|\begin{array}{ccc}
1+a^{2}+b^{2}+c^{2} & b^{2} & c^{2} \\
1+a^{2}+b^{2}+c^{2} & b^{2}+1 & c^{2} \\
1+a^{2}+b^{2}+c^{2} & b^{2} & c^{2}+1
\end{array}\right| \\
& =\left(1+a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}
1 & b^{2} & c^{2} \\
1 & b^{2}+1 & c^{2} \\
1 & b^{2} & c^{2}+1
\end{array}\right| \\
& \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \text { and } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1} \\
& =\left(1+a^{2}+b^{2}+c^{2}\right)\left|\begin{array}{ccc}
1 & b^{2} & c^{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right| \\
& =\left(1+a^{2}+b^{2}+c^{2}\right)(1)(1-0) \\
& =1+a^{2}+b^{2}+c^{2}
\end{aligned}
$$

LHS
(Proved)
Choose the correct answer in Exercises 15 and 16
15. Let A be a square matrix of order 3×3, then $|k A|$ is equal to
(A) $k|A|$
(B) $k^{2}|A|$
(C) $k^{3}|A|$
(D) $3 k|A|$

Solution:

Option (C) is correct.
16. Which of the following is correct (A)

Determinant is a square matrix.
(B) Determinant is a number associated to a matrix.
(C) Determinant is a number associated to a square matrix.
(D) None of these

Solution:

Option (C) is correct.

Exercise 4.3

1. Find area of the triangle with vertices at the point given in each of the following:
(i) $(1,0),(6,0),(4,3)$
(ii) $(2,7),(1,1),(10,8)$
(iii) $(-2,-3),(3,2),(-1,-8)$ Solution:

Formula for Area of triangle:

$$
\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

(i)

$$
\begin{aligned}
& \frac{1}{2}\left|\begin{array}{lll}
1 & 0 & 1 \\
6 & 0 & 1 \\
4 & 3 & 1
\end{array}\right| \\
& =\frac{1}{2}[1(0-3)-0(6-4)+1(18-0)] \\
& =\frac{15}{2} \text { sq. units }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { Area }=\frac{1}{2}\left|\begin{array}{lll}
2 & 7 & 1 \\
1 & 1 & 1 \\
10 & 8 & 1
\end{array}\right| \\
& =\frac{1}{2}[2(1-8)-7(1-10)+1(8-10)] \\
& =\frac{47}{2} \text { sq. unit }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \text { Area }=\frac{1}{2}\left|\begin{array}{ccc}
-2 & -3 & 1 \\
3 & 2 & 1 \\
-1 & -8 & 1
\end{array}\right| \\
& =\frac{1}{2}[-2(10)+3(4)-22] \\
& =15 \text { sq. Units }
\end{aligned}
$$

2. Show that points: $A(a, b+c), B(b, c+a), C(c, a+b)$ are collinear.

Solution:

Points are collinear if area of triangle is equal to zero. i.e.
Area of triangle $=0$

$$
\begin{aligned}
& \text { Area of Triangle }=\frac{1}{2}\left|\begin{array}{lll}
a & b+c & 1 \\
b & c+a & 1 \\
c & a+b & 1
\end{array}\right| \\
& =\frac{1}{2}[a(c+a-a-b)-(b+c)(b-c)+1\{b(a+b)-c(c+a)\}] \\
& =\frac{1}{2}\left(a c-a b-b^{2}+c^{2}+a b+b^{2}-c^{2}-a c\right) \\
& =0
\end{aligned}
$$

Therefore, points are collinear.
3. Find values of k if area of triangle is $\mathbf{4}$ sq. units and vertices are
(i) $(k, 0),(4,0),(0,2)$
(ii) $(-2,0),(0,4),(0, k)$

Solution:

(i)

Area of triangle $= \pm 4$ (Given)
$\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=4$
$\frac{1}{2}[k(0-2)-0+1(8-0)]=4$
4. (i) Find equation of line joining $(1,2)$ and $(3,6)$ using determinants. (ii) Find equation of line joining $(3,1)$ and $(9,3)$ using determinants.

Solution:

Let $A(x, y)$ be any vertex of a triangle.
All points are on one line if area of triangle is zero.

$$
\begin{aligned}
& \frac{1}{2}\left|\begin{array}{lll}
1 & 2 & 1 \\
3 & 6 & 1 \\
x & y & 1
\end{array}\right|=0 \\
& \frac{1}{2}[x(2-6)-y(1-3)+1(6-6)]=0
\end{aligned}
$$

$$
-4 x+2 y=0
$$

$$
y=2 x
$$

$$
\begin{aligned}
& 1 / 2(-2 k+4)=4 \\
& -k+4=4 \\
& \text { Now: }-k+4= \pm 4-k+4= \\
& 4 \text { and }-k+4=-4 k=0 \\
& \text { and } k=8 \\
& \text { (ii) } \\
& \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=4 \\
& \frac{1}{2}\left|\begin{array}{lll}
-2 & 0 & 1 \\
0 & 4 & 1 \\
0 & k & 1
\end{array}\right|=4 \\
& 1 / 2(-8+2 k)=4 \\
& \text { or }-\mathrm{k}+4=4 \text { Now: }-\mathrm{k}+4= \\
& \pm 4-k+4=4 \text { and }-k+4 \\
& =-4 \mathrm{k}=0 \text { and } \mathrm{k}=8
\end{aligned}
$$

Which is equation of line.
(ii) Let $A(x, y)$ be any vertex of a triangle.

All points are on one line if area of triangle is zero.

$$
\begin{aligned}
& \frac{1}{2}\left|\begin{array}{lll}
x & y & 1 \\
3 & 1 & 1 \\
9 & 3 & 1
\end{array}\right|=0 \\
& \frac{1}{2}[x(1-3)-y(3-9)+1(9-9)]=0 \\
& -2 x+6 y=0 \\
& x-3 y=0
\end{aligned}
$$

Which is equation of line.
12. If area of triangle is 35 sq units with vertices $(2,-6),(5,4)$ and $(k, 4)$. Then k is
(A) 12
(B) $\mathbf{- 2}$
(C) -12, -2
(D) 12, -2

Solution:

Option (D) is correct.
Explanation:

$$
\begin{aligned}
& \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=35 \\
& \frac{1}{2}[2(4-4)-(-6)(5-k)+1(20-4 k)]=35
\end{aligned}
$$

Solving above expression, we have
$25-5 k= \pm 35$
$25-5 k=35$ and $25-5 k=-35$
$\mathrm{k}=-2$ and $\mathrm{k}=12$.

Exercise 4.4

Write Minors and Cofactors of the elements of following determinants:
1.
(i) $\left|\begin{array}{rr}2 & -4 \\ 0 & 3\end{array}\right|$
(ii) $\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$

Solution:

Find Minors of elements:

Say, M_{ij} is minor of element a_{ij}
$M_{11}=$ Minor of element $a_{11}=3$
$M_{12}=$ Minor of element $a_{12}=0$
$M_{21}=$ Minor of element $a_{21}=-4$
$\mathrm{M}_{22}=$ Minor of element $\mathrm{a}_{22}=2$
Find cofactor of a_{ij}
Let cofactor of $a_{i j}$ is $A_{i j}$, which is $(-1)^{i+j} M_{i j}$
$A_{11}=(-1)^{1+1} M_{11}=(-1)^{2}(3)=3$
$\mathrm{A}_{12}=(-1)^{1+2} \mathrm{M}_{12}=(-1)^{3}(0)=0$
$A_{21}=(-1)^{2+1} M_{21}=(-1)^{3}(-4)=4$
$\mathrm{A}_{22}=(-1)^{2+2} \mathrm{M}_{22}=(-1)^{4}(2)=2$
(ii)
$\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$

Solution:

Find Minors of elements:

Say, M_{ij} is minor of element a_{ij}
$\mathrm{M}_{11}=$ Minor of element $\mathrm{a}_{11}=\mathrm{d}$
$M_{12}=$ Minor of element $a_{12}=b$
$\mathrm{M}_{21}=$ Minor of element $\mathrm{a}_{21}=\mathrm{c}$
$\mathrm{M}_{22}=$ Minor of element $\mathrm{a}_{22}=\mathrm{a}$

Find cofactor of a_{ij}
Let cofactor of $a_{i j}$ is $A_{i j}$, which is $(-1)^{i+j} M_{i j}$
$\mathrm{A}_{11}=(-1)^{1+1} \mathrm{M}_{11}=(-1)^{2}(\mathrm{~d})=\mathrm{d}$
$A_{12}=(-1)^{1+2} M_{12}=(-1)^{3}(b)=-b$
$A_{21}=(-1)^{2+1} M_{21}=(-1)^{3}(c)=-c$
$\mathrm{A}_{22}=(-1)^{2+2} \mathrm{M}_{22}=(-1)^{4}(\mathrm{a})=\mathrm{a}$
2.
(i) $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$

Solution:

(i) $\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$

Find Minors and cofactors of elements:
Say, $M_{i j}$ is minor of element $a_{i j}$ and $A_{i j}$ is cofactor of $a_{i j}$
$M_{12}=$ Minor of element a_{12}

$$
\begin{array}{ll}
\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1-0=1 & \\
\left|\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right|=0-0=0 & \text { and } A_{11}=1 \\
& =\text { and } A_{12}=0 M_{13}=\text { Minor of element } a_{13}=
\end{array}
$$

$\left|\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right|=0-0=0$ and $A_{13}=0$
$M_{21}=$ Minor of element $a_{21}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0-0=0 \quad$ and $A_{21}=0$
$M_{22}=$ Minor of element $a_{22}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1-0=1$ and $A_{22}=1$
$\mathrm{M}_{23}=$ Minor of element $\mathrm{a}_{23}=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|=0-0=0 \quad$ and $\mathrm{A}_{23}=0$
$M_{31}=$ Minor of element $a_{21}=\left|\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right|=0-0=0 \quad$ and $A_{31}=0$
$M_{32}=$ Minor of element $a_{32}=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|=0-0=0$ and $A_{32}=0$
$M_{33}=$ Minor of element $a_{33}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1-0=1 \quad$ and $A_{33}=1$
(ii) $\left|\begin{array}{ccc}1 & 0 & 4 \\ 3 & 5 & -5 \\ 0 & 2 & 2\end{array}\right|$

Find Minors and cofactors of elements:

Say, $M_{i j}$ is minor of element $a_{i j}$ and $A_{i j}$ is cofactor of $a_{i j}$
$M_{11}=$ Minor of element $a_{11}\left|\begin{array}{cc}5 & -1 \\ 1 & 2\end{array}\right|=10-(-1)=11 \quad=$ and $A_{11}=11$
$M_{12}=$ Minor of element $a_{12}\left|\begin{array}{cc}3 & -1 \\ 0 & 2\end{array}\right|=6-0=6 \quad=$ and $A_{12}=-6$
$M_{13}=$ Minor of element $a_{13}=\left|\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right|=3-0=3 \quad$ and $A_{13}=3$
$M_{21}=$ Minor of element $a_{21}=\left|\begin{array}{ll}0 & 4 \\ 1 & 2\end{array}\right|=0-4=-4 \quad$ and $A_{21}=4$
$\mathrm{M}_{22}=$ Minor of element $\mathrm{a}_{22}=\left|\begin{array}{ll}1 & 4 \\ 0 & 2\end{array}\right|=2-0=2$ and $\mathrm{A}_{22}=2$
$M_{23}=$ Minor of element $a_{23}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1-0=1$ and $A_{23}=-1$
$M_{31}=$ Minor of element $a_{31}=\left|\begin{array}{cc}0 & 4 \\ 5 & -1\end{array}\right|=0-20=-20 \quad$ and $A_{31}=-20$
$M_{32}=$ Minor of element $a_{32}=\left|\begin{array}{cc}1 & 4 \\ 3 & -1\end{array}\right|=-1-12=-13$ and $A_{32}=13$
$M_{33}=$ Minor of element $a_{33}=\left|\begin{array}{ll}1 & 0 \\ 3 & 5\end{array}\right|=5-0=5$ and $A_{33}=5$
3. Using Cofactors of elements of second row, evaluate Δ.
$\Delta=\left|\begin{array}{lll}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right|$

Solution:

Find Cofactors of elements of second row:
$\mathrm{A}_{21}=$ Cofactor of element a_{21} $=$

$$
\begin{aligned}
& (-1)^{2+1}\left|\begin{array}{ll}
3 & 8 \\
2 & 3
\end{array}\right|-(-1)^{3}(9-16)=7 \\
& (-1)^{2+2}\left|\begin{array}{ll}
5 & 8 \\
1 & 3
\end{array}\right|=(-1)^{4}(15-8)=7 \\
& (-1)^{2+3}\left|\begin{array}{ll}
5 & 3 \\
1 & 2
\end{array}\right|=(-1)^{5}(10-3)=-7
\end{aligned}
$$

$\mathrm{A}_{22}=$ Cofactor of element a_{22}
$\mathrm{A}_{23}=$ Cofactor of element a_{23} $=$

Now, $\Delta=\mathrm{a}_{21} \mathrm{~A}_{21}+\mathrm{a}_{22} \mathrm{~A}_{22}+\mathrm{a}_{23} \mathrm{~A}_{23}=14+0-7=7$
4. Using Cofactors of elements of third column, evaluate Δ.

$$
\Delta=\left|\begin{array}{lll}
1 & x & y z \\
1 & y & z x \\
1 & z & x y
\end{array}\right|
$$

Solution:

Find Cofactors of elements of
$A_{13}=$ Cofactor of element a_{13}

$$
(-1)^{1+3}\left|\begin{array}{ll}
1 & y \\
1 & z
\end{array}\right|=(-1)^{4}(z-y)=z-y
$$

$$
(-1)^{2+3}\left|\begin{array}{ll}
1 & x \\
1 & z
\end{array}\right|-(-1)^{5}(z-x)=x-z
$$

$A_{23}=$ Cofactor of element a_{23} =

$$
(-1)^{3+3}\left|\begin{array}{ll}
1 & x \\
1 & y
\end{array}\right|=(-1)^{6}(y-x)=y-x
$$

$\mathrm{A}_{33}=$ Cofactor of element $\mathrm{a}_{33}=$
Now, $\Delta=\mathrm{a}_{13} \mathrm{~A}_{13}+\mathrm{a}_{23} \mathrm{~A}_{23}+\mathrm{a}_{33} \mathrm{~A}_{33}$

$$
\begin{aligned}
& =y z(z-y)+z x(x-z)+x y(y-x) \\
& =\left(y z^{2}-y^{2} z\right)+\left(x y^{2}-x z^{2}\right)+\left(x z^{2}-x^{2} y\right) \\
& =(y-z)\left[-y z+x(y+z)-x^{2}\right] \\
& =(y-z)[-y(z-x)+x(z-x)]
\end{aligned}
$$

$=(x-y)(y-x)(z-x)$
5. If

$$
\boldsymbol{\Delta}=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

and $A_{i j}$ is cofactor of $a_{i j}$ then value of Δ is given by:
(A) $a_{11} \mathrm{~A}_{31}+a_{12} \mathrm{~A}_{32}+a_{13} \mathrm{~A}_{33}$
(B) $a_{11} \mathrm{~A}_{11}+a_{12} \mathrm{~A}_{21}+a_{13} \mathrm{~A}_{31}$
(C) $a_{21} \mathrm{~A}_{11}+a_{22} \mathrm{~A}_{12}+a_{23} \mathrm{~A}_{13}$
(D) $a_{11} \mathrm{~A}_{11}+a_{21} \mathrm{~A}_{21}+a_{31} \mathrm{~A}_{31}$

Solution: Option (D) is correct.
Exercise 4.5
Find adjoint of each of the matrices in Exercises 1 and 2.
1.
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
2.
$\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]$

Solution:

1. Let $A=$
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

Cofactors of the above matrix are
$\mathrm{A}_{11}=4$
$A_{12}=-3$
$\mathrm{A}_{21}=-2$
$A_{22}=1$
adj. $A=\left[\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right]=\left[\begin{array}{rr}4 & -2 \\ -3 & 1\end{array}\right]$
2.

Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1\end{array}\right]$
Cofactors of the above matrix are
$A_{11}=+\left|\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right|=3$
$A_{21}=-\left|\begin{array}{cc}-1 & 2 \\ 0 & 1\end{array}\right|=1$
$A_{31}=+\left|\begin{array}{ll}-1 & 2 \\ 3 & 5\end{array}\right|=-11$
$A_{12}=-\left|\begin{array}{cc}2 & 5 \\ -2 & 1\end{array}\right|=-12 \quad A_{22}=+\left|\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right|=5 \quad A_{32}=-\left|\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right|=-1$
$A_{13}=+\left|\begin{array}{cc}2 & 3 \\ -2 & 0\end{array}\right|=6 \quad A_{23}=-\left|\begin{array}{cc}1 & -1 \\ -2 & 0\end{array}\right|=2$
$A_{33}=+\left|\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right|=5$)

Therefore,

$$
\operatorname{adj} \cdot A=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]=\left[\begin{array}{ccc}
3 & 1 & -11 \\
-12 & 5 & -1 \\
6 & 2 & 5
\end{array}\right]
$$

Verify $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$ in Exercises 3 and 4

$$
\text { 3. }\left[\begin{array}{cc}
2 & 3 \\
-4 & -6
\end{array}\right] \quad \text { 4. }\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]
$$

Solution:
3.

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{cc}
2 & 3 \\
-4 & -6
\end{array}\right] \\
& \text { adj. } A=\left[\begin{array}{cc}
-6 & -3 \\
4 & 2
\end{array}\right]
\end{aligned}
$$

$$
\text { A. (adj. A) }=\left[\begin{array}{cc}
2 & 3 \\
-4 & -6
\end{array}\right]\left[\begin{array}{cc}
-6 & -3 \\
4 & 2
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

Again, $|\mathrm{A}|=\left|\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right|=-12+12=0$

$$
|A| I=(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

LHS = RHS
Verified.
4.

$$
\text { Let } A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]
$$

Cofactors of A ,

$$
\begin{array}{lll}
\mathrm{A}_{11}=+\left|\begin{array}{cc}
0 & -2 \\
0 & 3
\end{array}\right|=0 & \mathrm{~A}_{21}=-\left|\begin{array}{cc}
-1 & 2 \\
0 & 3
\end{array}\right|=3 & \mathrm{~A}_{31}=+\left|\begin{array}{cc}
-1 & 2 \\
0 & -2
\end{array}\right|=2 \\
\mathrm{~A}_{12}=-\left|\begin{array}{ll}
3 & -2 \\
1 & 3
\end{array}\right|=-11 & \mathrm{~A}_{22}=+\left|\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right|=1 & \mathrm{~A}_{32}=-\left|\begin{array}{cc}
1 & 2 \\
3 & -2
\end{array}\right|=8 \\
\mathrm{~A}_{13}=+\left|\begin{array}{ll}
3 & 0 \\
1 & 0
\end{array}\right|=0 & \mathrm{~A}_{23}=-\left|\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right|=-1 & \mathrm{~A}_{33}=+\left|\begin{array}{cc}
1 & -1 \\
3 & 0
\end{array}\right|=3
\end{array}
$$

Now,
adj. $A=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right]=\left[\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]$
Now, Verify $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$

$$
\begin{aligned}
& \text { A(adj. A) }=\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{ccc}
0 & 3 & 2 \\
-11 & 1 & 8 \\
0 & -1 & 3
\end{array}\right]=\left[\begin{array}{ccc}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right] \\
& \text { (adj. A)A }=\left[\begin{array}{ccc}
0 & 3 & 2 \\
-11 & 1 & 8 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]=\left[\begin{array}{lll}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right] \\
& |A|=\left[\left.\begin{array}{ccc}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array} \right\rvert\,=1(0)-(-1)(11)+2(0)=11\right. \\
& |A| I=11\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right]
\end{aligned}
$$

Verified.

Find the inverse of each of the matrices (if it exists) given in Exercises 5 to 11.
5.
$\left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right]$

Solution:

$$
\begin{aligned}
\text { Let } A & =\left[\begin{array}{rr}
2 & -2 \\
4 & 3
\end{array}\right] \\
|A| & =\left[\begin{array}{cc}
2 & -2 \\
4 & 3
\end{array}\right]=14 \neq 0
\end{aligned}
$$

Since determinant of the matrix is not zero, so inverse of this matrix is possible.
As we know, formula to find matrix inverse is:
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}$ adj. A
adj. $A=\left[\begin{array}{ll}3 & 2 \\ -4 & 2\end{array}\right]$
This implies,
$A^{-1}=\frac{1}{14}\left[\begin{array}{ll}3 & 2 \\ -4 & 2\end{array}\right]$
6.
$\left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right]$
Solution:

$$
\begin{aligned}
\text { Let } A & =\left[\begin{array}{ll}
-1 & 5 \\
-3 & 2
\end{array}\right] \\
|A| & =\left[\begin{array}{ll}
-1 & 5 \\
-3 & 2
\end{array}\right]=13 \neq 0
\end{aligned}
$$

Since determinant of the matrix is not zero, so inverse of this matrix is possible.

As we know, formula to find matrix inverse is:
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}$ adj.A
$\operatorname{adj} . A=\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right]$
This implies,

$$
A^{-1}=\frac{1}{13}\left[\begin{array}{ll}
2 & -5 \\
3 & -1
\end{array}\right]
$$

7.

$\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5\end{array}\right]$
Solution:

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 4 \\
0 & 0 & 5
\end{array}\right] \\
& |A|=\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 4 \\
0 & 0 & 5
\end{array}\right|=1(10)-2(0)+3(0)=10 \neq 0
\end{aligned}
$$

Therefore,
A^{-1} exists

Find adj A:

$$
\begin{aligned}
& A_{11}=+\left|\begin{array}{ll}
2 & 4 \\
0 & 5
\end{array}\right|=10 \quad A_{21}=-\left|\begin{array}{ll}
2 & 3 \\
0 & 5
\end{array}\right|=-10 \quad A_{31}=+\left|\begin{array}{ll}
2 & 3 \\
2 & 4
\end{array}\right|=2 \\
& A_{12}=-\left|\begin{array}{ll}
0 & 4 \\
0 & 5
\end{array}\right|=0 \quad A_{22}=+\left|\begin{array}{ll}
1 & 3 \\
0 & 5
\end{array}\right|=5 \quad A_{32}=-\left|\begin{array}{ll}
1 & 3 \\
0 & 4
\end{array}\right|=-4 \\
& \mathrm{~A}_{13}=+\left|\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right|=0 \quad \mathrm{~A}_{23}=-\left|\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right|=0 \quad \mathrm{~A}_{33}=+\left|\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right|=2
\end{aligned}
$$

As we know, formula to find matrix inverse is:
$A^{-1}=\frac{1}{|A|} \operatorname{adj} . A$
$A^{-1}=\frac{1}{10}\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right]$
8.

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
\text { Let } A & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1
\end{array}\right] \\
|A| & =\left|\begin{array}{lll}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1
\end{array}\right|=1(-3)-0+0=-3 \neq 0
\end{aligned}
$$

Therefore,
A^{-1} exists

Find $\operatorname{adj} \mathrm{A}$:

$$
\begin{aligned}
& A_{11}=+\left|\begin{array}{cc}
3 & 0 \\
2 & -1
\end{array}\right|=-3 \quad A_{21}=-\left|\begin{array}{cc}
0 & 0 \\
2 & -1
\end{array}\right|=0 \quad A_{31}=+\left|\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right|=0 \\
& A_{12}=-\left|\begin{array}{cc}
3 & 0 \\
5 & -1
\end{array}\right|=3 \quad A_{22}=+\left|\begin{array}{cc}
1 & 0 \\
5 & -1
\end{array}\right|=-1 \quad A_{32}=-\left|\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right|=0 \\
& A_{13}=+\left|\begin{array}{ll}
3 & 3 \\
5 & 2
\end{array}\right|=-9 \quad A_{23}=-\left|\begin{array}{ll}
1 & 0 \\
5 & 2
\end{array}\right|=-2 \quad A_{33}=+\left|\begin{array}{ll}
1 & 0 \\
3 & 3
\end{array}\right|=3
\end{aligned}
$$

adj. $A=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right]=\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]$

As we know, formula to find matrix inverse is:
$A^{-1}=\frac{1}{|A|}$ adj.A

$$
A^{-1}=\frac{-1}{3}\left[\begin{array}{ccc}
-3 & 0 & 0 \\
3 & -1 & 0 \\
-9 & -2 & 3
\end{array}\right]
$$

9.

$$
\left[\begin{array}{lrl}
2 & 1 & 3 \\
4 & -1 & 0 \\
-7 & 2 & 1
\end{array}\right]
$$

Solution:

$$
\text { Let } A=\left[\begin{array}{lrl}
2 & 1 & 3 \\
4 & -1 & 0 \\
-7 & 2 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& |A|=\left|\begin{array}{ccc}
2 & 1 & 3 \\
4 & -1 & 0 \\
-7 & 2 & 1
\end{array}\right| \\
& =2(-1)-1(4)+3(1)=-3 \\
& \quad \neq 0
\end{aligned}
$$

Therefore,
A^{-1} exists
Find adj A:

$$
\begin{array}{lll}
A_{11}=\left|\begin{array}{cc}
-1 & 0 \\
2 & 1
\end{array}\right|=-1 & A_{21}=-\left|\begin{array}{ll}
1 & 3 \\
2 & 1
\end{array}\right|=5 & A_{31}=+\left|\begin{array}{cc}
1 & 3 \\
-1 & 0
\end{array}\right|=3 \\
A_{12}=-\left|\begin{array}{cc}
4 & 0 \\
-7 & 1
\end{array}\right|=-4 & A_{22}=+\left|\begin{array}{cc}
2 & 3 \\
-7 & 1
\end{array}\right|=23 & A_{32}=-\left|\begin{array}{ll}
2 & 3 \\
4 & 0
\end{array}\right|=12 \\
A_{13}=+\left|\begin{array}{cc}
4 & -1 \\
-7 & 2
\end{array}\right|=1 & A_{23}=-\left|\begin{array}{cc}
2 & 1 \\
-7 & 2
\end{array}\right|=-11 & A_{33}=+\left|\begin{array}{cc}
2 & 1 \\
4 & -1
\end{array}\right|=-6
\end{array}
$$

$$
\text { adj. } A=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]=\left[\begin{array}{rcr}
-1 & 5 & 3 \\
-4 & 23 & 12 \\
1 & -11 & -6
\end{array}\right]
$$

As we know, formula to find matrix inverse is:
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|} \operatorname{adj} \cdot \mathrm{A}$

$$
A^{-1}=\frac{-1}{3}\left[\begin{array}{rcc}
-1 & 5 & 3 \\
-4 & 23 & 12 \\
1 & -11 & -6
\end{array}\right]
$$

10.

$\left[\begin{array}{ccr}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]$
Solution:

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}\right] \\
& |A|=\left|\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}\right| \\
& =1(2)+1(9)+2(-6)=-1 \\
& \neq 0
\end{aligned}
$$

Therefore,
A^{-1} exists
Find $\operatorname{adj} \mathrm{A}:$
$A_{11}=+\left|\begin{array}{ll}2 & -3 \\ -2 & 4\end{array}\right|=2 \quad A_{21}=-\left|\begin{array}{ll}-1 & 2 \\ -2 & 4\end{array}\right|=0 \quad A_{31}=+\left|\begin{array}{cc}-1 & 2 \\ 2 & -3\end{array}\right|=-1$
$A_{12}=-\left|\begin{array}{cc}0 & -3 \\ 3 & 4\end{array}\right|=-9 \quad A_{22}=+\left|\begin{array}{ll}2 & 2 \\ 3 & 4\end{array}\right|=-2 \quad A_{32}=-\left|\begin{array}{cc}1 & 2 \\ 0 & -3\end{array}\right|=3$
$A_{13}=+\left|\begin{array}{cc}0 & 2 \\ 3 & -2\end{array}\right|=-6 \quad A_{23}=-\left|\begin{array}{cc}1 & -1 \\ 3 & -2\end{array}\right|=-1 \quad A_{33}=+\left|\begin{array}{cc}1 & -1 \\ 0 & 2\end{array}\right|=2$
adj. $A=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right]=\left[\begin{array}{ccc}2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2\end{array}\right]$

As we know, formula to find matrix inverse is:
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}$ adj.A

$$
A^{-1}=\left[\begin{array}{ccc}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{array}\right]
$$

11.

$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$
Solution:

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & \sin \alpha & -\cos \alpha
\end{array}\right] \\
& \begin{aligned}
&|A|=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & \sin \alpha & -\cos \alpha
\end{array}\right| \\
&=\left(-\cos ^{2} \alpha-\sin ^{2} \alpha\right)-0+0 \\
&=-\left(\cos ^{2} \alpha+\sin ^{2} \alpha\right)=-1 \neq 0
\end{aligned}
\end{aligned}
$$

Therefore,

A^{-1} exists

Find $\operatorname{adj} \mathrm{A}$:

$$
\begin{aligned}
& A_{11}=+\left|\begin{array}{cc}
\cos \alpha & \sin \alpha \\
\sin \alpha & -\cos \alpha
\end{array}\right|=-1 \quad A_{21}=-\left|\begin{array}{lc}
0 & 0 \\
\sin \alpha & -\cos \alpha
\end{array}\right|=0 \quad A_{31}=+\left|\begin{array}{cc}
0 & 0 \\
\cos \alpha & \sin \alpha
\end{array}\right|=0 \\
& \mathrm{~A}_{12}=-\left|\begin{array}{cc}
0 & \sin \alpha \\
0 & -\cos \alpha
\end{array}\right|=0 \quad \mathrm{~A}_{22}=+\left|\begin{array}{cc}
1 & 0 \\
0 & -\cos \alpha
\end{array}\right|=-\cos \alpha \quad \mathrm{A}_{32}=-\left|\begin{array}{cc}
1 & 0 \\
0 & \sin \alpha
\end{array}\right|=-\sin \alpha \\
& \mathrm{A}_{13}=+\left|\begin{array}{ll}
0 & \cos \alpha \\
0 & \sin \alpha
\end{array}\right|=0 \quad \mathrm{~A}_{23}=-\left|\begin{array}{cc}
1 & 0 \\
0 & \sin \alpha
\end{array}\right|=\sin \alpha \quad \mathrm{A}_{33}=+\left|\begin{array}{cc}
1 & 0 \\
0 & \cos \alpha
\end{array}\right|=\cos \alpha \\
& \text { adj. } \mathrm{A}=\left[\begin{array}{lll}
\mathrm{A}_{11} & \mathrm{~A}_{21} & \mathrm{~A}_{31} \\
\mathrm{~A}_{12} & \mathrm{~A}_{22} & \mathrm{~A}_{32} \\
\mathrm{~A}_{13} & \mathrm{~A}_{23} & \mathrm{~A}_{33}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -\cos \alpha & -\sin \alpha \\
0 & -\sin \alpha & \cos \alpha
\end{array}\right]
\end{aligned}
$$

As we know, formula to find matrix inverse is:
$\mathrm{A}^{-1}=\frac{1}{|\mathrm{~A}|}$ adj.A
$A^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & -\cos \alpha\end{array}\right]$
12. Let $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$ verify that $(A B)^{-\mathbf{1}}=B^{-\mathbf{1}} \mathbf{A}^{\mathbf{- 1}}$.

Solution:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right] \\
& |A|=\left|\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right|=1 \neq 0 \\
& A^{-1}=\frac{1}{|A|} \text { adj. } A \\
& A^{-1}=\left[\begin{array}{cc}
5 & -7 \\
-2 & 3
\end{array}\right]
\end{aligned}
$$

Again,

$$
\begin{aligned}
& B=\left[\begin{array}{ll}
6 & 8 \\
7 & 9
\end{array}\right] \\
& |B|=\left|\begin{array}{ll}
6 & 8 \\
7 & 9
\end{array}\right|=-2 \neq 0 \\
& B^{-1}=\frac{1}{-2}\left[\begin{array}{cc}
9 & -8 \\
-7 & 6
\end{array}\right]
\end{aligned}
$$

Now Multiply A and B,

$$
\mathrm{AB}=\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right]\left[\begin{array}{ll}
6 & 8 \\
7 & 9
\end{array}\right]=\left[\begin{array}{ll}
67 & 87 \\
47 & 61
\end{array}\right]
$$

Find determinant of $A B$:

$$
|A B|=\left|\begin{array}{ll}
67 & 87 \\
47 & 61
\end{array}\right|=4087-4089=-2 \neq 0
$$

Now, Verify $(A B)^{-1}=B^{-1} A^{-1}$

LHS:
$|A B|=\left|\begin{array}{ll}67 & 87 \\ 47 & 61\end{array}\right|=4087-4089=-2 \neq 0$
and

$$
(A B)^{-1}=\frac{1}{-2}\left[\begin{array}{cc}
61 & -87 \\
-47 & 67
\end{array}\right]
$$

RHS:

$$
\begin{aligned}
& \mathrm{B}^{-1} \mathrm{~A}^{-1}=\frac{1}{-2}\left[\begin{array}{cc}
9 & -8 \\
-7 & 6
\end{array}\right]\left[\begin{array}{cc}
5 & -7 \\
-2 & 3
\end{array}\right] \\
& =\frac{1}{-2}\left[\begin{array}{cc}
61 & -87 \\
-47 & 67
\end{array}\right]
\end{aligned}
$$

This implies, LHS = RHS (Verified)
13. If $\mathbf{A}=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$, show that $\mathbf{A}^{2}-5 A+71=0$. Hence find A^{-1}.

Solution:
$A^{2}=A A$

$$
A^{2}=\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{rr}
8 & 5 \\
-5 & 3
\end{array}\right]
$$

$L H S=A^{2}-5 A+7 I$

$$
\begin{aligned}
& =\left[\begin{array}{rr}
8 & 5 \\
-5 & 3
\end{array}\right]-5\left[\begin{array}{rr}
3 & 1 \\
-1 & 2
\end{array}\right]+7\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{rr}
8-15+7 & 5-5+0 \\
-5+5+0 & 3-10+7
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0 \\
& =\text { RHS. (Proved) }
\end{aligned}
$$

To Find \mathbf{A}^{-1}

Multiply $\mathrm{A}^{2}-5 \mathrm{~A}+71$ by A^{-1}, we have (Consider I is 2×2 matrix)

$$
\begin{aligned}
& \mathrm{A}^{2} \mathrm{~A}^{-1}-5 \mathrm{~A}^{-1}+7 \mathrm{I} \mathrm{~A}^{-1}=0 \cdot \mathrm{~A}^{-1} \\
& \mathrm{~A}-5 \mathrm{I}+7 \mathrm{~A}^{-1}=0 \\
& 7 \mathrm{~A}^{-1}=-\mathrm{A}+5 \mathrm{I} \\
& \quad=\left[\begin{array}{cc}
-3 & -1 \\
1 & -2
\end{array}\right]+\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right] \\
& \quad=\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right] \\
& \mathrm{A}^{-1}=\frac{1}{7}\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right]
\end{aligned}
$$

14. For the matrix $\mathbf{A}=\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]$, find the numbers \mathbf{a} and \mathbf{b} such that $\mathbf{A}^{2}+\mathbf{a} \mathbf{A}+\mathbf{b l}=\mathbf{0}$.

Solution:

$$
A^{2}=A A=\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
11 & 8 \\
4 & 3
\end{array}\right]
$$

Since $A^{2}+a A+b l=0$
$\left[\begin{array}{ll}11 & 8 \\ 4 & 3\end{array}\right]+a\left[\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right]+b\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=0$
$\left[\begin{array}{ll}11 & 8 \\ 4 & 3\end{array}\right]+\left[\begin{array}{cc}3 a & 2 a \\ a & a\end{array}\right]+\left[\begin{array}{ll}b & 0 \\ 0 & b\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\left[\begin{array}{cc}11+3 a+b & 8+2 a+0 \\ 4+a+0 & 3+a+b\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

Equate corresponding elements, we get
$11+3 a+b=0 \ldots(1)$
$8+2 a=0 \Rightarrow a=-4$
Substitute the value of a in equation (1),

$$
\begin{aligned}
& 11+3(-4)+b=0 \\
& 11-12+b=0 b \\
& =1
\end{aligned}
$$

15. For the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]$. Show that $A^{3}-\mathbf{6} A^{2}+\mathbf{5 A}+\mathbf{1 1} \mathbf{I}=\mathbf{O}$. Hence, find A^{-1}

Solution:

$$
\begin{aligned}
& A^{2}=A A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1+1+1 & 1+2-1 & 1-3+3 \\
1+2-6 & 1+4+3 & 1-6-9 \\
2-1+6 & 2-2-3 & 2+3+9
\end{array}\right] \\
& =\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]
\end{aligned}
$$

$$
A^{3}=A^{2} A=\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
4+2+2 & 4+4-1 & 4-6+3 \\
-3+8-28 & -3+16+14 & -3-24-42 \\
7-3+28 & 7-6-14 & 7+9+42
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]
$$

Now, LHS $=A^{3}-6 A^{2}+5 A+11 I$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]-\left[\begin{array}{ccc}
24 & 12 & 6 \\
-18 & 48 & -84 \\
42 & -18 & 84
\end{array}\right]+\left[\begin{array}{ccc}
5 & 5 & 5 \\
5 & 10 & -15 \\
10 & -5 & 15
\end{array}\right]+\left[\begin{array}{ccc}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{array}\right] \\
& =\left[\begin{array}{ccc}
8-24+5+11 & 7-12+5 & 1-6+5 \\
-23+18+5 & 27-48+10+11 & -69+84-15 \\
32-42+10 & -13+18-5 & 58-84+15+11
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
=0
$$

RHS (Proved)

Now, find $\mathbf{A}^{\mathbf{- 1}}$
Multiply $A^{3}-6 A^{2}+5 A+11$ I by A^{-1}, we have (Consider I is 3×3 matrix)

$$
\begin{aligned}
& \mathrm{A}^{3} \mathrm{~A}^{-1}-6 \mathrm{~A}^{2} \mathrm{~A}^{-1}+5 \mathrm{AA}^{-1}+111 \mathrm{~A}^{-1}=0 \mathrm{~A}^{-1} \\
& \mathrm{~A}^{2}-6 \mathrm{~A}+5 \mathrm{I}+11 \mathrm{~A}^{-1}=0 \\
& 11 \mathrm{~A}^{-1}=6 \mathrm{~A}-5 \mathrm{I}-\mathrm{A}^{2}
\end{aligned}
$$

$$
11 A^{-1}=6\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]-5\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
6-5-4 & 6-2 & 6-1 \\
6+3 & 12-5-8 & -18+14 \\
12-7 & -6+3 & 18-5-14
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
-3 & 4 & 5 \\
9 & -1 & -4 \\
5 & -3 & -1
\end{array}\right]
$$

Therefore,
$A^{-1}=\frac{1}{11}\left[\begin{array}{ccc}-3 & 4 & 5 \\ 9 & -1 & -4 \\ 5 & -3 & -1\end{array}\right]$
16. If $\mathbf{A}=\left[\begin{array}{crr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$. Verify that $A^{3}-6 A^{2}+9 A-4 I=0$ and hence find A^{-1}.

Solution:
$A^{2}=A A$
$\left[\begin{array}{ccc}4+1+1 & -2-2-1 & 1+1+2 \\ -2-2-1 & 1+4+1 & -1-2-2 \\ 2+1+2 & -1-2-2 & 1+1+4\end{array}\right]$
$=\left[\begin{array}{ccr}6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6\end{array}\right]$
Again, $A^{3}=A^{2} A$

$$
\begin{aligned}
& {\left[\begin{array}{ccr}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]\left[\begin{array}{crr}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]} \\
& =\left[\begin{array}{ccr}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]
\end{aligned}
$$

Now, $A^{3}-6 A^{2}+9 A-41$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-6\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]+9\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]-4\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
22-36 & -21+30 & 21-30 \\
-21+30 & 22-36 & -21+30 \\
21-30 & -21+30 & 22-36
\end{array}\right]+\left[\begin{array}{ccc}
18-4 & -9-0 & 9-0 \\
-9-0 & 18-4 & -9-0 \\
9-0 & -9-0 & 18-4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-14+14 & 9-9 & -9+9 \\
9-9 & -14+14 & 9-9 \\
-9+9 & 9-9 & -14+14
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& =0(\mathrm{RHS})
\end{aligned}
$$

Multiply $A^{3}-6 A^{2}+9 A-4 I=O$ by A^{-1}, (here I is 3×3 matrix)
$A^{3} A^{-1}-6 A^{2} A^{-1}+9 A A^{-1}-4 I A^{-1}=0 . A^{-1}$
$A^{2}-6 A+9 I-4 A^{-1}=0$
$4 A^{-1}=A^{2}-6 A+9 I$
Now Placing all the matrices,

$$
\begin{aligned}
4 A^{-1} & =\left[\begin{array}{ccr}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-6\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]+9\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
4 A^{-1} & =\left[\begin{array}{rrr}
6-12+9 & -5+6+0 & 5-6+0 \\
-5+6+0 & 6-12+9 & -5+6+0 \\
5-6+0 & -5+6+0 & 6-12+9
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{rrr}
3 & 1 & -1 \\
1 & 3 & 1 \\
-1 & 1 & 3
\end{array}\right]
$$

Inverse of the matrix is :
$A^{-1}=\frac{1}{4}\left[\begin{array}{rrr}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]$
17. Let A be a non-singular matrix of order 3×3. Then $\mid \mathrm{adj}$. $A \mid$ is equal to:
(A) $|A|$
(B) $|A|^{2}$
(C) $|A|^{3}$
(D) $3|A|$

Solution:

Option (B) is correct.
Explanation:
$|\operatorname{adj} . A|=|A|^{n-1}=|A|^{2} \quad($ for $n=3)$
18. If A is an invertible matrix of order 2 , then $\operatorname{det}\left(A^{-1}\right)$ is equal to:
(A) $\operatorname{det} A$
(B) $1 / \operatorname{det} \mathrm{A}$
(C) 1
(D) 0

Solution:

Option (B) is correct.
Explanation:
$A A^{-1}=I \operatorname{det}$
($A^{-1}=I$)
$\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=1$
$\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det} A$
Exercise 4.6

Examine the consistency of the system of equations in Exercises 1 to 6.

1. $x+2 y=2:$ and $2 x+3 y=3$

Solution:

Given set of equations is: $x+2 y=2$: and $2 x+3 y=3$
This set of equation can be written in the form of matrix as $A X=B$, where

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right] \text { and } \mathrm{B}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \text { and } \\
& \mathrm{X}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

So, $A X=B$ is

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

$$
|A|=\left|\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right|=-1 \neq 0
$$

Inverse of matrix exists. So system of equations is consistent.
2. $2 x-y=5$ and $x+y=4$

Solution:

Given set of equations is : $2 x-y=5$ and $x+y=4$
This set of equation can be written in the form of matrix as $A X=B$, where

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{l}
5 \\
4
\end{array}\right]
$$

So, $A X=B$ is

$$
\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
5 \\
4
\end{array}\right]
$$

$$
|A|=\left|\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right|=3 \neq 0 /
$$

Inverse of matrix exists. So system of equations is consistent.

3. $x+3 y$ and $2 x+6 y=8$

Solution:

Given set of equations is : $x+3 y$ and $2 x+6 y=8$
This set of equation can be written in the form of matrix as $A X=B$.

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
5 \\
8
\end{array}\right]
$$

Where,

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right] \text { and } B=\left[\begin{array}{l}
5 \\
8
\end{array}\right] \\
& |A|=\left|\begin{array}{ll}
1 & 3 \\
2 & 6
\end{array}\right|=0 \\
& \text { adj. } A=\left[\begin{array}{lr}
6 & -3 \\
-2 & 1
\end{array}\right]
\end{aligned}
$$

And

$$
\text { (adj. A)B }=\left[\begin{array}{lr}
6 & -3 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
8
\end{array}\right]=\left[\begin{array}{l}
6 \\
-2
\end{array}\right] \neq 0
$$

The given equations are inconsistent.
4. $x+y+z=1 ; 2 x+3 y+2 z=2$ and $a x+a y+2 a z=4$

Solution:

Given set of equations is : $x+y+z=1 ; 2 x+3 y+2 z=2$ and $a x+a y+2 a z=4$

This set of equation can be written in the form of matrix as $A X=B$

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 2 \\
a & a & 2 a
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]
$$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 2 \\
a & a & 2 a
\end{array}\right] \\
&|A|=\left|\begin{array}{lll}
1 & 1 & 1 \\
2 & 3 & 2 \\
a & a & 2 a
\end{array}\right|=1(6 a-2 a)-1(4 a-2 a)+1(2 a-3 a) \\
&=4 a-2 a-a=a \neq 0
\end{aligned}
$$

System of equations is consistent.

5. $3 x-y-2 z=2 ; 2 y-z=-1$ and $3 x-5 y=3$

Solution:

Given set of equations is: $3 x-y-2 z=2 ; 2 y-z=-1$ and $3 x-5 y=3$
This set of equation can be written in the form of matrix as $A X=B$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
3 & -1 & -2 \\
0 & 2 & -1 \\
3 & -5 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
-1 \\
3
\end{array}\right]} \\
& A=\left[\begin{array}{ccc}
3 & -1 & -2 \\
0 & 2 & -1 \\
3 & -5 & 0
\end{array}\right] \\
& |A|=\left|\begin{array}{ccc}
3 & -1 & -2 \\
0 & 2 & -1 \\
3 & -5 & 0
\end{array}\right| \\
& =3(-5)+(3)-2(-6) \\
& =15-15 \\
& =0
\end{aligned}
$$

Now,
(adj. A) $=\left[\begin{array}{rrr}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]$
(adj. A) $B=\left[\begin{array}{rrr}-5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6\end{array}\right]\left[\begin{array}{l}2 \\ -1 \\ 3\end{array}\right]=\left[\begin{array}{l}-5 \\ -3 \\ -6\end{array}\right] \neq 0$

6. Given set of equations is :

$5 x-y+4 z=5$
$2 x+3 y+5 z=2$
$5 x-2 y+6 z=-1$

Solution:

Given set of equations is: $5 x-y+4 z=5 ; 2 x+3 y+5 z=2 ; 5 x-2 y+6 z=-1$
This set of equation can be written in the form of matrix as $A X=B$
$\left[\begin{array}{ccc}5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}5 \\ 2 \\ -1\end{array}\right]$
$A=\left[\begin{array}{ccc}5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6\end{array}\right]$
$|A|=\left|\begin{array}{ccc}5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6\end{array}\right|$
$=5(18+10)+1(12-25)+4(-4-15)$
$=140-13-76$
$=140-89$
$=51$
$\neq 0$

System of equations is consistent.

Solve system of linear equations, using matrix method, in Exercises 7 to 14.
7. $5 x+2 y=4$ and $7 x+3 y=5$ Solution:

Given set of equations is: $5 x+2 y=4$ and $7 x+3 y=5$
This set of equation can be written in the form of matrix as $A X=B$

$$
\left[\begin{array}{ll}
5 & 2 \\
7 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]
$$

Where,

$$
A=\left[\begin{array}{ll}
5 & 2 \\
7 & 3
\end{array}\right]
$$

And $|A|=1 \neq 0$
System is consistent.
Now,
$X=A^{-1} B=\frac{1}{|A|}(\operatorname{adj} . A) B$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{1}\left[\begin{array}{cc}3 & -2 \\ -7 & 5\end{array}\right]\left[\begin{array}{l}4 \\ 5\end{array}\right]$
$\left[\begin{array}{l}12-10 \\ -28+25\end{array}\right]=\left[\begin{array}{l}2 \\ -3\end{array}\right]$
$\Rightarrow \quad x=2$ and $y=-3$
8. $2 x-y=-2$ and $3 x+4 y=3$

Solution:

Given set of equations is: $2 x-y=-2$ and $3 x+4 y=3$
This set of equation can be written in the form of matrix as $A X=B$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & -1 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
-2 \\
3
\end{array}\right]} \\
& \mathrm{A}=\left[\begin{array}{cc}
2 & -1 \\
3 & 4
\end{array}\right]
\end{aligned}
$$

$|A|=11 \neq 0$

System is consistent.
So,
$X=A^{-1} B=\frac{1}{|A|}($ adj. $A) B$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{11}\left[\begin{array}{cc}
4 & 1 \\
-3 & 2
\end{array}\right]\left[\begin{array}{l}
-2 \\
3
\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}
-8+3 \\
6+6
\end{array}\right]=\frac{1}{11}\left[\begin{array}{c}
-5 \\
12
\end{array}\right]
$$

Therefore, $x=-5 / 11$ and $y=12 / 11$
9. $4 x-3 y=3$ and $3 x-5 y=7$

Solution:

Given set of equations is: $4 x-3 y=3$ and $3 x-5 y=7$
This set of equation can be written in the form of matrix as $A X=B$

$$
\left[\begin{array}{ll}
4 & -3 \\
3 & -5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
7
\end{array}\right]
$$

Where,

$$
A=\left[\begin{array}{ll}
4 & -3 \\
3 & -5
\end{array}\right]
$$

And $|A|=-20+9=-11 \neq 0$ System is consistent.
So,

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{1}{-11}\left[\begin{array}{ll}
-5 & 3 \\
-3 & 4
\end{array}\right]\left[\begin{array}{l}
3 \\
7
\end{array}\right]} \\
& =\frac{1}{-11}\left[\begin{array}{l}
-15+21 \\
-9+28
\end{array}\right]=\frac{1}{-11}\left[\begin{array}{c}
6 \\
19
\end{array}\right]
\end{aligned}
$$

Therefore, $x=6 /-11$ and $y=19 /-11$
10. $5 x+2 y=3$ and $3 x+2 y=5$

Solution:

Given set of equations is : $5 x+2 y=3$ and $3 x+2 y=5$

This set of equation can be written in the form of matrix as $A X=B$
$\left[\begin{array}{ll}5 & 2 \\ 3 & 2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$
Where

$$
A=\left[\begin{array}{ll}
5 & 2 \\
3 & 2
\end{array}\right]
$$

And $|A|=4 \neq 0$
System is consistent.
So,
$X=A^{-1} B=\frac{1}{|A|}($ adj. A $) B$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}2 & -2 \\ -3 & 5\end{array}\right]\left[\begin{array}{l}3 \\ 5\end{array}\right]$
$\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-1 \\ 4\end{array}\right]$

Therefore, $x=-1$ and $y=4$.
11. $2 x+y+z=1$ and $x-2 y-z=3 / 2$ and $3 y-5 z=9$

Solution:

Given set of equations is : $2 x+y+z=1$ and $x-2 y-z=3 / 2$ and $3 y-5 z=9$
This set of equation can be written in the form of matrix as $A X=B$

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & -2 & -1 \\
0 & 3 & -5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 / 2 \\
9
\end{array}\right]
$$

Where

$$
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & -2 & -1 \\
0 & 3 & -5
\end{array}\right]
$$

And

$$
\begin{aligned}
& |A|=\left|\begin{array}{ccc}
2 & 1 & 1 \\
1 & -2 & -1 \\
0 & 3 & -5
\end{array}\right| \\
& =34 \neq 0
\end{aligned}
$$

System is consistent.
So,
$X=A^{-1} B=\frac{1}{|A|}($ adj. $A) B$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{34}\left[\begin{array}{ccc}
13 & 8 & 1 \\
5 & -10 & 3 \\
3 & -6 & -5
\end{array}\right]\left[\begin{array}{l}
1 \\
\frac{3}{2} \\
9
\end{array}\right]
$$

$$
=\frac{1}{34}\left[\begin{array}{l}
13+12+9 \\
5-15+27 \\
3-9-45
\end{array}\right]=\frac{1}{34}\left[\begin{array}{l}
34 \\
17 \\
-51
\end{array}\right]
$$

Therefore, $x=1, y=1 / 2$ and $z=3 / 2$
12. $x-y+z=4$ and $2 x+y-3 z=0$ and $x+y+z=2$

Solution:

Given set of equations is: $x-y+z=4$ and $2 x+y-3 z=0$ and $x+y+z=2$
This set of equation can be written in the form of matrix as $A X=B$

Wisdamisine Knawledee

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
2
\end{array}\right]
$$

Where,
$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$

And

$$
|A|=\left|\begin{array}{ccc}
1 & -1 & 1 \\
2 & 1 & -3 \\
1 & 1 & 1
\end{array}\right|
$$

$=10 \neq 0$
System is consistent.
So,
$X=A^{-1} B=\frac{1}{|A|}($ adj. $A) B$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{10}\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 0 \\ 2\end{array}\right]$
$=\frac{1}{10}\left[\begin{array}{c}16+0+4 \\ -20+0+10 \\ 4-0+6\end{array}\right]=\left[\begin{array}{l}2 \\ -1 \\ 1\end{array}\right]$
Therefore, $\mathrm{x}=2, \mathrm{y}=-1$ and $\mathrm{z}=1$
13.
$2 x+3 y+3 z=5 \quad x$
$-2 y+z=-43 x-$
$y-2 z=3$
Solution:

Given set of equations is
: $2 x+3 y+3 z=5 x-2 y$
$+z=-4$
$3 x-y-2 z=3$
This set of equation can be written in the form of matrix as $A X=B$
$\left[\begin{array}{ccc}2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}5 \\ -4 \\ 3\end{array}\right]$

Where
$A=\left[\begin{array}{ccc}2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2\end{array}\right]$
And,
$|A|=\left|\begin{array}{rrc}2 & 3 & 3 \\ 1 & -2 & 1 \\ 3 & -1 & -2\end{array}\right|$
$=40 \neq 0$

System is consistent.
So,
$X=A^{-1} B=\frac{1}{|A|}(\operatorname{adj} \cdot A) B$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{40}\left[\begin{array}{ccc}5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7\end{array}\right]\left[\begin{array}{l}5 \\ -4 \\ 3\end{array}\right]$
$=\frac{1}{40}\left[\begin{array}{l}25-12+27 \\ 25+52+3 \\ 25-44-21\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ -1\end{array}\right]$

Therefore, $x=1, y=2$ and $z=-1$.
14.
$x-y+2 z=73 x$
$+4 y-5 z=-5$
$2 x-y+3 z=12$

Solution:

Given set of equations is

$$
\begin{aligned}
& : x-y+2 z=73 x+4 y- \\
& 5 z=-5 \\
& 2 x-y+3 z=12
\end{aligned}
$$

This set of equation can be written in the form of matrix as $A X=B$

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 4 & -5 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 \\
-5 \\
12
\end{array}\right]
$$

Where,

$$
A=\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 4 & -5 \\
2 & -1 & 3
\end{array}\right]
$$

And
$|A|=\left|\begin{array}{ccc}1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3\end{array}\right|$
$=4 \neq 0$
System is consistent.
So,
$\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}=\frac{1}{|\mathrm{~A}|}($ adj. A$) \mathrm{B}$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{4}\left[\begin{array}{ccc}7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7\end{array}\right]\left[\begin{array}{c}7 \\ -5 \\ 12\end{array}\right]$
$=\frac{1}{4}\left[\begin{array}{c}49-5-36 \\ -133+5+132 \\ -77+5+84\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$
Therefore, $\mathrm{x}=2, \mathrm{y}=1$ and $\mathrm{z}=3$.
(If $A=\left[\begin{array}{lll}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$, find A^{-1}. Using A^{-1} solve the system of equations.
$\begin{aligned} & \mathbf{2 x}-\mathbf{3 y}+5 z=\mathbf{1 1} \mathbf{3 x} \\ & +\mathbf{2 y}-\mathbf{4 z}=-5 \\ & \mathbf{x}+\mathbf{y}-\mathbf{2 z}=\mathbf{- 3}\end{aligned}$

Solution:

$$
\begin{aligned}
& A=\left[\begin{array}{llr}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right] \\
& |A|=\left|\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right|
\end{aligned}
$$

$=-1 \neq 0$; Inverse of matrix exists.
Find the inverse of matrix: Cofactors
of matrix:

$$
\begin{aligned}
& A_{11}=0, A_{12}=2, A_{13}=1 \\
& A_{21}=-1, A_{22}=-9, A_{23}=-5 \\
& A_{31}=2, A_{32}=23, A_{33}=13
\end{aligned}
$$

$$
\text { adj. } A=\left[\begin{array}{ccc}
0 & -1 & 2 \\
2 & -9 & 23 \\
1 & -5 & 13
\end{array}\right]
$$

So,

$$
\mathrm{A}^{-1}=\frac{1}{-1}\left[\begin{array}{lll}
0 & -1 & 2 \\
2 & -9 & 23 \\
1 & -5 & 13
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]
$$

Now, matrix of equation can be written as:
$A X=B$
$\left[\begin{array}{llr}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}11 \\ -5 \\ -3\end{array}\right]$

And, $X=A^{-1} B$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]\left[\begin{array}{l}
11 \\
-5 \\
-3
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]\left[\begin{array}{l}
11 \\
-5 \\
-3
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Therefore, $x=1, y=2$ and $z=3$.
16. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs. 60. The cost of 2 kg onion, 4 kg wheat and 2 kg rice is Rs. 90. The cost of 6 kg onion, 2 k wheat and 3 kg rice is Rs.
70. Find cost of each item per kg by matrix method.

Solution:

Let x, y and z be the per kg. prices of onion, wheat and rice respectively.
According to given statement, we have following equations,
$4 x+3 y+2 z=60$
$2 x+4 y+6 z=90$
$6 x+2 y+3 z=70$
The above system of equations can be written in the form of matrix as, $A X=B$

$$
\left[\begin{array}{lll}
4 & 3 & 2 \\
2 & 4 & 6 \\
6 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
60 \\
90 \\
70
\end{array}\right]
$$

Where,

$$
A=\left[\begin{array}{lll}
4 & 3 & 2 \\
2 & 4 & 6 \\
6 & 2 & 3
\end{array}\right]
$$

And
$|A|=\left|\begin{array}{lll}4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3\end{array}\right|$
$=4(0)-3(-30)+2(-20)$
$=50 \neq 0$
System is consistent, and $X=A^{-1} B$
First find invers of A.
Cofactors of all the elements of A are:

$$
\mathrm{A}_{11}=0, \mathrm{~A}_{12}=30, \mathrm{~A}_{13}=-20
$$

$\mathrm{A}_{21}=-5, \mathrm{~A}_{22}=0, \mathrm{~A}_{23}=10$
$A_{31}=10, A_{32}=-20, A_{33}=10$
$\operatorname{adj} . A=\left[\begin{array}{ccc}0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10\end{array}\right]$

Again,

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{50}\left[\begin{array}{ccc}
0 & -5 & 10 \\
30 & 0 & -20 \\
-20 & 10 & 10
\end{array}\right]\left[\begin{array}{l}
60 \\
90 \\
70
\end{array}\right]} \\
& =\frac{1}{50}\left[\begin{array}{c}
-450+700 \\
1800-1400 \\
-1200+900+700
\end{array}\right]
\end{aligned}
$$

EDUGRロSS

Wisdamisine Knawledge

$$
=\frac{1}{50}\left[\begin{array}{l}
250 \\
400 \\
400
\end{array}\right]=\left[\begin{array}{l}
5 \\
8 \\
8
\end{array}\right]
$$

Therefore, $\mathrm{x}=5, \mathrm{y}=8$ and $\mathrm{z}=8$.
The cost of onion, wheat and rice per kg are Rs. 5, Rs, 8 and Rs. 8 respectively.

Miscellaneous Examples

1. Prove that the determinant

$\left|\begin{array}{ccc}x & \sin \theta & \cos \theta \\ -\sin \theta & -x & 1 \\ \cos \theta & 1 & x\end{array}\right|$ is independent of θ.

Solution:

$$
\begin{aligned}
& \text { Let } \Delta=\left[\begin{array}{ccc}
x & \sin \theta & \cos \theta \\
-\sin \theta & -x & 1 \\
\cos \theta & 1 & x
\end{array}\right] \\
& \Delta=x\left|\begin{array}{cc}
-x & 1 \\
1 & x
\end{array}\right|-\sin \theta\left|\begin{array}{cc}
-\sin \theta & 1 \\
\cos \theta & x
\end{array}\right|+\cos \theta\left|\begin{array}{cc}
-\sin \theta & -x \\
\cos \theta & 1
\end{array}\right| \\
& =x\left(-x^{2}-1\right)-\sin \theta(-x \sin \theta-\cos \theta)+\cos \theta(-\sin \theta+x \cos \theta) \\
& =-x^{3}-x+x\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =-x^{3}
\end{aligned}
$$

Which is independent of θ (Proved)
2. Without expanding the determinant, prove that
$\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|$

Solution:

Start with LHS:

$$
\left|\begin{array}{lll}
a & a^{2} & b c \\
b & b^{2} & c a \\
c & c^{2} & a b
\end{array}\right|
$$

Multiplying R1 by a R2 by b and R3 by c, we have

$$
\left|\begin{array}{lll}
a^{2} & a^{3} & a b c \\
b^{2} & b^{3} & a b c \\
c^{2} & c^{3} & a b c
\end{array}\right|
$$

Taking out common elements

$$
\frac{a b c}{a b c}\left|\begin{array}{lll}
a^{2} & a^{3} & 1 \\
b^{2} & b^{3} & 1 \\
c^{2} & c^{3} & 1
\end{array}\right|
$$

Interchanging C_{1} and C_{3}
$=\left|\begin{array}{lll}a^{2} & a^{3} & 1 \\ b^{2} & b^{3} & 1 \\ c^{2} & c^{3} & 1\end{array}\right|=-\left|\begin{array}{lll}1 & a^{3} & a^{2} \\ 1 & b^{3} & b^{2} \\ 1 & c^{3} & c^{2}\end{array}\right|$

Interchanging C_{2} and C_{3}

$$
\begin{aligned}
& =\left|\begin{array}{lll}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right|=\left|\begin{array}{lll}
1 & a^{2} & a^{3} \\
1 & b^{2} & b^{3} \\
1 & c^{2} & c^{3}
\end{array}\right| \\
& =\text { RHS (proved) }
\end{aligned}
$$

3. Evaluate

$$
\left|\begin{array}{ccc}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha
\end{array}\right|
$$

Solution:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\
-\sin \beta & \cos \beta & 0 \\
\sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha
\end{array}\right| \\
& =\cos \alpha \cos \beta(\cos \alpha \cos \beta-0)-\cos \alpha \sin \beta(-\cos \alpha \sin \beta-0)-\sin \alpha\left(-\sin \alpha \sin ^{2} \beta-\sin \alpha \cos ^{2} \beta\right) \\
& =\cos ^{2} \alpha \cos ^{2} \beta+\cos ^{2} \alpha \sin ^{2} \beta+\sin ^{2} \alpha\left(\sin ^{2} \beta+\cos ^{2} \beta\right) \\
& =\cos ^{2} \alpha\left(\cos ^{2} \beta+\sin ^{2} \beta\right)+\sin ^{2} \alpha\left(\sin ^{2} \beta+\cos ^{2} \beta\right) \\
& =\cos ^{2} \alpha+\sin ^{2} \alpha=1
\end{aligned}
$$

4. If \mathbf{a}, \mathbf{b} and \mathbf{c} are real numbers, and

$$
\Delta=\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|=0
$$

Show that either $\mathbf{a}+\mathrm{b}+\mathbf{c}=\mathbf{0}$ or $\mathrm{a}=\mathrm{b}=\mathbf{c}$

Solution:

$$
\left|\begin{array}{lll}
b+c & c+a & a+b \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|
$$

Applying: $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
$\left|\begin{array}{ccc}2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|$
$2(a+b+c)\left|\begin{array}{ccc}1 & 1 & 1 \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|$
Since $\Delta=0$
This implies,
Either $2(a+b+c)=0$ or

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|=0
$$

Case 1: If $2(a+b+c)=0$
Then $(a+b+c)=0$
Case 2:
$\left|\begin{array}{ccc}1 & 1 & 1 \\ c+a & a+b & b+c \\ a+b & b+c & c+a\end{array}\right|=0$
Applying: $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & 0 & 0 \\
c+a & a+b-c-a & b+c-c-a \\
a+b & b+c-a-b & c+a-a-b
\end{array}\right|=0 \\
& \text { or }\left|\begin{array}{cc}
b-c & b-a \\
c-a & c-b
\end{array}\right|=0 \\
& =>(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{b})-(\mathrm{b}-\mathrm{a})(\mathrm{c}-\mathrm{a})=0 \\
& =>b c-b^{2}-c^{2}+b c-b c+a b+a c-a^{2}=0 \\
& =>-a^{2}-b^{2}-c^{2}+a b+b c+c a=0 \\
& \Rightarrow a^{2}+a^{2}+b^{2}+b^{2}+c^{2}+c^{2}-2 a b-2 b c-2 c a=0 \\
& \Rightarrow\left(a^{2}+b^{2}-2 a b\right)+\left(b^{2}+c^{2}-2 b c\right)+\left(a^{2}+c^{2}-2 c a\right)=0 \\
& \Rightarrow(\mathrm{a}-\mathrm{b})^{2}+(\mathrm{b}-\mathrm{c})^{2}+(\mathrm{c}-\mathrm{a})^{2}=0
\end{aligned}
$$

Above expression only possible, if $(a-b)=0$ and $(b-c)=0$ and $(c-a)=0$

That is $\mathrm{a}=\mathrm{b}$ and $\mathrm{b}=\mathrm{c}$ and $\mathrm{c}=\mathrm{a}$
Therefore, we have result, either $a+b+c=0$ or $a=b=c$.

5. Solve the equation

$$
\Delta=\left|\begin{array}{ccc}
x+a & x & x \\
x & x+a & x \\
x & x & x+a
\end{array}\right|=0, a \neq 0
$$

Solution:

$$
\left|\begin{array}{ccc}
x+a & x & x \\
x & x+a & x \\
x & x & x+a
\end{array}\right|=0
$$

Applying: $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
$\left|\begin{array}{ccc}3 x+a & 3 x+a & 3 x+a \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0$
$(3 x+a)\left|\begin{array}{ccc}1 & 1 & 1 \\ x & x+a & x \\ x & x & x+a\end{array}\right|=0$
Case 1: Either $3 x+a=0$
then $x=-a / 3$

Case 2: or

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & x+a & x \\
x & x & x+a
\end{array}\right|=0
$$

Applying:
$\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}$
$\left|\begin{array}{lll}1 & 0 & 0 \\ x & a & 0 \\ x & 0 & a\end{array}\right|=0$
$a^{\wedge} 2=0$
or $\mathrm{a}=0$
Not possible, as we are given $a \neq 0$.

So , $x=-a / 3$ is only the solution.

6. Prove that

$$
\Delta=\left|\begin{array}{ccc}
a^{2} & b c & a c+c^{2} \\
a^{2}+a b & b^{2} & a c \\
a b & b^{2}+b c & c^{2}
\end{array}\right|=4 a^{2} b^{2} c^{2}
$$

Solution:

LHS:

$$
\left|\begin{array}{ccc}
a^{2} & b c & a c+c^{2} \\
a^{2}+a b & b^{2} & a c \\
a b & b^{2}+b c & c^{2}
\end{array}\right|
$$

Taking a, b, and c from all the row1, row 2 and row 3 respectively.

$$
=a b c\left|\begin{array}{ccc}
a & c & (a+c) \\
(a+b) & b & a \\
b & (b+c) & c
\end{array}\right|
$$

$$
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}-\mathrm{R}_{3}
$$

$$
=a b c\left|\begin{array}{ccc}
a-a-b-b & c-b-b-c & a+c-a-c \\
a+b & b & a \\
b & b+c & c
\end{array}\right|
$$

$$
\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}
$$

$$
=a b c\left|\begin{array}{ccc}
-2 b & -2 b & 0 \\
a+b & b & a \\
b & b+c & c
\end{array}\right|=a b c\left|\begin{array}{ccc}
-2 b & 0 & 0 \\
a+b & -a & a \\
b & c & c
\end{array}\right|
$$

Wisdamisine Knawledge
$=a b c(-2 b)(-a c-a c)=4 a^{2} b^{2} c^{2}$

RHS (Proved)
7. If $A^{-1}=\left[\begin{array}{ccc}3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2\end{array}\right]$ and $B=$ find $(A B)^{-1}$.

Solution:

As we know, $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$
First find inverse of matrix B.
$|B|=\left|\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right|$
$=1(3-0)-2(-1-0)+(-2)(2-0)=1 \neq 0$ (Inverse of B is possible)
$\mathrm{B}_{11}=3, \mathrm{~B}_{12}=1, \mathrm{~B}_{13}=2$
$\mathrm{B}_{21}=2, \mathrm{~B}_{22}=1, \mathrm{~B}_{23}=2$
and
$B_{31}=6, B_{32}=2, B_{33}=5$

So adj. of B is
$\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right]$

Now,

$$
\mathrm{B}^{-1}=\frac{1}{|\mathrm{~B}|}(\operatorname{adj} . \mathrm{B})=\frac{1}{1}\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]
$$

From equation (1),

$$
\begin{aligned}
& (\mathrm{AB})^{-1}=\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right]\left[\begin{array}{ccc}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right] \\
& = \\
& {\left[\begin{array}{ccc}
9 & -3 & 5 \\
-2 & 3 & 1 \\
1 & 0 & 2
\end{array}\right]}
\end{aligned}
$$

8. Let $\mathbf{A}=\left[\begin{array}{cll}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]$,

$$
(\operatorname{adj} \cdot A)^{-1}=\operatorname{adj} \cdot\left(A^{-1}\right)
$$

(i)
(ii) $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$

Solution:
$|A|=\left|\begin{array}{crr}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right|$
$=-13 \neq 0$ (Inverse of A exists)
Cofactors of A are:

$$
\mathrm{A}_{11}=14, \mathrm{~A}_{12}=11, \mathrm{~A}_{13}=-5
$$

$$
\mathrm{A}_{21}=11, \mathrm{~A}_{22}=4, \mathrm{~A}_{29}=-3
$$

$$
A_{31}=-5, A_{32}=-3, A_{33}=-1
$$

So, adjoint of A is
$\left[\begin{array}{ccc}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right]$

Now, A^{-1}

EDUGRロSS

WIsdamisine Knawledae

$$
\frac{-1}{13}\left[\begin{array}{ccc}
14 & 11 & -5 \\
11 & 4 & -3 \\
-5 & -3 & -1
\end{array}\right]
$$

Again,
$|B|=\left|\begin{array}{ccc}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right|$
$=169 \neq 0$ (Inverse of A exists)
Cofactors of B are:
$B_{11}=-13, B_{12}=26, B_{13}=-13$
$B_{21}=26, B_{22}=-39, B_{23}=-13$
$B_{31}=-13, B_{32}=-13, B_{33}=-65$

Therefore, Inverse of B is

$$
\frac{-1}{13}\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 3 & 1 \\
1 & 1 & 5
\end{array}\right]
$$

Find: $\operatorname{adj} \mathrm{A}^{-1}$
$A^{-1}=\frac{-1}{13}\left[\begin{array}{ccc}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right]$
$\left|A^{-1}\right|=-1 / 13 \neq 0$ (After solving the determinant we get the value. Try at your own) Inverse of A^{-1} exists.

Let say cofactors of A^{-1} are represented as $C_{i j}$, we have

$$
\begin{aligned}
& \mathrm{C}_{11}=\frac{-1}{13}, \mathrm{C}_{12}=\frac{2}{13}, \mathrm{C}_{13}=\frac{-1}{13} \\
& \mathrm{C}_{21}=\frac{2}{13}, \mathrm{C}_{22}=\frac{-3}{13}, \mathrm{C}_{23}=\frac{-1}{13} \text { and } \\
& \mathrm{C}_{31}=\frac{-1}{13}, \mathrm{C}_{32}=\frac{-1}{13}, \mathrm{C}_{33}=\frac{-5}{13}
\end{aligned}
$$

Therefore:

$$
\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{C}^{-1}=\frac{1}{|\mathrm{C}|}(\text { adj. } \mathrm{C})
$$

Which implies,

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 3 & 1 \\
1 & 1 & 5
\end{array}\right]} \\
& =A
\end{aligned}
$$

Which is again given matrix A.

$$
\text { (i) } \quad(\text { adj. } A)^{-1}=\operatorname{adj} \cdot\left(A^{-1}\right)
$$

$$
\frac{-1}{13}\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 3 & 1 \\
1 & 1 & 5
\end{array}\right] \quad \frac{-1}{13}\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 3 & 1 \\
1 & 1 & 5
\end{array}\right]=
$$

$$
\text { (ii) } \quad\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}
$$

$$
\frac{-1}{13}\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 3 & 1 \\
1 & 1 & 5
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 3 & 1 \\
1 & 1 & 5
\end{array}\right]=
$$

9. Evaluate

$$
\left|\begin{array}{ccc}
x & y & x+y \\
y & x+y & x \\
x+y & x & y
\end{array}\right|
$$

Solution:

Consider,

$$
\Delta=\left|\begin{array}{ccc}
x & y & x+y \\
y & x+y & x \\
x+y & x & y
\end{array}\right|
$$

Operation: ${ }^{\left[\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right]}$

$$
\left|\begin{array}{ccc}
2(x+y) & 2(x+y) & 2(x+y) \\
y & x+y & x \\
x+y & x & y
\end{array}\right|
$$

Taking $2(x+y)$ common from first row
$2(x+y)\left|\begin{array}{ccc}1 & 1 & 1 \\ y & x+y & x \\ x+y & x & y\end{array}\right|$
Operation: $\left[\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}\right]$

$$
2(x+y)\left|\begin{array}{ccc}
1 & 0 & 0 \\
y & x+y-y & x-y \\
x+y & x-x-y & y-x-y
\end{array}\right|
$$

$$
2(x+y) \cdot 1\left|\begin{array}{cc}
x & x-y \\
-y & -x
\end{array}\right|
$$

$$
2(x+y)\left\{-x^{2}+y(x-y)\right\}
$$

$$
-2(x+y)\left(x^{2}-x y+y^{2}\right)
$$

$=-2\left(x^{\wedge} 3+y^{\wedge} 3\right)$
$\Delta=-2\left(x^{\wedge} 3+y^{\wedge} 3\right)$

10. Evaluate

$\left|\begin{array}{ccc}1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y\end{array}\right|$

Solution:

Consider

$$
\Delta=\left|\begin{array}{ccc}
1 & x & y \\
1 & x+y & y \\
1 & x & x+y
\end{array}\right|
$$

Operation: $\left[R_{2} \rightarrow R_{2}-R_{1}\right.$ and $\left.R_{3} \rightarrow R_{3}-R_{1}\right]$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & x & y \\
0 & x+y-x & 0 \\
0 & 0 & x+y-y
\end{array}\right| \\
& \left|\begin{array}{ccc}
1 & x & y \\
0 & y & 0 \\
0 & 0 & x
\end{array}\right| \\
& =\mathbf{x y}
\end{aligned}
$$

$$
\Rightarrow \Delta=x y
$$

Using properties of determinants in Exercises 11 to 15, prove that:
11.
$\left|\begin{array}{lll}\alpha & \alpha^{2} & \beta+\gamma \\ \beta & \beta^{2} & \gamma+\alpha \\ \gamma & \gamma^{2} & \alpha+\beta\end{array}\right|=(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)(\alpha+\beta+\gamma)$
Solution:

LHS

$$
\left|\begin{array}{lll}
\alpha & \alpha^{2} & \beta+\gamma \\
\beta & \beta^{2} & \gamma+\alpha \\
\gamma & \gamma^{2} & \alpha+\beta
\end{array}\right|
$$

Operation: $\left[\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{1}\right]$

$$
\begin{aligned}
& \left|\begin{array}{lll}
\alpha & \alpha^{2} & \alpha+\beta+\gamma \\
\beta & \beta^{2} & \alpha+\beta+\gamma \\
\gamma & \gamma^{2} & \alpha+\beta+\gamma
\end{array}\right| \\
& (\alpha+\beta+\gamma)\left|\begin{array}{lll}
\alpha & \alpha^{2} & 1 \\
\beta & \beta^{2} & 1 \\
\gamma & \gamma^{2} & 1
\end{array}\right|
\end{aligned}
$$

Operation: $\left[\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}\right.$ and $\left.\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}\right]$

$$
\begin{aligned}
& (\alpha+\beta+\gamma)\left|\begin{array}{ccc}
\alpha & \alpha^{2} & 1 \\
\beta-\alpha & \beta^{2}-\alpha^{2} & 0 \\
\gamma-\alpha & \gamma^{2}-\alpha^{2} & 0
\end{array}\right| \\
& = \\
& (\alpha+\beta+\gamma)\left|\begin{array}{cc}
\beta-\alpha & (\beta-\alpha)(\beta+\alpha) \\
\gamma-\alpha & (\gamma-\alpha)(\gamma+\alpha)
\end{array}\right| \\
& = \\
& (\alpha+\beta+\gamma)(\beta-\alpha)(\gamma-\alpha)\left|\begin{array}{cc}
1 & (\beta+\alpha) \\
1 & (\gamma+\alpha)
\end{array}\right| \\
& (\alpha+\beta+\gamma)(\beta-\alpha)(\gamma-\alpha)(\gamma+\alpha-\beta-\alpha) \\
& = \\
& (\alpha+\beta+\gamma)[-(\alpha-\beta)](\gamma-\alpha)[-(\beta-\gamma)] \\
& =(\alpha+\beta+\gamma)(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)
\end{aligned}
$$

$=$ RHS
12.
$\left|\begin{array}{ccc}x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x)$

Solution:

LHS=
$\left|\begin{array}{ccc}x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right|$
$=$
$\left|\begin{array}{lll}x & x^{2} & 1 \\ y & y^{2} & 1 \\ z & z^{2} & 1\end{array}\right|+\left|\begin{array}{lll}x & x^{2} & p x^{3} \\ y & y^{2} & p y^{3} \\ z & z^{2} & p z^{3}\end{array}\right|$
We have two determinants, say Δ_{1} and Δ_{2}
$=\Delta 1+\Delta 2$

$$
\Delta_{1}=\left|\begin{array}{lll}
x & x^{2} & 1 \\
y & y^{2} & 1 \\
z & z^{2} & 1
\end{array}\right|
$$

Operation: $\left[R_{2} \rightarrow R_{2}-R_{1}\right.$ and $\left.R_{3} \rightarrow R_{3}-R_{1}\right]$

$$
\begin{aligned}
& = \\
& \left|\begin{array}{ccc}
x & x^{2} & 1 \\
y-x & y^{2}-x^{2} & 0 \\
z-x & z^{2}-x^{2} & 1
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& = \\
& \left|\begin{array}{ll}
y-x & (y-x)(y+x) \\
z-x & (z-x)(z+x)
\end{array}\right| \\
& = \\
& (y-x)(z-x)\left|\begin{array}{cc}
1 & y+x \\
1 & z+x
\end{array}\right| \\
& =(y-x)(z-x)(z+x-y-x) \\
& =(x-y)(y-z)(z-x)
\end{aligned}
$$

Again:

$$
\begin{aligned}
& \Delta_{2}=\left|\begin{array}{lll}
x & x^{2} & p x^{3} \\
y & y^{2} & p y^{3} \\
z & z^{2} & p z^{3}
\end{array}\right| \\
& p x y z \Delta_{2}=\left|\begin{array}{lll}
1 & x & x^{2} \\
1 & y & y^{2} \\
1 & z & z^{2}
\end{array}\right| \\
& = \\
& -p x y z\left|\begin{array}{lll}
x^{2} & x & 1 \\
y^{2} & y & 1 \\
z^{2} & z & 1
\end{array}\right| \\
& = \\
& \text { pxyz }\left|\begin{array}{lll}
x & x^{2} & 1 \\
y & y^{2} & 1 \\
z & z^{2} & 1
\end{array}\right| \\
& =\operatorname{pxyz} \Delta 1
\end{aligned}
$$

Therefore: $\Delta_{1}+\Delta_{2}$

$$
\begin{aligned}
& (y-x)(z-x)(z-y)+p x y z(y-x)(z-x)(z-y) \\
& (1+p x y z)(y-x)(z-x)(z-y) \\
= & \\
= &
\end{aligned}
$$

= RHS
(Proved)

13. Prove that

$$
\left|\begin{array}{ccc}
3 a & -a+b & -a+c \\
-b+a & 3 b & -b+c \\
-c+a & -c+b & 3 c
\end{array}\right|=3(a+b+c)(a b+b c+c a)
$$

Solution:

LHS

$$
\left|\begin{array}{ccc}
3 a & -a+b & -a+c \\
-b+a & 3 b & -b+c \\
-c+a & -c+b & 3 c
\end{array}\right|
$$

Operation: $\left[\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\right]$

$$
\left|\begin{array}{ccc}
a+b+c & -a+b & -a+c \\
a+b+c & 3 b & -b+c \\
a+b+c & -c+b & 3 c
\end{array}\right|
$$

$$
(a+b+c)\left|\begin{array}{ccc}
1 & -a+b & -a+c \\
1 & 3 b & -b+c \\
1 & -c+b & 3 c
\end{array}\right|
$$

Operation: $\left[R_{2} \rightarrow R_{2}-R_{1}\right.$ and $\left.R_{3} \rightarrow R_{3}-R_{1}\right]$

$$
\begin{aligned}
& (a+b+c) \cdot 1\left|\begin{array}{ll}
2 b+a & a-b \\
a-c & 2 c+a
\end{array}\right| \\
& =(a+b+c)[(2 b+a)(2 c+a)-(a-b)(a-c)] \\
& =(a+b+c)\left[4 b c+2 a b+a^{2}-a^{2}+a c+a b-b c\right]
\end{aligned}
$$

$$
\begin{aligned}
& =3(a+b+c)(a b+b c+a c) \\
& =\text { RHS }
\end{aligned}
$$

Hence Proved.

14. Prove that

$$
\left|\begin{array}{ccc}
1 & 1+p & 1+p+q \\
2 & 3+2 p & 4+3 p+2 q \\
3 & 6+3 p & 10+6 p+3 q
\end{array}\right|=1
$$

Solution:

LHS
$\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 2 & 3+2 p & 4+3 p+2 q \\ 3 & 6+3 p & 10+6 p+3 q\end{array}\right|$
Operation: $\left[R_{2} \rightarrow R_{2}-2 R_{1}\right.$ and $\left.R_{3} \rightarrow R_{3}-3 R_{1}\right]$

$$
\left|\begin{array}{ccc}
1 & 1+p & 1+p+q \\
0 & 1 & 2+p \\
0 & 3 & 7+3 p
\end{array}\right|
$$

$$
=
$$

$$
1\left|\begin{array}{ll}
1 & 2+p \\
3 & 7+3 p
\end{array}\right|-0+0
$$

$$
=7+3 p-6-3 p
$$

$$
=1
$$

=RHS

Hence Proved.

15. Prove that

$\left|\begin{array}{lll}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|=0$

Solution:

LHS

$\left|\begin{array}{lll}\sin \alpha & \cos \alpha & \cos (\alpha+\delta) \\ \sin \beta & \cos \beta & \cos (\beta+\delta) \\ \sin \gamma & \cos \gamma & \cos (\gamma+\delta)\end{array}\right|$
$=\left|\begin{array}{lll}\sin \alpha & \cos \alpha & \cos \alpha \cos \delta-\sin \alpha \sin \delta \\ \sin \beta & \cos \beta & \cos \beta \cos \delta-\sin \beta \sin \delta \\ \sin \gamma & \cos \gamma & \cos \gamma \cos \delta-\sin \gamma \sin \delta\end{array}\right|$

Operation: $\left[\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+(\sin \delta) \mathrm{C}_{1}\right]$

$$
\begin{aligned}
& =\left|\begin{array}{lll}
\sin \alpha & \cos \alpha & \cos \alpha \cos \delta-\sin \alpha \sin \delta+\sin \alpha \sin \delta \\
\sin \beta & \cos \beta & \cos \beta \cos \delta-\sin \beta \sin \delta+\sin \beta \sin \delta \\
\sin \gamma & \cos \gamma & \cos \gamma \cos \delta-\sin \gamma \sin \delta+\sin \gamma \sin \delta
\end{array}\right| \\
& =\left|\begin{array}{lll}
\sin \alpha & \cos \alpha & \cos \alpha \cos \delta \\
\sin \beta & \cos \beta & \cos \beta \cos \delta \\
\sin \gamma & \cos \gamma & \cos \gamma \cos \delta
\end{array}\right| \\
& =\begin{array}{lll}
\cos \delta\left|\begin{array}{lll}
\sin \alpha & \cos \alpha & \cos \alpha \\
\sin \beta & \cos \beta & \cos \beta \\
\sin \gamma & \cos \gamma & \cos \gamma
\end{array}\right|
\end{array} .
\end{aligned}
$$

Column 2 and column 3 are identical, as per determinant property, value is zero.

Wisdamisine Knawledge
$=0$
$=$ RHS
16. Solve the system of equations
$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4 ; \quad \frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1 ; \quad \frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$

Solution:

Let
$\frac{1}{x}=u, \frac{1}{y}=v, \frac{1}{z}=w$
We have
$2 u+3 v+10 w=4 ;$
$4 u-6 v+5 w=1 ; \quad$ and
$6 u+9 v-20 w=2$

Below is the matrix from the given equations: $A X=B$

$$
\left[\begin{array}{ccc}
2 & 3 & 10 \\
4 & -6 & 5 \\
6 & 9 & -20
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

Let say
$A=\left[\begin{array}{ccc}2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20\end{array}\right]$
Then,
$|A|=1200 \neq 0$
A^{-1} exists.

Cofactors of A are:
$\mathrm{A}_{11}=75, \mathrm{~A}_{12}=110, \mathrm{~A}_{13}=72$
$A_{21}=150, A_{22}=-100, A_{23}=0$
$A_{31}=75, A_{32}=30, A_{33}=-24$
adj. $A=\left[\begin{array}{rrr}75 & 150 & 75 \\ 110 & -100 & 30 \\ 72 & 0 & -24\end{array}\right]$
Inverse of A is

$$
A^{-1}=\frac{\operatorname{adj} . A}{|A|}=\frac{1}{1200}\left[\begin{array}{rrr}
75 & 150 & 75 \\
110 & -100 & 30 \\
72 & 0 & -24
\end{array}\right]
$$

Resubstitute the values, to get answer in the form of x, y and z.

Since $A X=B$
$X=A^{-1} B$

$$
\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\frac{1}{1200}\left[\begin{array}{rrr}
75 & 150 & 75 \\
110 & -100 & 30 \\
72 & 0 & -24
\end{array}\right]\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

$$
\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\frac{1}{1200}\left[\begin{array}{c}
300+150+150 \\
440-100+60 \\
288+0-48
\end{array}\right]
$$

$$
=
$$

$\frac{1}{1200}\left[\begin{array}{l}600 \\ 400 \\ 240\end{array}\right]$

Which means:
$u=1 / 2, v=1 / 3$ and $w=1 / 5$

This implies:
$x=1 / u=2 y$
$=1 / v=3 z$
$=1 / w=5$
Answer!

Choose the correct answer in Exercise 17 to 19.
17. If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are in A.P., then the determinant is $\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$:
(A) 0
(B) 1
(C) x
(D) 2 x

Solution:
Option (A) is correct.
Explanation:
Since a, b, c are in A.P.
So, $b-a=c-b$
Let
$\Delta=\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$
Operation: $\left[\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}\right.$ and $\left.\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2}\right]$
$\left|\begin{array}{ccc}x+2 & x+3 & x+2 a \\ 1 & 1 & 2(b-a) \\ 1 & 1 & 2(c-b)\end{array}\right|$
$\left|\begin{array}{ccc}x+2 & x+3 & x+2 a \\ 1 & 1 & 2(b-a) \\ 1 & 1 & 2(b-a)\end{array}\right|$
Row 2 and row 3 are identical, so value is zero.
$=0$
18. If $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are non-zero real numbers, then the inverse of matrix $\mathbf{A}=\left[\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]$ is:
(A)
$\left[\begin{array}{lll}x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{1}\end{array}\right]$
(B)

$$
x y z\left[\begin{array}{lll}
x^{-1} & 0 & 0 \\
0 & y^{-1} & 0 \\
0 & 0 & z^{1}
\end{array}\right]
$$

(C)
$\frac{1}{x y z}\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]$
(D)
$\frac{1}{x y z}\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
Solution: Option (A) is correct.
Explanation:
Let $\mathbf{A}=\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]$
$|A|=x y z \neq 0 ;\left(A^{-1}\right.$ exists $)$

Now: Cofactors of A are:
$\mathrm{A}_{11}=y z, \mathrm{~A}_{12}=0, \mathrm{~A}_{13}=0$
$\mathrm{A}_{21}=0, \mathrm{~A}_{22}=x z, \mathrm{~A}_{23}=0$ and
$\mathrm{A}_{31}=0, \mathrm{~A}_{32}=0, \mathrm{~A}_{33}=x y$

Therefore:

$$
\begin{aligned}
& \mathrm{A}^{-1}=\frac{\operatorname{adj} . \mathrm{A}}{|\mathrm{~A}|}=\frac{1}{x y z}\left|\begin{array}{lll}
y z & 0 & 0 \\
0 & x z & 0 \\
0 & 0 & x y
\end{array}\right| \\
& \left|\begin{array}{lll}
\frac{y z}{x y z} & 0 & 0 \\
0 & \frac{x z}{x y z} & 0 \\
0 & 0 & \frac{x y}{x y z}
\end{array}\right| \\
& =\left|\begin{array}{lll}
\\
= & y^{-1} & 0 \\
0 & y^{-1} & 0 \\
0 & 0 & z^{-1}
\end{array}\right|
\end{aligned}
$$

19. Let $\mathbf{A}=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$ where $0 \leq \theta \leq 2 \pi$. then:
$(A) \operatorname{Det}(A)=0$
(B) $\operatorname{Det}(A) \in(2, \infty)$
(C) $\operatorname{Det}(A) \in(2,4)$
(D) $\operatorname{Det}(A) \in[2,4]$

Solution:

Option (D) is correct.

Explanation:

Let $A=\left[\begin{array}{llc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$
$|A|=2+2 \sin ^{\wedge} 2 \theta \neq 0 ;\left(A^{-1}\right.$ exists $)$
Since :
$-1 \leq \sin \theta \leq 1$
$0 \leq \sin ^{2} \theta \leq 1$
(The value of θ cannot be negative)
So, $0 \leq 2 \sin ^{2} \theta \leq 2$
Add 2 in all the expressions:
$2 \leq 2+2 \sin ^{2} \theta \leq 4$

Which is equal to
$2 \leq$ Det. $\mathrm{A} \leq 4$

