

NCERT Solution for Class 12 Chemistry Chapter 4 Chemical Kinetics

Q 1. From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.

(a)
$$3\ NO(g) o N_2O(g)\ Rate = \ k\left[NO\right]^2$$

(b)
$$H_2O_2(aq)+\ 3I^-(aq)+\ 2H^+
ightarrow\ 2H_2O(I)+\ I^-\ Rate=\ k\left\lceil H^2O^2
ight
ceil\left\lceil I^-
ight
ceil$$

(c)
$$CH_3CHO(g)
ightarrow \ CH_4(g) + \ CO(g) \ Rate = \ k \left[CH_3CHO
ight]^{rac{3}{2}}$$

(d)
$$C_2H_5Cl(g)
ightarrow C_2H_4(g) + HCl(g) \ Rate = k \left[C_2H_5Cl\right]$$

Ans:

(a) Given rate =
$$k [NO]^2$$

Therefore, order of the reaction = 2

Dimensions of
$$k=rac{\mathit{Rate}}{[\mathit{NO}]^2}$$

$$= \frac{mol \ L^{-1}s^{-1}}{(mol \ L^{-1})^2}$$

$$= \frac{mol \ L^{-1} s^{-1}}{mol^2 \ L^{-2}}$$

$$= \, L \; mol^{-1} s^{-1}$$

(b) Given rate =
$$k[H_2O_2][I^-]$$

Therefore, order of the reaction = 2

Dimensions of
$$\,k=rac{\mathit{Rate}}{[\mathit{H}_2\mathit{O}_2][I^-]}$$

$$=rac{mol\ L^{-1}S^{-1}}{(mol\ L^{-1})(mol\ L^{-1})}$$

$$= L \ mol^{-1} s^{-1}$$

(c) Given rate =
$$k\left[CH_{3}CHO\right]^{\frac{3}{2}}$$

Therefore, the order of reaction = $\frac{3}{2}$

Dimensions of
$$k=rac{Rate}{[CH_3CHO]^{rac{3}{2}}}$$

$$=rac{mol\ L^{-1}s^{-1}}{(mol\ L^{-1})^{rac{3}{2}}}$$

$$=rac{mol\ L^{-1}s^{-1}}{mol^{rac{3}{2}}\ L^{rac{3}{2}}}$$

$$L^{rac{1}{2}} \ mol^{-rac{1}{2}} \ s^{-1}$$

(d) Given rate =
$$k=\left[C_2H_5Cl\right]$$

Therefore, order of the reaction = 1

Dimension of
$$k=rac{Rate}{[C_2H_5Cl]}$$

$$= rac{mol \ L^{-1} s^{-1}}{mol \ L^{-1}}$$

$$= s^{-1}$$

Q 2. For the reaction:
$$2A+B
ightarrow A_2 B$$
 is $k\left[A\right]\left[B\right]^2$ with $k=2.0 imes 10^{-6} \ mol^{-2} L^2 \ s^{-1}$.

Calculate the initial rate of the reaction when [A] = 0.1 mol L-1, [B] = 0.2 mol L-1. Calculate the rate of reaction after [A] is reduced to 0.06 mol L-1

Ans:

The initial rate of reaction is

Rate =
$$k[A][B]^2$$

$$= \left(2.0 imes 10^{-6} mol^{-2} L^2 s^{-1}
ight) \left(0.1 \ mol \ L^{-1}
ight) \left(0.2 \ mol \ L^{-1}
ight)^2$$

$$= 8.0 imes 10^{-9} mol^{-2} L^2 s^{-1}$$

When [A] is reduced from $0.1\ mol\ L^{-1}\ to\ 0.06\ mol\ L^{-1}$, the concentration of A reacted =

$$(0.1\text{--}0.06)\ mol\ L^{-1}=\ 0.04\ mol\ L^{-1}$$

Therefore, concentration of B reacted $=\,rac{1}{2} imes\,0.04\;mol\;L^{-1}=\,0.02\;mol\;L^{-1}$

After [A] is reduced to $0.06 \ mol \ L^{-1}$, the rate of the reaction is given by,

Rate =
$$k[A][B]^2$$

$$= \left(2.0 imes 10^6 mol^{-2} L^2 s^{-1}
ight) \left(0.06 \ mol L^{-1}
ight) \left(0.18 \ mol \ L^{-1}
ight)^2$$

$$= 3.89 \ mol \ L^{-1}s^{-1}$$

Q 3. The decomposition of NH3 on platinum surface is zero order reaction. What are the rates of production of N2 and H2 if $k = 2.5 \times 10-4$ mol-1 L s -1?

Ans:

The decomposition of NH3 on platinum surface is represented by the following equation.

$$2NH^{3(g)}\stackrel{Pt}{
ightarrow} N_{2(g)} + \, 3H_{2(g)}$$

Therefore,

$$Rate = -\frac{1}{2} \frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3} \frac{d[H_2]}{dt}$$

However, it is given that the reaction is of zero order.

Therefore,

$$-\frac{1}{2}\frac{d[NH_3]}{dt} = \frac{d[N_2]}{dt} = \frac{1}{3}\frac{d[H_2]}{dt} = k$$

$$=~2.5 imes~10^{-4}~molL^{-1}s^{-1}$$

Therefore, the rate of production of $\,N_2\,$ is

$$rac{d[N_2]}{dt} = \, 2.5 imes \, 10^{-4} mol \; L^{-1} s^{-1}$$

And, the rate of production of $\,H_2\,$ is

$$rac{d[H_2]}{dt} = \, 3 imes \, 2.5 imes \, 10^{-4} mol \; L^{-1} s^{-1}$$

$$=~7.5\times~10^{-4}~mol~L^{-1}s^{-1}$$

Q 4. The decomposition of dimethyl ether leads to the formation of $CH_4, H_2, \ and \ CO$ and the

$$R' = k(A)^2$$

$$=4ka^2$$

$$=4R$$

Therefore, the rate of the reaction now will be 4 times the original rate.

(b) If the concentration of the reactant is reduced to half, i.e $[A]=rac{1}{2}a$, then the rate of the reaction would be

$$R" = k \left(\frac{1}{2}a\right)^2$$

$$=\frac{1}{4}ka$$

$$=\frac{1}{4}R$$

Therefore, the rate of the reaction will be reduced to $\frac{1}{4}^{th}$

Q 7. What is the effect of temperature on the rate constant of a reaction? How can this effect of temperature on rate constant be represented quantitatively?

Ans:

When a temperature of 10° rises for a chemical reaction then the rate constant increases and becomes near to double of its original value.

The temperature effect on the rate constant can be represented quantitatively by Arrhenius equation,

$$k = Ae^{-E_a/RT}$$

Where,

k = rate constant,

A = Frequency factor / Arrhenius factor,

R = gas constant

T = temperature

 E_a = activation energy for the reaction.

Q 8. In a pseudo first order reaction in water, the following results were obtained:

t/s	0	30	60	90
[Ester]mol / L	0.55	0.31	0.17	0.085

Calculate the average rate of reaction between the time interval 30 to 60 seconds.

Ans:

$$=\frac{d[Ester]}{dt}$$

$$= \frac{0.31-0.17}{60-30}$$

$$=\frac{0.14}{30}$$

$$= 4.67 \times 10^{-3} \ mol \ l^{-1} \ s^{-1}$$

(b) For a pseudo first order reaction,

$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$

For
$$t = 30 s$$

$$k_1 = \frac{2.303}{30} \log \frac{0.55}{0.31}$$

$$= 1.911 \times 10^{-2} s^{-1}$$

$$For t = 60 s$$

$$k_2 = \frac{2.303}{60} \log \frac{0.55}{0.17}$$

$$= 1.957 \times 10^{-2} s^{-1}$$

For
$$t = 90 s$$

$$k_3 = \frac{2.303}{90} \log \frac{0.55}{0.085}$$

$$= 2.075 \times 10^{-2} s^{-1}$$

Then, avg rate constant, $k=rac{k_1+k_2+k_3}{3}$

$$= \frac{\left(1.911 \times 10^{-2}\right) + \left(1.957 \times 10^{-2}\right) + \left(2.075 \times 10^{-2}\right)}{3}$$

$$=~1.98\times~10^{-2}~s^{-1}$$

- Q 9. A reaction is first order in A and second order in B.
- (i) Write the differential rate equation.

- (ii) How is the rate affected on increasing the concentration of B three times?
- (iii) How is the rate affected when the concentrations of both A and B are doubled?

Ans:

(a) The differential rate equation will be

$$-\frac{d[R]}{dt} = k[A][B]^2$$

(b) If the concentration of B is increased three times, then

$$-\frac{d[R]}{dt} = k [A] [3B]^2$$

$$= 9.k[A][B]^2$$

Therefore, the reaction rat will be increased by 9 times.

(c) When the concentrations of both A and B are doubled,

$$-\frac{d[R]}{dt} = k [2] [2B]^2$$

$$8.k[A][B]^2$$

Therefore, the rate of reaction will increase 8 times.

Q10. In a reaction between A and B, the initial rate of reaction (r0) was measured for different initial concentrations of A and B as given below:

$$A/mol\ L^{-1}$$
 0.20 0.20 0.40 $B/mol\ L^{-1}$ 0.30 0.10 0.05 $r_0/mol\ L^{-1}\ s^{-1}$ 5.07 \times 10 $^{-5}$ 5.07 \times 10 $^{-5}$ 1.43 \times 10 $^{-4}$

What is the order of the reaction with respect to A and B?

Ans

Let the order of the reaction with respect to A be x and with respect to B be y.

Then,

$$r_0 = k [A]^x [B]^y$$

$$5.07 \times 10^{-5} = k [0.20]^x [0.30]^y$$
 (i)

$$5.07 \times 10^{-5} = k [0.20]^x [0.10]^y$$
 (ii)

$$1.43 \times 10^{-4} = k [0.40]^x [0.05]^y$$
 (iii)

Dividing equation (i) by (ii), we get

$$\Rightarrow 1 = \frac{[0.30]^y}{[0.10]^y}$$

$$\Rightarrow \left(\frac{0.30}{0.10}\right)^0 = \left(\frac{0.30}{0.10}\right)^y$$

$$\Rightarrow y = 0$$

Dividing equation (iii) by (ii), we get

$$\tfrac{1.43\times 10^{-4}}{5.07\times 10^{-5}}=\tfrac{k[0.40]^x[0.05]^y}{k[0.20]^x[0.30]^y}$$

$$\Rightarrow \; rac{1.43 imes 10^{-4}}{5.07 imes 10^{-5}} = \; rac{[0.40]^x}{[0.20]^x} \qquad egin{bmatrix} Since \; y = 0, \ [0.05]^y = [0.30]^y = 1 \end{bmatrix}$$

$$\Rightarrow 2.821 = 2^x$$

$$\Rightarrow \log 2.821 = x \log 2$$
 (taking log on both sides)

$$\Rightarrow x = \frac{\log 2.821}{\log 2}$$

$$= 1.496$$

$$= 1.5 (Approximately)$$

Hence, the order of the reaction with respect to A is 1.5 and with respect to B is zero.

Q 11. The following results have been obtained during the kinetic studies of the reaction:

2A + B → C + D

Ехр.	$\frac{A}{molL^{-1}}$	$\frac{B}{mol L^{-1}}$	Initial rate of formation of $\frac{D}{mol\ L^{-1}\ min^{-1}}$
1	0.1	0.1	$6.0 imes 10^{-3}$
2	0.3	0.2	$7.2 imes~10^{-2}$
3	0.3	0.4	2.88×10^{-1}
4	0.4	0.1	$2.4 imes~10^{-2}$

Determine the rate law and the rate constant for the reaction.

Ans:

Let the order of the reaction with respect to A be x and with respect to B be y.

Therefore, rate of the reaction is given by,

According to the question,

$$6.0 imes 10^{-3} = k \left[0.1
ight]^x \left[0.1
ight]^y --- \text{(1)}$$

$$7.2 \times 10^{-2} = k [0.3]^x [0.2]^y$$
 ---(2)

$$2.88 \times 10^{-1} = k [0.3]^x [0.4]^y$$
 ---(3)

$$2.4 \times 10^{-2} = k [0.4]^x [0.1]^y$$
 ---(4)

Dividing equation (4) by (1), we get

$$\frac{2.4 \times 10^{-2}}{6.0 \times 10^{-3}} = \frac{k[0.4]^x [0.1]^y}{k[0.1]^x [0.1]^y} \ 4 = \frac{[0.4]^x}{[0.1]^x} \ 4 = \left(\frac{0.4}{0.1}\right)^x \ (4)^1 = \left(4\right)^x$$

X = 1

Dividing equation (3) by (2), we get

$$\frac{2.88 \times 10^{-1}}{7.2 \times 10^{-2}} = \frac{k[0.3]^x[0.4]^y}{k[0.3]^x[0.2]^y} \ 4 = \left(\frac{0.4}{0.2}\right)^y \ 4 = 2^y \ 2^2 = 2^y$$

y = 2

Hence, the rate law is

Rate =
$$k\left[A\right]\left[B\right]^2~k = \frac{\mathit{Rate}}{\left[A\right]\left[B\right]^2}$$

From experiment 1, we get

$$k = rac{6.0 imes 10^{-3} mol \; L^{-1} \; min^{-1}}{(0.1 \; mol \; L^{-1})(0.1 \; mol \; L^{-1})^2}$$

= 6.0
$$L^2 mol^{-2} min^{-1}$$

From experiment 2, we get

$$k = rac{7.2 imes 10^{-2} mol \; L^{-1} \; min^{-1}}{(0.3 \; mol \; L^{-1})(0.2 \; mol \; L^{-1})^2}$$

= 6.0
$$L^2 \ mol^{-2} \ min^{-1}$$

From experiment 1, we get

$$k = rac{2.88 imes 10^{-1} mol \; L^{-1} \; min^{-1}}{(0.3 \; mol \; L^{-1})(0.4 \; mol \; L^{-1})^2}$$

= 6.0
$$L^2 \ mol^{-2} \ min^{-1}$$

$$k = rac{2.4 imes 10^{-2} mol \; L^{-1} \; min^{-1}}{(0.4 \; mol \; L^{-1})(0.1 \; mol \; L^{-1})^2}$$

= 6.0
$$L^2 \ mol^{-2} \ min^{-1}$$

Thus, rate constant, k = 6.0 $L^2 \ mol^{-2} \ min^{-1}$

Q 12. The reaction between A and B is first order with respect to A and zero order with respect to B. Fill in the blanks in the following table:

Exp.	$\frac{A}{mol L^{-1}}$	$\frac{B}{motL^{-1}}$	Initial rate $\ mol \ L^{-1} \ min^{-1}$
1	0.1	0.1	2.0×10^{-2}
2	-	0.2	$4.0 imes 10^{-2}$
3	0.4	0.4	-
4	-	0.2	2.0×10^{-2}

Ans:

The given reaction is of the first order with respect to A and of zero-order with respect to B.

Thus, the rate of the reaction is given by,

Rate =
$$k [A]^1 [B]^0$$

Rate =
$$k[A]$$

From experiment 1, we get

$$2.0 imes 10^{-2} \ mol \ L^{-1} min^{-1} = \ k \ ig(0.1 \ mol \ L^{-1} ig)$$

$$\Rightarrow k = 0.2 \ min^{-1}$$

From experiment 2, we get

$$4.0\times\ 10^{-2}\ mol\ L^{-1}min^{-1}=\ 0.2min^{-1}\ [A]$$

$$\Rightarrow \ [A] = \ 0.2 \ mol \ L^{-1}$$

From experiment 3, we get

Rate =
$$0.2~min^{-1} imes 0.4~mol~L^{-1}$$

From experiment 4, we get

$$2.0 imes 10^{-2} \ mol \ L^{-1} min^{-1} = \ 0.2 \ min^{-1} \ [A]$$

$$\Rightarrow \ [A] = \ 0.1 \ mol \ L^{-1}$$

Q 13. Calculate the half-life of a first order reaction from their rate constants given below:

- (a) $200 \ s^{-1}$
- (b) $2 \ min^{-1}$
- (c) $4 \ years^{-1}$

Ans:

(a) Half life,
$$t_{\frac{1}{2}}=\frac{0.693}{k}$$

$$=\frac{0.693}{200 s^{-1}}$$

$$=3.47 s$$
 (Approximately)

(b)
$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$= \frac{0.693}{2 \ min^{-1}}$$

 $=0.35\ min$ (Approximately)

(c)
$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$= \frac{0.693}{4 \text{ years}^{-1}}$$

$$= 0.173 \ years$$
 (Approximately)

Q 14. The half-life for radioactive decay of 14C is 5730 years. An archaeological artifact containing wood had only 80% of the 14C found in a living tree. Estimate the age of the sample.

Ans:

$$= \frac{0.693}{5730} years^{-1}$$

It is known that,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$

$$= \frac{2.303}{0.693} \log \frac{100}{80}$$

$$=1845\; years$$
 (approximately)

Hence, the age of the sample is 1845 years.

Q 15. The experimental data for decomposition of $\,N_2O_5\,$

$$[2N_2O_5
ightarrow4NO_2+O_2]$$

in gas phase at 318K are given below:

T(s)	0	400	800	1200	1600	2000	2400	2800	3200
$10^2 imes [N_2 O_5] mol \; L^{-1}$	1.63	1.36	1.14	0.93	0.78	0.64	0.53	0.43	0.35

- (a) Plot [N2O5] against t.
- (b) Find the half-life period for the reaction.
- (c) Draw a graph between log[N2O5] and t.
- (d) What is the rate law?
- (e) Calculate the rate constant.
- (f) Calculate the half-life period from k and compare it with (b).

Ans:

(a)

(b) Time corresponding to the concentration, $\,rac{1.630 imes10^2}{2}\,\,mol\,\,L^{-1}=\,81.5mol\,\,L^{-1}\,$ is the half life.

From the graph, the half life obtained as 1450 s.

(c)

t(s)		
	$10^2 imes [N_2 O_5] mol \; L^{-1}$	$\log [N_2 O_5]$

0	1.63	-1.79
400	1 36	-1.87
800	1.14	-1.94
1200	0.93	-2.03
1600	0.78	-2.11
2000	0.64	-2.19
2400	0.53	-2.28
2800	0.43	-2.37
3200	0.35	-2.46

(d) The given reaction is of the first order as the plot, $\log{[N_2O_5]}$ v/s t, is a straight line.

Therefore, the rate law of the reaction is

Rate =
$$k \, [N_2 O_5]$$

(e) From the plot, $\log{[N_2O_5]}$ v/s t, we obtain

$$Slope = \frac{-2.46 - (-1.79)}{3200 - 0}$$

$$-0.67$$
 3200

Again, slope of the line of the plot $\log{[N_2O_5]}$ v/s t is given by

$$-\tfrac{k}{2.303}\,.$$

Therefore, we obtain,

$$-\tfrac{k}{2.303} \qquad -\tfrac{0.67}{3200}$$

(f) Half - life is given by,

$$t_{\frac{1}{2}} = \frac{0.639}{k}$$

$$= \frac{0.693}{4.82 \times 10^{-4}} S$$

$$=\frac{1.483}{10^3}s$$

$$= 1438s$$

This value, 1438 s, is very close to the value that was obtained from the graph.

Q 16. The rate constant for a first order reaction is 60 s-1. How much time will it take to reduce the initial concentration of the reactant to its 1/16th value?

Ans:

It is known that,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$

$$= \frac{2.303}{60 \ s^{-1}} \log \frac{1}{1/6}$$

$$=\frac{2.303}{60 s^{-1}} \log 16$$

$$=4.6\times 10^{-2} (approximately)$$

Hence, the required time is $4.6 imes 10^{-2} \ s$.

Q 17. During nuclear explosion, one of the products is 90Sr with half-life of 28.1 years. If $1\mu g$ of 90Sr was absorbed in the bones of a newly born baby instead of calcium, how much of it will remain after 10 years and 60 years if it is not lost metabolically.

Ans:

$$k = \frac{0.693}{t_{\frac{1}{2}}} = \frac{0.693}{28.1} \ y^{-1}$$

Here,

It is known that,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$

$$\Rightarrow 10 = \frac{2.303}{\frac{0.693}{28.1}} \log \frac{1}{[R]}$$

$$\Rightarrow$$
 $10 = \frac{2.303}{\frac{0.693}{28.1}} \left(-\log\left[R\right]\right)$

$$\Rightarrow \log[R] = -\frac{10 \times 0.693}{2.303 \times 28.1}$$

$$\Rightarrow$$
 [R] = antilog (-0.1071)

$$= 0.7814 \mu g$$

Therefore, $0.7814~\mu g$ of ^{90}Sr will remain after 10 years.

Again,

$$t= \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$

$$\Rightarrow 60 = \frac{2.303}{\frac{0.693}{28.1}} \log \frac{1}{[R]}$$

$$\Rightarrow log[R] = -\frac{60 \times 0.693}{2.303 \times 28.1}$$

$$[R] = antilog (-0.6425)$$

$$antilog\,(1.3575)$$

$$= 0.2278 \mu g$$

Therefore, $0.2278\mu g$ of ^{90}Sr will remain after 60 years.

Q 18. For a first order reaction, show that time required for 99% completion is twice the time required for the completion of 90% of reaction.

Ans:

For a first order reaction, the time required for 99% completion is

$$t_1 = \frac{2.303}{k} \log \frac{100}{100-99}$$

$$\frac{2.303}{\overline{k}}\log 100$$

$$=2 imes rac{2.303}{k}$$

For a first order reaction, the time required for 90% completion is

$$t_1 = \frac{2.303}{k} \log \frac{100}{100-90}$$

$$=\frac{2.303}{k}\log 10$$

$$=\frac{2.303}{k}$$

Therefore, $t_1=\ 2\ t_2$

Hence, the time required for 99% completion of a first order reaction is twice the time required for the completion of 90% of the reaction.

Q 19. A first order reaction takes 40 min for 30% decomposition. Calculate t1/2.

Ans:

For a first order reaction,

$$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]}$$

$$k = \frac{2.303}{40 \, min} \log \frac{100}{100-30}$$

$$= \frac{2.303}{40 \, min} \log \frac{10}{7}$$

$$= 8.918 \times 10^{-3} \ min^{-1}$$

Therefore, $t_{rac{1}{2}}$ of the decomposition reaction is

$$t_{\frac{1}{2}} = \frac{0.693}{k}$$

$$= \frac{0.693}{8.918 \times 10^{-3}} min$$

= 77.7 min (approximately)

Q 20. For the decomposition of azoisopropane to hexane and nitrogen at 543K, the following data are obtained.

t(sec)	P(mm of Hg)
0	35.0
360	54.0
720	63.0

Calculate the rate constant.

Ans:

The decomposition of azoisopropane to hexane and nitrogen at 543 K is represented by the following equation.

$$(CH_3)_2\,CHN = NCH\,(CH_3)_{2(g)} \to \,N_{2(g)} + \,C_6H_{14(g)}$$

At t = 0

 P_0

0 0

Att=t

 P_0-P

p p

After time, t, total pressure, $\,P_1=\,\left(P_0-p\right)+\,p+\,p\,$

$$\Rightarrow P_1 = P_0 + p$$

$$\Rightarrow p = P_1 - P_0$$

Therefore, $P_0-p = P_0-(P_t-P_0)$

$$=2P_0-P_t$$

For the first order reaction,

$$k = \frac{2.303}{t} \log \frac{P_0}{P_0 - p}$$

$$= \frac{2.303}{t} \log \frac{P_0}{2P_0 - P_t}$$

When t = 360 s,
$$k = \frac{2.303}{360 \ s} \log \frac{35.0}{2 \times 35.0 - 54.0}$$

$$= 2.175 \times 10^{-3} s^{-1}$$

When t = 720 s,

$$k = \frac{2.303}{720 \text{ s}} \log \frac{35.0}{2 \times 35.0 - 63.0}$$

$$= 2.235 \times 10^{-3} s^{-1}$$

Hence the average value of rate constant is.

$$k = \, {\textstyle{\frac{2.21 \times 10^{-3} + 2.235 \times 10^{-3}}{2}}} \, \, s^{-1}$$

$$= 2.21 \times 10^{-3} s^{-1}$$

Q 21. The following data were obtained during the first order thermal decomposition of SO2Cl2 at a constant volume.

$$SO_{2}CL_{2(g)}
ightarrow\ SO_{2(g)}CL_{2}\left(g
ight)$$

Experiment	Time/s	Total pressure / atm
1	0	0.5
2	100	0.6

Calculate the rate of the reaction when total pressure is 0.65 atm.

Ans:

The thermal decomposition of $SO_2CL_2\,\,$ at a constant volume is represented by the following equation.

$$SO_{2}CL_{2(g)}
ightarrow\ SO_{2(g)}CL_{2}\left(g
ight)$$

$$At t = 0$$

$$P_0$$

At t = t
$$P_0$$

After time t, total pressure, $\,P_t = \,(P_0 ext{-}p) + \,p + \,p\,$

$$\Rightarrow P_t = P_0 + p$$

$$\Rightarrow p = P_t - P_0$$

$$\therefore P_0 - p = P_o - (P_t - P_0)$$

$$=2P_0-P_t$$

For a first order reaction,

$$k=rac{2.303}{t}\lograc{P_0}{P_0-p}$$

$$= \frac{2.303}{t} \log \frac{P_0}{2P_0 - P_t}$$

When t = 100s,

$$k = \frac{2.303}{100 s} \log \frac{0.5}{2 \times 0.5 - 0.6}$$

$$=~2.231\times~10^{-3}~s^{-1}$$

$$P_0 + p = 0.65$$

$$\Rightarrow p = 0.65 - P_0$$

$$= 0.65-0.5$$

$$= 0.15 atm$$

Therefore, when the total pressure is 0.65 atm, pressure of $SO_{2}CL_{2}$ is

$$P_{SOCL_2} = P_0 - p$$

$$= 0.5-0.15$$

$$= 0.35 atm$$

Therefore, the rate of equation, when total pressure is 0.65 atm, is given by,

$$Rate = k(P_{SOCL_2})$$

$$= (2.23 \times 10^{-3} s^{-1}) (0.35) \ atm$$

$$= 7.8 \times 10^{-4} \ atm \ s^{-1}$$

Q 22. The rate constant for the decomposition of N2O5 at various temperatures is given below:

$T/^{\circ}C$	0	20	40	60	80
$10^5 imes k/s^{-1}$	0.0787	1.70	25.7	178	2140

Draw a graph between ln k and 1/T and calculate the values of A and Ea. Predict the rate constant at 30° and 50° C.

Ans:

From the given data, we obtain

$T/^{\circ}C$	0	20	40	60	80
T/K	273	293	313	333	353

$10^5 imes k/s^{-1}$	0.0787	1.70	25.7	178	2140
In K	-7.147	-4.075	-1.359	-0.577	3.063

Slope of the line,

$$\frac{y_2 - y_1}{x_2 - x_1} = -12.301 \, K$$

According to Arrhenius equation,

$$Slope = -rac{E_a}{R}$$

$$\Rightarrow E_a = -Slope \times R$$

$$= -(-12.301\,K) imes \left(8.314\,JK^{-1}\,mol^{-1}
ight)$$

$$=\ 102.27\ kJ\ mol^{-1}$$

Again,

In k = In
$$A - \frac{E_a}{RT}$$

In A = In
$$k+\frac{E_a}{RT}$$

When
$$T = 273 \, \text{k}$$
,

$$\ln k = -7.147$$

Then, In A =
$$-7.147 + \frac{102.27 \times 10^3}{8.314 \times 273}$$

$$= 37.911$$

$$\therefore A = 2.91 \times 10^6$$

$$\frac{1}{T} = 0.0033K = 3.3 \times 10^{-3}K$$

Then, at
$$\frac{1}{T}=~3.3 imes~10^{-3}K$$

$$In \ k = -2.8$$

Therefore,
$$k=~6.08 imes~10^{-2}s^{-1}$$

$$\frac{1}{T} = 0.0031K = 3.1 \times 10^{-3} K$$

Then,
$$at\frac{1}{T} = 3.1 \times 10^{-3} \ K$$

$$In \ k = -0.5$$

Therefore, k = 0.607 / s

Ans:

$$k = 2.418 \times 10^{-5} s^{-1}$$

$$E_a = 179.9kJ \ mol^{-1} = 179.9 \times 10^3 \ J \ mol^{-1}$$

According to the Arrhenius equation,

$$k = Ae^{-E_a/RT}$$

$$\Rightarrow$$
 In $k = InA - \frac{E_a}{RT}$

$$\Rightarrow \log k = \log A - \frac{E_a}{2.303 \ RT}$$

$$\Rightarrow \log A = \log k + \frac{E_a}{2.303 \ RT}$$

$$= \log \left(2.418 imes 10^{-5} \ s^{-1}
ight) + rac{179.9 imes 10^3 J mol^{-1}}{2.303 imes 8.314 \ Jk^{-1} \ mol^{-1} imes 546 \ K}$$

$$= (0.3835-5) + 17.2082$$

$$= 12.5917$$

Therefore, A = antilog (12.5917)

$$= 3.9 imes 10^{12} \ s^{-1}$$
 (approximately)

Q 24. Consider a certain reaction A \rightarrow Products with k = 2.0 × 10-2s-1. Calculate the concentration of A remaining after 100 s if the initial concentration of A is 1.0 mol L-1.

Ans:

$$k=\,2.0\times\,10^{-2}\;s^{-1}\;T=\,100\;s\;[A]_0=\,1.0\;mol^{-1}$$

Since the unit k is s^{-1} , the given reaction is a first order reaction.

Therefore,
$$k=\frac{2.303}{t}\log\frac{[A]_0}{[A]}$$

$$\Rightarrow \ 2.0 imes \ 10^{-2} \ s^{-1} = \ rac{2.303}{100 \ s} \log rac{1.0}{[A]}$$

$$\Rightarrow \ 2.0 imes \ 10^{-2} \ s^{-1} = \ rac{2.303}{100 \ s} \left(-\log{[A]}
ight)$$

$$\Rightarrow -\log\left[A\right] = \frac{2.0 \times 10^{-2} \times 100}{2.303}$$

$$\Rightarrow \ [A] = \ antilog \left(-rac{2.0 imes 10^{-2} imes 100}{2.303}
ight)$$

$$= 0.135 \ mol \ L^{-1}$$
 (approximately)

Hence, the remaining concentration of A is $0.135 \ mol \ L^{-1}$

Q 25. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with t 1/2 = 3.00 hours. What fraction of sample of sucrose remains after 8 hours?

For the first order reaction,

$$k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$$

It is given that , $t_{1\over 2}=~3.00~hours$.

Therefore,
$$k=rac{0.693}{t_{rac{1}{2}}} \, rac{0.693}{3} h^{-1}$$

$$= 0.231 h^{-1}$$

Then,
$$0.231 \; h^{-1} = \; {2.303 \over 8h} \log {[R]_0 \over [R]}$$

$$\Rightarrow \, \log \frac{[R]_0}{[R]} = \, \tfrac{0.231 \, h^{-1} \times 8 \; h}{2.303}$$

$$\Rightarrow \ \frac{[R]_0}{[R]} = \ antilog \, (0.8024)$$

$$\Rightarrow \ \frac{[R]_0}{[R]} = \ 6.3445$$

$$\Rightarrow rac{[R]}{[R]_0} = 0.1576$$
 (approx)

= 0.158

Hence, the fraction of sample of sucrose that remains after 8 hours is 0.158.

Q 26. The decomposition of hydrocarbon follows the equation

$$k = (4.5 \times 10_{11} S - 1) e_{-28000} K/T$$

Calculate E_a .

Ans:

The given equation is
$$\,k=\,\left(4.5 imes10_{11}S\!-\!1
ight)e_{-28000}K/T\,$$
(i)

The Arrhenius equation is given by,

$$k=Ae^{-E_a/RT}$$
(ii)

From equation (i) and (ii), we obtain

$$\frac{E_a}{RT} = \frac{28000 \ K}{T}$$

$$\Rightarrow E_a = R \times 28000 K$$

$$= 8.314~J~K^{-1}mol^{-1} \times 28000~K$$

 $232791\ J\ mol^{-1}$

$$= 232.791 \ kJ \ mol^{-1}$$

Q 27. The rate constant for the first order decomposition of H2O2 is given by the following equation:

$$log \ k = 14.34 - 1.25 \times 10^4 \ K/T$$

Calculate Ea for this reaction and at what temperature will its half-period be 256 minutes?

Ans:

Arrhenius equation is given by,

$$k=Ae^{-E_a/RT}$$

$$\Rightarrow$$
 In $k = In A - \frac{E_a}{RT}$

$$\Rightarrow$$
 In $k = \log A - \frac{E_a}{RT}$

$$\Rightarrow \log k = \log A - rac{E_a}{2.303 \; RT} \qquad ...(i)$$

The given equation is

$$\log k = 14.34 - 1.25 \times 10^4 \ K/T$$
 ...(ii)

From eqn (i) and (ii), we obtain

$$\frac{E_a}{2.303 \ RT} = \frac{1.25 \times 10^4 \ K}{T}$$

$$\Rightarrow E_a = 1.25 \times 10^4 K \times 2.303 \times R$$

$$= 1.25 \times 10^4~K \times 2.303 \times 8.314~J~K^{-1} mol^{-1}$$

$$= 239339.3 \ J \ mol^{-1} \ (approximately)$$

$$=\;239.34\;kJ\;mol^{-1}$$

Also, when $t_{\frac{1}{2}}=256$ minutes,

$$k=rac{0.693}{t_{rac{1}{2}}}$$

$$=\frac{0.693}{256}$$

$$=~2.707 imes~10^{-3}~min^{-1}$$

$$=4.51 \times 10^{-5} \ s^{-1}$$

It is also given that, $log~k=~14.34\text{--}1.25 imes~10^4~K/T$

$$\Rightarrow log (4.51 \times 10^{-5}) = 14.34 - \frac{1.25 \times 10^4 \ K}{T}$$

$$\Rightarrow log(0.654-05) = 14.34 - \frac{1.25 \times 10^4 \ K}{T}$$

$$\Rightarrow \frac{1.25 \times 10^4 \text{ K}}{T} = 18.686$$

$$= 668.95 K$$

$$= 669 K (approximately)$$

Q 28. The decomposition of A into product has value of k as $4.5 \times 103 \text{ s}-1$ at 10°C and energy of activation 60 kJ mol-1. At what temperature would k be $1.5 \times 104 \text{ s}-1$?

Ans:

From Arrhenius equation, we obtain

$$\log rac{k_2}{k_1} = rac{E_a}{2.303\,R} \left(rac{T_2-T_1}{T_1T_2}
ight)$$

Also,
$$k_1 = \, 4.5 imes \, 10^3 \; s^{-1} \; T_1 = \, 273 + \, 10 = \, 283 \; K \; k_2$$

$$= 1.5 \times 10^4 \, s^{-1}$$

$$E_a = 60 \ kJ \ mol^{-1} = 6.0 \times 10^4 \ J \ mol^{-1}$$

Then,

$$\log \frac{1.5 \times 10^4}{4.5 \times 10^3} = \frac{6.0 \times 10^4 \ J \ mol^{-1}}{2.303 \times 8.314 \ J \ K^{-1} \ mol^{-1}} \left(\frac{T_2 - 283}{283 \ T_2}\right)$$

$$\Rightarrow 0.5229 = 3133.627 \left(\frac{T_2 - 283}{283 T_2} \right)$$

$$\Rightarrow \frac{0.5229 \times 283 \ T_2}{3133.627} = T_2 - 283$$

$$\Rightarrow 0.9528 T_2 = 283$$

$$\Rightarrow T_2 = 297.019 K \quad (approximately)$$

$$= 297 K$$

$$= 24^{\circ}$$

Q 29. The time required for 10% completion of a first order reaction at 298K is equal to that required for its 25% completion at 308K. If the value of A is $4 \times 1010s - 1$. Calculate k at 318K and Ea. Ans:

For a first order reaction,

$$t = \frac{2.303}{k} \log \frac{a}{a-x}$$

at 298 K,
$$t = \frac{2.303}{k} \log \frac{100}{90}$$

$$= \frac{0.1054}{k}$$

at 208 K,
$$t' = \frac{2.303}{k'} \log \frac{100}{75}$$

$$=\frac{2.2877}{k}$$

According to the question,

$$t = t$$

$$\Rightarrow \frac{0.1054}{k} = \frac{0.2877}{k}$$

$$\Rightarrow \frac{k'}{k} = 2.7296$$

From Arrhenius equation, we get

$$\log \frac{k'}{k} = \frac{E_a}{2.303 R} \left(\frac{T'-T}{TT'} \right)$$

$$\Rightarrow \log(2.7296) = \frac{E_a}{2.303 \times 8.314} \left(\frac{308-298}{298 \times 308}\right)$$

$$\Rightarrow E_a = \frac{2.303 \times 8.314 \times 298 \times 308 \times \log(2.7296)}{308 - 298}$$

$$= 76640.096 \ J \ mol^{-1}$$

$$= 76.64 \ kJ \ mol^{-1}$$

To calculate k at 318 K,

It is given that,
$$A=~4 imes~10^{10} s^{-1}$$
 , T = 318 K

Again, from Arrhenius equation, we get

$$\log k = \log A - \frac{E_a}{2.303 RT}$$

$$=\,\log\left(4\times10^{10}\right) - \tfrac{76.64\times10^3}{2.303\times8.314\times318}$$

$$= (0.6021 + 10) - 12.5876$$

$$= -1.9855$$

Therefore, k = Antilog(-1.9855)

$$= 1.034 \times 10^{-2} \ s^{-1}$$

Q 30. The rate of a reaction quadruples when the temperature changes from 293 K to 313 K. Calculate the energy of activation of the reaction assuming that it does not change with temperature.

Ans:

From Arrhenius equation, we get

$$\log rac{k_2}{k_1} = rac{E_a}{2.303\,R} \left(rac{T_2-T_1}{T_1T_2}
ight)$$

From the question we have, $\,K_2=\,4K_1\,$

$$T_1 = 293 K$$

$$T_2 = 313 K$$

Therefore,
$$\log \frac{4K_1}{K_2} = \frac{E_a}{2.303 \times 8.314} \left(\frac{313-293}{293 \times 313} \right)$$

$$\Rightarrow 0.6021 = \frac{20 \times E_a}{2.303 \times 8.314 \times 293 \times 313}$$

$$\Rightarrow E_a = \frac{0.6021 \times 2.303 \times 8.314 \times 293 \times 313}{20}$$

$$= 52863.33 \ J \ mol^{-1}$$

$$= 52.86 \ kJ \ mol^{-1}$$

Hence, the required energy of activation is $52.86 \; kJ \; mol^{-1}$.