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Just as a mountaineer climbs a mountain – because it is there, so
a good mathematics student studies new material because

it is there. — JAMES B. BRISTOL 

7.1  Introduction
Differential Calculus is centred on the concept of the
derivative. The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
functions and calculating the slope of such lines. Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.

If a function f  is differentiable in an interval I, i.e., its
derivative f ′exists at each point of I, then a natural question
arises that given f ′at each point of I, can we determine
the function? The functions that could possibly have given
function as a derivative are called anti derivatives (or
primitive) of the function. Further, the formula that gives
all these anti derivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantaneous velocity of an
object at any instant, then there arises a natural question, i.e., can we determine the
position of the object at any instant? There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:
(a) the problem of finding a function whenever its derivative is given,
(b) the problem of finding the area bounded by the graph of a function under certain

conditions.
These  two problems lead to the two forms of the integrals, e.g., indefinite and

definite integrals, which together constitute the Integral Calculus.
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There is a connection, known as the Fundamental Theorem of Calculus, between
indefinite integral and definite integral which makes the definite integral as a practical
tool for science and engineering. The definite integral is also used to solve many interesting
problems from various disciplines like economics, finance and probability.

In this Chapter, we shall confine ourselves to the study of indefinite and definite
integrals and their elementary properties including some techniques of integration.

7.2  Integration as an Inverse Process of Differentiation
Integration is the inverse process of differentiation. Instead of differentiating a function,
we are given the derivative of a function and asked to find its primitive, i.e., the original
function. Such a process is called integration or anti differentiation.
Let us consider the following examples:

We know that (sin )d x
dx

 = cos x ... (1)

3

( )
3

d x
dx

 = x2 ... (2)

and ( )xd e
dx

= ex ... (3)

We observe that in (1), the function cos x is the derived function of sin x. We say

that sin x is an anti derivative (or an integral) of cos x. Similarly, in (2) and (3), 
3

3
x

 and

ex are the anti derivatives (or integrals) of x2 and ex, respectively. Again, we note that
for any real number C, treated as constant function, its derivative is zero and hence, we
can write (1), (2) and (3) as follows :

(sin + C) cos=
d x x
dx

, 
3

2( + C)
3

=
d x x
dx

and ( + C) =x xd e e
dx

Thus, anti derivatives (or integrals) of the above cited functions are not unique.
Actually, there exist infinitely many anti derivatives of each of these functions which
can be obtained by choosing C arbitrarily from the set of real numbers. For this reason
C is customarily referred to as arbitrary constant. In fact, C is the parameter by
varying which one gets different anti derivatives (or integrals) of the given function.

More generally, if there is a function F such that F ( ) = ( )d x f x
dx , ∀ x ∈ I (interval),

then for any arbitrary real number C, (also called constant of integration)

[ ]F ( ) + Cd x
dx

 = f (x), x ∈ I

https://www.learncbse.in/ncert-books/
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Thus, {F + C, C ∈ R} denotes a family of anti derivatives of f.

Remark  Functions with same derivatives differ by a constant. To show this, let g and h
be two functions having the same derivatives on an interval I.
Consider the function f = g – h defined by f (x) = g (x) – h(x), ∀ x ∈ I

Then
df
dx = f′ = g′  – h′ giving  f′ (x) = g′ (x) – h′ (x) ∀ x ∈ I

or f ′ (x) = 0, ∀ x ∈ I by hypothesis,
i.e., the rate of change of f with respect to x is zero on I and hence f is constant.

In view of the above remark, it is justified to infer that the family {F + C, C ∈ R}
provides all possible anti derivatives of f.

We introduce a new symbol, namely, ( )f x dx∫  which will represent the entire
class of anti derivatives read as the indefinite integral of f with respect to x.

Symbolically, we write ( ) = F ( ) + Cf x dx x∫ .

Notation Given that  ( )dy f x
dx

= , we write y = ( )f x dx∫ .

For the sake of convenience, we mention below the following symbols/terms/phrases
with their meanings as given in the Table (7.1).

Table 7.1

Symbols/Terms/Phrases Meaning

( )f x dx∫ Integral of f with respect to x

f (x) in ( )f x dx∫ Integrand

x in  ( )f x dx∫ Variable of integration

Integrate Find the  integral
An integral of f A function F such that

F′(x) = f (x)
Integration The process of finding the integral

Constant of Integration Any real number C, considered as
constant function
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We already know the formulae for the derivatives of many important functions.
From these formulae, we can write down immediately the corresponding formulae
(referred to as standard formulae) for the integrals of these functions, as listed below
which will be used to find integrals of other functions.

Derivatives Integrals (Anti derivatives)

(i)
1

1

n
nd x x

dx n

+⎛ ⎞
=⎜ ⎟+⎝ ⎠

 ;
1

C
1

n
n xx dx

n

+

= +
+∫ , n ≠ –1

Particularly, we note that

( ) 1d x
dx

=  ;       Cdx x= +∫

(ii) ( )sin cosd x x
dx

=  ; cos sin Cx dx x= +∫

(iii) ( )– cos sind x x
dx

=  ; sin cos Cx dx – x= +∫

(iv) ( ) 2tan secd x x
dx

=  ; 2sec tan Cx dx x= +∫

(v) ( ) 2– cot cosecd x x
dx

=  ; 2cosec cot Cx dx – x= +∫

(vi) ( )sec sec tand x x x
dx

=  ; sec tan sec Cx x dx x= +∫

(vii) ( )– cosec cosec cotd x x x
dx

=  ; cosec cot – cosec Cx x dx x= +∫

(viii) ( )– 1
2

1sin
1

d x
dx – x

=  ;
– 1

2
sin C

1

dx x
– x

= +∫

(ix) ( )– 1
2

1– cos
1

d x
dx – x

=  ;
– 1

2
cos C

1

dx – x
– x

= +∫

(x) ( )– 1
2

1tan
1

d x
dx x

=
+  ;

– 1
2 tan C

1
dx x

x
= +

+∫

(xi) ( )– 1
2

1– cot
1

d x
dx x

=
+  ;

– 1
2 cot C

1
dx – x

x
= +

+∫
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(xii) ( )– 1
2

1sec
1

d x
dx x x –

=  ;
– 1

2
sec C

1

dx x
x x –

= +∫

(xiii) ( )– 1
2

1– cosec
1

d x
dx x x –

=  ;
– 1

2
cosec C

1

dx – x
x x –

= +∫

(xiv) ( )x xd e e
dx

=  ; Cx xe dx e= +∫

(xv) ( ) 1log | |d x
dx x

= ;
1 log | | Cdx x
x

= +∫

(xvi)
x

xd a a
dx log a

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 ; C

x
x aa dx

log a
= +∫

Note  In practice, we normally do not mention the interval over which the various
functions are defined. However, in any specific problem one has to keep it in mind.

7.2.1 Geometrical interpretation of indefinite integral

Let f (x) = 2x. Then 2( ) Cf x dx x= +∫ . For different values of C, we get different
integrals. But these integrals are very similar geometrically.

Thus, y = x2 + C, where C is arbitrary constant, represents a family of integrals. By
assigning different values to C, we get different members of the family. These together
constitute the indefinite integral. In this case, each integral represents a parabola with
its axis along y-axis.

Clearly, for C = 0, we obtain y = x2, a parabola with its vertex on the origin. The
curve y = x2 + 1 for C = 1 is obtained by shifting the parabola y = x2 one unit along
y-axis in positive direction. For C = – 1, y = x2 – 1 is obtained by shifting the parabola
y = x2 one unit along y-axis in the negative direction. Thus, for each positive value of C,
each parabola of the family has its vertex on the positive side of the y-axis and for
negative values of C, each has its vertex along the negative side of the y-axis. Some of
these have been shown in the Fig 7.1.

Let us consider the intersection of all these parabolas by a line x = a. In the Fig 7.1,
we have taken a > 0. The same is true when a < 0. If the line x = a intersects the
parabolas y = x2, y = x2 + 1, y = x2 + 2, y = x2 – 1, y = x2 – 2 at P0, P1, P2, P–1, P–2 etc.,

respectively, then 
dy
dx  at these points equals 2a. This indicates that the tangents to the

curves at these points are parallel. Thus, 2
C2 C F ( )x dx x x= + =∫ (say), implies that
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the tangents to all the curves y = FC (x), C ∈ R, at the points of intersection of the
curves by the line x = a, (a ∈ R), are parallel.

Further, the following equation (statement) ( ) F ( ) C (say)f x dx x y= + =∫ ,
represents a family of curves. The different values of C will correspond to different
members of this family and these members can be obtained by shifting any one of the
curves parallel to itself. This is the geometrical interpretation of indefinite integral.

7.2.2 Some properties of indefinite integral
In this sub section, we shall derive some properties of indefinite integrals.

(I) The process of differentiation and integration are inverses of each other in the
sense of the following results :

( )d f x dx
dx ∫  = f (x)

and ( )f x dx′∫  = f (x) + C, where C is any arbitrary constant.

Fig 7.1
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Proof Let F be any anti derivative of f, i.e.,

F( )d x
dx

 = f (x)

Then ( )f x dx∫  = F(x) + C

Therefore ( )d f x dx
dx ∫  = ( )F ( ) + Cd x

dx

= F ( ) = ( )d x f x
dx

Similarly, we note that

f ′(x) = ( )d f x
dx

and hence ( )f x dx′∫  = f (x) + C

where C is arbitrary constant called constant of integration.
(II) Two indefinite integrals with the same derivative lead to the same family of

curves and so they are equivalent.
Proof Let f and g be two functions such that

( )d f x dx
dx ∫  = ( )d g x dx

dx ∫

or ( ) ( )d f x dx – g x dx
dx

⎡ ⎤
⎣ ⎦∫ ∫  = 0

Hence ( ) ( )f x dx – g x dx∫ ∫ = C, where C is any real number   (Why?)

or ( )f x dx∫  = ( ) Cg x dx +∫

So the families of curves { }1 1( ) C , C Rf x dx + ∈∫
and { }2 2( ) C , C Rg x dx + ∈∫  are identical.

Hence, in this sense, ( ) and ( )f x dx g x dx∫ ∫  are equivalent.
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Note The equivalence of the families { }1 1( ) + C ,Cf x dx ∈∫ R  and

{ }2 2( ) + C ,Cg x dx ∈∫ R  is customarily expressed by writing ( ) = ( )f x dx g x dx∫ ∫ ,

without mentioning the parameter.

(III) [ ]( ) + ( ) ( ) + ( )f x g x dx f x dx g x dx=∫ ∫ ∫
Proof By Property (I), we have

[ ( ) + ( )]d f x g x dx
dx

⎡ ⎤
⎣ ⎦∫  = f (x) + g (x) ... (1)

 On the otherhand, we find that

( ) + ( )d f x dx g x dx
dx

⎡ ⎤
⎣ ⎦∫ ∫  = ( ) + ( )d df x dx g x dx

dx dx∫ ∫
= f (x) + g (x) ... (2)

  Thus, in view of Property (II), it follows by (1) and (2)  that

( )( ) ( )f x g x dx+∫ = ( ) ( )f x dx g x dx+∫ ∫ .

(IV)  For any real number k, ( ) ( )k f x dx k f x dx=∫ ∫

Proof By the Property (I), ( ) ( )d k f x dx k f x
dx

=∫ .

Also ( )d k f x dx
dx

⎡ ⎤
⎣ ⎦∫  =  ( ) = ( )dk f x dx k f x

dx ∫

 Therefore, using the Property (II), we have ( ) ( )k f x dx k f x dx=∫ ∫ .
(V) Properties (III) and (IV) can be generalised to a finite number of functions f1, f2,

..., fn and the real numbers, k1, k2, ..., kn giving

[ ]1 1 2 2( ) ( ) ( )n nk f x k f x ... k f x dx+ + +∫
= 1 1 2 2( ) ( ) ( )n nk f x dx k f x dx ... k f x dx+ + +∫ ∫ ∫ .

To find an anti derivative of a given function, we search intuitively for a function
whose derivative is the given function. The search for the requisite function for finding
an anti derivative is known as integration by the method of inspection. We illustrate it
through some examples.
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Example 1 Write an anti derivative for each of the following functions using the
method of inspection:

(i) cos 2x (ii) 3x2 + 4x3 (iii)
1
x , x ≠ 0

Solution
(i) We look for a function whose derivative is cos 2x. Recall that

d
dx  sin 2x = 2 cos 2x

or cos 2x = 
1
2

d
dx  (sin 2x) =

1 sin 2
2

d x
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

Therefore, an anti derivative of cos 2x is 
1 sin 2
2

x .

(ii) We look for a function whose derivative is 3x2 + 4x3. Note that

( )3 4d x x
dx

+ = 3x2 + 4x3.

Therefore, an anti derivative of 3x2 + 4x3  is  x3 + x4.
(iii) We know that

1 1 1(log ) 0 and [log ( )] ( 1) 0d dx , x – x – , x
dx x dx – x x

= > = = <

Combining above, we get ( ) 1log 0d x , x
dx x

= ≠

Therefore, 
1 logdx x
x

=∫  is one of the anti derivatives of 
1
x

.

Example 2 Find the following integrals:

(i)
3

2
1x – dx

x∫ (ii)   
2
3( 1)x dx+∫ (iii)   ∫

3
2 1( 2 – )+ xx e dx

x

Solution
(i) We have

3
2

2
1 –x – dx x dx – x dx

x
=∫ ∫ ∫ (by Property V)
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= 
1 1 2 1

1 2C C
1 1 2 1

–x x–
–

+ +⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

;  C1, C2 are constants of integration

= 
2 1

1 2C C
2 1

–x x– –
–

+  = 
2

1 2
1 + C C

2
x –

x
+

= 
2 1 + C

2
x

x
+ , where C = C1 – C2 is another constant of integration.

Note  From now onwards, we shall write only one constant of integration in the
final answer.

(ii) We have
2 2
3 3( 1)x dx x dx dx+ = +∫ ∫ ∫

=

2 1
3

C2 1
3

x x
+

+ +
+

 = 
5
33 C

5
x x+ +

(iii) We have 
3 3
2 21 1( 2 ) 2x xx e – dx x dx e dx – dx

x x
+ = +∫ ∫ ∫ ∫

=

3 1
2

2 – log + C3 1
2

xx e x
+

+
+

=
5
22 2 – log + C

5
xx e x+

Example 3 Find the following integrals:

(i) (sin cos )x x dx+∫ (ii) cosec (cosec cot )x x x dx+∫

(iii) 2
1 sin
cos
– x dx

x∫
Solution

(i) We have
(sin cos ) sin cosx x dx x dx x dx+ = +∫ ∫ ∫

= – cos sin Cx x+ +
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(ii) We have
2(cosec (cosec + cot ) cosec cosec cotx x x dx x dx x x dx= +∫ ∫ ∫

= – cot cosec Cx – x +
(iii) We have

2 2 2
1 sin 1 sin

cos cos cos
– x xdx dx – dx

x x x
=∫ ∫ ∫

= 2sec tan secx dx – x x dx∫ ∫
= tan sec Cx – x +

Example 4 Find the anti derivative F of  f defined by f (x) = 4x3 – 6, where F (0) = 3

Solution One anti derivative of f (x) is x4 – 6x since

4( 6 )d x – x
dx

 = 4x3 – 6

Therefore, the anti derivative F is given by

F(x) = x4 – 6x + C, where C is constant.

Given that F(0) = 3, which gives,

3 = 0 – 6 × 0 + C    or    C = 3
Hence, the required anti derivative is the unique function F defined by

F(x) = x4 – 6x + 3.

Remarks
(i) We see that if F is an anti derivative of f, then so is F + C, where C is any

constant. Thus, if we know one anti derivative F of a function f, we can write
down an infinite number of anti derivatives of f by adding any constant to F
expressed by F(x)  + C, C ∈ R. In applications, it is often necessary to satisfy an
additional condition which then determines a specific value of C giving unique
anti derivative of the given function.

(ii) Sometimes, F is not expressible in terms of elementary functions viz., polynomial,
logarithmic, exponential, trigonometric functions and their inverses etc. We are

therefore blocked for finding ( )f x dx∫ . For example, it is not possible to find
2– xe dx∫  by inspection since we can not find a function whose derivative is 

2– xe
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(iii) When the variable of integration is denoted by a variable other than x, the integral
formulae are modified accordingly. For instance

4 1
4 51C C

4 1 5
yy dy y

+

= + = +
+∫

7.2.3 Comparison between differentiation and integration
1. Both are operations on functions.
2. Both satisfy the property of linearity, i.e.,

(i) [ ]1 1 2 2 1 1 2 2( ) ( ) ( ) ( )d d dk f x k f x k f x k f x
dx dx dx

+ = +

(ii) [ ]1 1 2 2 1 1 2 2( ) ( ) ( ) ( )k f x k f x dx k f x dx k f x dx+ = +∫ ∫ ∫
Here k1 and k2 are constants.

3. We have already seen that all functions are not differentiable. Similarly, all functions
are not integrable. We will learn more about nondifferentiable functions and
nonintegrable functions in higher classes.

4. The derivative of a function, when it exists, is a unique function. The integral of
a function is not so. However, they are unique upto an additive constant, i.e., any
two integrals of a function differ by a constant.

5. When a polynomial function P is differentiated, the result is a polynomial whose
degree is 1 less than the degree of  P. When a polynomial function P is integrated,
the result is a polynomial whose degree is 1 more than that of P.

6. We can speak of the derivative at a point. We never speak of the integral at a
point, we speak of the integral of a function over an interval on which the integral
is defined as will be seen in Section 7.7.

7. The derivative of a function has a geometrical meaning, namely, the slope of the
tangent to the corresponding curve at a point. Similarly, the indefinite integral of
a function represents geometrically, a family of curves placed parallel to each
other having parallel tangents at the points of intersection of the curves of the
family with the lines orthogonal (perpendicular) to the axis representing the variable
of integration.

8. The derivative is used for finding some physical quantities like the velocity of a
moving particle, when the distance traversed at any time t is known. Similarly,
the integral is used in calculating the distance traversed when the velocity at time
t is known.

9. Differentiation is a process involving limits. So is integration, as will be seen in
Section 7.7.
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10. The process of differentiation and integration are inverses of each other as
discussed in Section 7.2.2 (i).

EXERCISE 7.1
Find an anti derivative (or integral) of the following functions by the method of inspection.

1. sin 2x 2. cos 3x 3. e2x

4. (ax + b)2 5. sin 2x – 4 e3x

Find the following integrals in Exercises 6 to 20:

6. 3(4 + 1) xe dx∫ 7. 2
2

1(1 – )x dx
x∫ 8. 2( )ax bx c dx+ +∫

9. 2(2 )xx e dx+∫ 10.
21x – dx

x
⎛ ⎞
⎜ ⎟
⎝ ⎠∫ 11.

3 2

2
5 4x x – dx
x

+
∫

12.
3 3 4x x dx

x
+ +

∫ 13.
3 2 1

1
x x x – dx

x –
− +

∫ 14. (1 )– x x dx∫

15. 2( 3 2 3)x x x dx+ +∫ 16. (2 3cos )xx – x e dx+∫
17. 2(2 3sin 5 )x – x x dx+∫ 18. sec (sec tan )x x x dx+∫

19.
2

2
sec

cosec
x dx
x∫ 20. 2

2 – 3sin
cos

x
x∫ dx.

Choose the correct answer in Exercises 21 and 22.

21. The anti derivative of 
1x
x

⎛ ⎞+⎜ ⎟
⎝ ⎠

 equals

(A)
1 1
3 21 2 C

3
x x+ + (B)

2
232 1 C

3 2
x x+ +

(C)
3 1
2 22 2 C

3
x x+ + (D)

3 1
2 23 1 C

2 2
x x+ +

22. If 3
4

3( ) 4d f x x
dx x

= −  such that f (2) = 0. Then f (x) is

(A) 4
3

1 129
8

x
x

+ − (B) 3
4

1 129
8

x
x

+ +

(C) 4
3

1 129
8

x
x

+ + (D) 3
4

1 129
8

x
x

+ −
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7.3  Methods of Integration
In previous section, we discussed integrals of those functions which were readily
obtainable from derivatives of some functions. It was based on inspection, i.e., on the
search of a function F whose derivative is f which led us to the integral of f. However,
this method, which depends on inspection, is not very suitable for many functions.
Hence, we need to develop additional techniques or methods for finding the integrals
by reducing them into standard forms. Prominent among them are methods based on:

1. Integration by Substitution
2. Integration using Partial Fractions
3. Integration by Parts

7.3.1 Integration by substitution
In this section, we consider the method of integration by substitution.

The given integral ( )f x dx∫  can be transformed into another form by changing
the independent variable x to t by substituting x = g (t).

Consider I = ( )f x dx∫

Put x = g(t) so that 
dx
dt

 = g′(t).

We write dx = g′(t) dt

Thus I = ( ) ( ( )) ( )f x dx f g t g t dt= ′∫ ∫
This change of variable formula is one of the important tools available to us in the

name of integration by substitution. It is often important to guess what will be the useful
substitution. Usually, we make a substitution for a function whose derivative also occurs
in the integrand as illustrated in the following examples.

Example 5 Integrate the following functions w.r.t. x:
(i) sin mx (ii) 2x sin (x2 + 1)

(iii)
4 2tan secx x

x
(iv)

1

2
sin (tan )

1

– x
x+

Solution
(i) We know that derivative of mx is m. Thus, we make the substitution

mx = t so that mdx = dt.

Therefore,      
1sin sinmx dx t dt
m

=∫ ∫  =  – 1
m

cos t + C  = – 
1
m cos mx + C



INTEGRALS         301

(ii) Derivative of x2 + 1 is 2x. Thus, we use the substitution x2 + 1 = t so that
2x dx = dt.

Therefore,  22 sin ( 1) sinx x dx t dt+ =∫ ∫  =  – cos t + C  = – cos (x2 + 1) + C

(iii) Derivative of x  is 
1
21 1

2 2

–
x

x
= . Thus, we use the substitution

1so that giving
2

x t dx dt
x

= =  dx = 2t dt.

Thus,
4 2 4 2tan sec 2 tan secx x t t t dtdx

tx
=∫ ∫  = 4 22 tan sect t dt∫

Again, we make another substitution tan t = u so that sec2 t dt = du

Therefore, 4 2 42 tan sec 2t t dt u du=∫ ∫  = 
5

2 C
5

u
+

= 52 tan C
5

t +  (since u = tan t)

= 52 tan C (since )
5

x t x+ =

Hence,
4 2tan secx x dx

x∫  = 52 tan C
5

x +

Alternatively, make the substitution tan x t=

(iv) Derivative of  1
2

1tan
1

– x
x

=
+

. Thus, we use the substitution

tan–1 x = t so that 21
dx

x+
 = dt.

Therefore ,  
1

2
sin (tan ) sin

1

– x dx t dt
x

=
+∫ ∫  =  – cos t + C = – cos(tan –1x) + C

Now, we discuss some important integrals involving trigonometric functions and
their standard integrals using substitution technique. These will be used later without
reference.

(i) ∫ tan = log sec + Cx dx x

We have
sintan
cos

xx dx dx
x

=∫ ∫
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Put  cos x = t so that sin x dx = – dt

Then tan log C log cos Cdtx dx – – t – x
t

= = + = +∫ ∫
or tan log sec Cx dx x= +∫

(ii) ∫cot = log sin + Cx dx x

We have
coscot
sin

xx dx dx
x

=∫ ∫
Put  sin x = t so that cos x dx = dt

Then cot dtx dx
t

=∫ ∫  = log Ct +  = log sin Cx +

(iii) ∫sec = log sec + tan + Cx dx x x

We have
sec (sec tan )sec

sec + tan
x x xx dx dx

x x
+

=∫ ∫
Put sec x + tan x = t so that sec x (tan x + sec x) dx = dt

Therefore, sec log + C = log sec tan Cdtx dx t x x
t

= = + +∫ ∫
(iv) ∫cosec = log cosec – cot + Cx dx x x

We have
cosec (cosec cot )cosec

(cosec cot )
x x xx dx dx

x x
+

=
+∫ ∫

Put cosec x + cot x = t so that – cosec x (cosec x + cot x) dx = dt

So cosec – – log | | – log |cosec cot | Cdtx dx t x x
t

= = = + +∫ ∫

=
2 2cosec cot– log C

cosec cot
x x
x x
−

+
−

= log cosec cot Cx – x +

Example 6 Find the following integrals:

(i) 3 2sin cosx x dx∫ (ii)    
sin

sin ( )
x dx

x a+∫     (iii)  
1

1 tan
dx

x+∫
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Solution
(i) We have

3 2 2 2sin cos sin cos (sin )x x dx x x x dx=∫ ∫
= 2 2(1 – cos ) cos (sin )x x x dx∫

Put t = cos x so that dt = – sin x dx

Therefore,    2 2sin cos (sin )x x x dx∫  = 2 2(1 – )t t dt− ∫

= 
3 5

2 4( – ) C
3 5
t t– t t dt – –

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∫

= 3 51 1cos cos C
3 5

– x x+ +

(ii) Put x + a = t. Then dx = dt. Therefore

sin sin ( )
sin ( ) sin

x t – adx dt
x a t

=
+∫ ∫

= 
sin cos cos sin

sin
t a – t a dt

t∫

= cos – sin cota dt a t dt∫ ∫
= 1(cos ) (sin ) log sin Ca t – a t⎡ ⎤+⎣ ⎦

= 1(cos ) ( ) (sin ) log sin ( ) Ca x a – a x a⎡ ⎤+ + +⎣ ⎦

= 1cos cos (sin ) log sin ( ) C sinx a a a – a x a – a+ +

Hence, 
sin

sin ( )
x dx

x a+∫  = x cos a – sin a log |sin (x + a)| + C,

where,  C = – C1 sin a + a cos a, is another arbitrary constant.

(iii)
cos

1 tan cos sin
dx x dx

x x x
=

+ +∫ ∫

= 
1 (cos + sin + cos – sin )
2 cos sin

x x x x dx
x x+∫
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= 
1 1 cos – sin
2 2 cos sin

x xdx dx
x x

+
+∫ ∫

= 
1C 1 cos sin

2 2 2 cos sin
x x – x dx

x x
+ +

+∫ ... (1)

Now, consider cos sinI
cos sin

x – x dx
x x

=
+∫

Put cos x + sin x = t so that (cos x – sin x) dx = dt

Therefore       2I log Cdt t
t

= = +∫ = 2log cos sin Cx x+ +

Putting it in (1), we get

1 2C C1+ + log cos sin
1 tan 2 2 2 2

dx x x x
x
= + +

+∫

= 1 2C C1+ log cos sin
2 2 2 2
x x x+ + +

= 1 2C C1+ log cos sin C C
2 2 2 2
x x x ,⎛ ⎞+ + = +⎜ ⎟

⎝ ⎠

EXERCISE 7.2
Integrate the functions in Exercises 1 to 37:

1. 2
2

1
x
x+

2. ( )2log x
x

3.
1
logx x x+

4. sin sin (cos )x x 5. sin ( ) cos ( )ax b ax b+ +

6. ax b+ 7. 2x x + 8. 21 2x x+

9. 2(4 2) 1x x x+ + + 10.
1

x – x 11.
4

x
x +

, x > 0

12.
1

3 53( 1)x – x 13.
2

3 3(2 3 )
x

x+ 14.
1

(log )mx x
, x > 0

15. 29 4
x

– x 16. 2 3xe + 17. 2x

x
e
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18.
1

21

–tan xe
x+

19.
2

2
1
1

x

x
e –
e +

20.
2 2

2 2

x – x

x – x
e – e
e e+

21. tan2 (2x – 3) 22. sec2 (7 – 4x) 23.
1

2

sin

1

– x

– x

24.
2cos 3sin
6cos 4sin

x – x
x x+ 25. 2 2

1
cos (1 tan )x – x 26.

cos x
x

27. sin 2 cos 2x x 28.
cos

1 sin
x

x+ 29. cot x log sin x

30.
sin

1 cos
x

x+ 31. ( )2
sin

1 cos
x
x+ 32.

1
1 cot x+

33.
1

1 tan– x 34.
tan

sin cos
x

x x 35. ( )21 log x
x

+

36. ( )2( 1) logx x x
x

+ +
37.

( )3 1 4sin tan

1

–x x

x8+

Choose the correct answer in Exercises 38 and 39.

38. 10
9

10

10 10 log
10

x
e

x

x dx
x
+

+∫  equals

(A) 10x – x10 + C (B) 10x + x10 + C
(C) (10x – x10)–1 + C (D) log (10x + x10) + C

39. 2 2 equals
sin cos

dx
x x∫

(A) tan x + cot x + C (B)  tan x – cot x + C
(C) tan x cot x + C (D)  tan x – cot 2x + C

7.3.2  Integration using trigonometric identities
When the integrand involves some trigonometric functions, we use some known identities
to find the integral as illustrated through the following example.

Example 7 Find (i) 2cos x dx∫  (ii) sin 2 cos 3x x dx∫  (iii) 3sin x dx∫
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Solution
(i) Recall the identity cos 2x = 2 cos2 x – 1, which gives

cos2 x = 
1 cos 2

2
x+

Therefore,      2cos∫ x dx  = 
1 (1 + cos 2 )
2

x dx∫ = 
1 1 cos 2
2 2

dx x dx+∫ ∫

= 
1 sin 2 C

2 4
x x+ +

(ii) Recall the identity sin x cos y = 
1
2

[sin (x + y) + sin (x – y)] (Why?)

Then   sin 2 cos3∫ x x dx  = 
1 sin 5 sin
2

•⎡ ⎤
⎣ ⎦∫ ∫x dx x dx

= 
1 1 cos 5 cos C
2 5

– x x⎡ ⎤+ +⎢ ⎥⎣ ⎦

= 
1 1cos 5 cos C

10 2
– x x+ +

(iii) From the identity sin 3x = 3 sin x – 4 sin3 x, we find that

sin3 x = 
3sin sin 3

4
x – x

Therefore,      3sin x dx∫  = 
3 1sin sin 3
4 4

x dx – x dx∫ ∫

                                      = 
3 1– cos cos 3 C
4 12

x x+ +

Alternatively, 3 2sin sin sinx dx x x dx=∫ ∫  = 2(1 – cos ) sinx x dx∫
Put cos x = t so that – sin x dx = dt

Therefore,     3sin x dx∫  = ( )21 – t dt− ∫  = 
3

2 C
3
t– dt t dt – t+ = + +∫ ∫

= 31cos cos C
3

– x x+ +

Remark It can be shown using trigonometric identities that both answers are equivalent.
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EXERCISE 7.3
Find the integrals of the functions in Exercises 1 to 22:

1. sin2 (2x + 5) 2. sin 3x cos 4x 3. cos 2x cos 4x cos 6x
4. sin3 (2x + 1) 5. sin3 x cos3 x 6. sin x sin 2x sin 3x

7. sin 4x sin 8x 8.
1 cos
1 cos

– x
x+ 9.

cos
1 cos

x
x+

10. sin4 x 11. cos4 2x 12.
2sin

1 cos
x
x+

13. cos 2 cos 2
cos cos

x –
x –

α
α

14.
cos sin

1 sin 2
x – x

x+
15. tan3 2x sec 2x

16. tan4x 17.
3 3

2 2
sin cos
sin cos

x x
x x
+

18.
2

2
cos 2 2sin

cos
x x

x
+

19. 3
1

sin cosx x
20.

( )2
cos 2

cos sin
x

x x+
21. sin – 1 (cos x)

22.
1

cos ( ) cos ( )x – a x – b
Choose the correct answer in Exercises 23 and 24.

23.
2 2

2 2
sin cos is equal to
sin cos

x x dx
x x
−

∫
(A) tan x + cot x + C (B) tan x + cosec x + C
(C) – tan x + cot x + C (D) tan x + sec x + C

24. 2
(1 ) equals

cos ( )

x

x
e x dx

e x
+

∫
(A) – cot (exx) + C (B) tan (xex) + C
(C) tan (ex) + C (D) cot (ex) + C

7.4  Integrals of Some Particular Functions
In this section, we mention below some important formulae of integrals and apply them
for integrating many other related standard integrals:

(1) ∫ 2 2
1 –= log + C

2 +–
dx x a

a x ax a
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(2) ∫ 2 2
1 += log + C

2 ––
dx a x

a a xa x

(3) ∫ – 1
2 2

1 tan Cdx x= +
a ax + a

(4) ∫ 2 2
2 2

= log + – + C
–

dx x x a
x a

(5) ∫ – 1
2 2

= sin + C
–

dx x
aa x

(6) ∫ 2 2
2 2

= log + + + C
+

dx x x a
x a

We now prove the above results:

(1) We have  2 2
1 1

( ) ( )x – a x ax – a
=

+

= 
1 ( ) – ( ) 1 1 1
2 ( ) ( ) 2

x a x – a –
a x – a x a a x – a x a
⎡ ⎤+ ⎡ ⎤=⎢ ⎥ ⎢ ⎥+ +⎣ ⎦⎣ ⎦

Therefore,  2 2
1
2

dx dx dx–
a x – a x ax – a
⎡ ⎤

= ⎢ ⎥+⎣ ⎦
∫ ∫ ∫

= [ ]1 log ( )| log ( )| C
2

| x – a – | x a
a

+ +

= 
1 log C
2

x – a
a x a

+
+

(2) In view of (1) above, we have

2 2
1 1 ( ) ( )

2 ( ) ( )–
a x a x

a a x a xa x
⎡ ⎤+ + −

= ⎢ ⎥+ −⎣ ⎦
 = 

1 1 1
2a a x a x

⎡ ⎤+⎢ ⎥− +⎣ ⎦
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      Therefore, 2 2–
dx

a x∫  = 
1
2

dx dx
a a x a x
⎡ ⎤+⎢ ⎥− +⎣ ⎦∫ ∫

= 
1 [ log | | log | |] C
2

a x a x
a
− − + + +

= 
1 log C
2

a x
a a x

+
+

−

Note  The technique used in (1) will be explained in Section 7.5.

(3) Put x = a tan θ. Then dx = a sec2 θ dθ.

Therefore,      2 2
dx

x a+∫  = 
2

2 2 2
θ θ
θ

sec
tan

a d
a a+∫

= 11 1 1θ θ C tan C– xd
a a a a

= + = +∫
(4) Let x = a secθ. Then dx = a secθ tan θ d θ.

Therefore,
2 2

dx

x a−
∫  =

2 2 2

secθ tanθ θ

sec θ

a d

a a−
∫

= 1secθ θ log secθ + tanθ + Cd =∫

=
2

12log 1 Cx x –
a a
+ +

= 2 2
1log log Cx x – a a+ − +

= 2 2log + Cx x – a+ , where C = C1 – log |a |
(5) Let x = a sinθ. Then dx = a cosθ dθ.

Therefore,  
2 2

dx

a x−
∫  =

2 2 2

θ θ

θ

cos

sin

a d

a – a
∫

= 1θ = θ + C = sin C– xd
a
+∫

(6) Let x = a tanθ. Then dx = a sec2θ dθ.

Therefore,
2 2

dx

x a+
∫  =

2

2 2 2

θ θ

θ

sec

tan

a d

a a+
∫

  = 1θ θsecθ θ = log (sec tan ) Cd + +∫
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=
2

12log 1 Cx x
a a
+ + +

= 2
1log log Cx x a | a |2+ + − +

= 2log Cx x a2+ + + , where C = C1 – log |a|

Applying these standard formulae, we now obtain some more formulae which
are useful from applications point of view and can be applied directly to evaluate
other integrals.

(7) To find the integral 2
dx

ax bx c+ +∫ , we write

ax2 + bx + c = 
2 2

2
22 4

b c b c ba x x a x –
a a a a a

⎡ ⎤⎛ ⎞⎡ ⎤ ⎛ ⎞+ + = + +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

Now, put 
2
bx t
a

+ = so that dx = dt and writing 
2

2
24

c b– k
a a

= ± . We find the

integral reduced to the form 2 2
1 dt
a t k±∫  depending upon the sign of 

2

24
c b–
a a

⎛ ⎞
⎜ ⎟
⎝ ⎠

and hence can be evaluated.

(8) To find the integral of the type 
2

dx

ax bx c+ +
∫ , proceeding as in (7), we

obtain the integral using the standard formulae.

(9) To find the integral of the type 2
px q dx

ax bx c
+

+ +∫ , where p, q, a, b, c are

constants, we are to find real numbers A, B such that

2+ = A ( ) + B = A (2 ) + Bdpx q ax bx c ax b
dx

+ + +

To determine A and B, we equate from both sides the coefficients of x and the
constant terms. A and B are thus obtained and hence the integral is reduced to
one of the known forms.
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(10) For the evaluation of the integral of the type 
2

( )px q dx

ax bx c

+

+ +
∫ , we proceed

as in (9) and transform the integral into known standard forms.
Let us illustrate the above methods by some examples.

Example 8 Find the following integrals:

(i) 2 16
dx

x −∫ (ii) 22

dx

x x−
∫

Solution

(i) We have 2 2 216 4
dx dx

x x –
=

−∫ ∫  = 
4log C

8 4
x –
x

1
+

+
[by 7.4 (1)]

(ii)
( )2 22 1 1

=
−

∫ ∫
dx dx

x x – x –

Put x – 1 = t. Then dx = dt.

Therefore,
22

dx

x x−
∫  =

21

dt

– t
∫  = 1sin ( ) C– t + [by 7.4 (5)]

= 1sin ( – 1) C– x +

Example 9 Find the following integrals :

(i) 2 6 13
dx

x x− +∫ (ii) 23 13 10
dx

x x+ −∫ (iii) 25 2

dx

x x−
∫

Solution
(i) We have  x2 – 6x + 13 = x2 – 6x + 32 – 32 + 13 = (x – 3)2 + 4

So,
6 13
dx

x x2 − +∫  =
( )2 2

1
3 2

dx
x – +∫

Let x – 3 = t. Then dx = dt

Therefore, 6 13
dx

x x2 − +∫  =  1
2 2

1 tan C
2 22

–dt t
t

= +
+∫ [by 7.4 (3)]

= 11 3tan C
2 2

– x –
+
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(ii) The given integral is of the form 7.4 (7). We write the denominator of the integrand,

23 13 10x x –+  =
2 13 103

3 3
xx –⎛ ⎞+⎜ ⎟

⎝ ⎠

=
2 213 173

6 6
x –

⎡ ⎤⎛ ⎞ ⎛ ⎞+⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

(completing the square)

Thus
3 13 10

dx
x x2 + −∫  = 2 2

1
3 13 17

6 6

dx

x⎛ ⎞ ⎛ ⎞+ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫

Put 
13
6

x t+ = . Then dx = dt.

Therefore,
3 13 10

dx
x x2 + −∫  = 2

2

1
3 17

6

dt

t ⎛ ⎞− ⎜ ⎟
⎝ ⎠

∫

= 1

17
1 6log C17 173 2

6 6

t –

t
+

× × +
[by 7.4 (i)]

= 1

13 17
1 6 6log C13 1717

6 6

x –

x

+
+

+ +

= 1
1 6 4log C

17 6 30
x
x
−

+
+

= 1
1 3 2 1 1log C log

17 5 17 3
x
x
−

+ +
+

=
1 3 2log C

17 5
x
x
−

+
+ , where C = 1

1 1C log
17 3

+
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(iii) We have 
2 25 2 5

5

dx dx
xx x x –

2
=

⎛ ⎞−
⎜ ⎟
⎝ ⎠

∫ ∫

=
2 2

1
5 1 1

5 5

dx

x – –⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫  (completing the square)

Put 
1
5

x – t= . Then dx = dt.

Therefore,
5 2

dx

x x2 −
∫  =

2
2

1
5 1

5

dt

t – ⎛ ⎞
⎜ ⎟
⎝ ⎠

∫

=
2

21 1log C
55

t t – ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

[by 7.4 (4)]

= 21 1 2log C
5 55

xx – x –+ +

Example 10 Find the following integrals:

(i)
2

2 6 5
x dx

x x2

+
+ +∫ (ii) 2

3

5 4

x dx
x x

+

− +
∫

Solution
(i) Using the formula 7.4 (9), we express

x + 2 = ( )2A 2 6 5 Bd x x
dx

+ + +  = A (4 6) Bx + +

Equating the coefficients of x and the constant terms from both sides, we get

4A = 1 and 6A + B = 2   or    A = 
1
4

 and B = 
1
2

.

Therefore,
2

2 6 5
x

x x2

+
+ +∫  =

1 4 6 1
4 22 6 5 2 6 5

x dxdx
x x x x2 2

+
+

+ + + +∫ ∫

= 1 2
1 1I I
4 2

+     (say) ... (1)



314 MATHEMATICS

In I1, put 2x2 + 6x + 5 = t, so that (4x + 6) dx = dt

Therefore, I1 = 1log Cdt t
t
= +∫

= 2
1log | 2 6 5 | Cx x+ + +        ... (2)

and I2 = 2
2

1
522 6 5 3
2

dx dx
x x x x

=
+ + + +

∫ ∫

= 2 2
1
2 3 1

2 2

dx

x⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫

Put 3
2

x t+ = , so that dx = dt, we get

I2 = 2
2

1
2 1

2

dt

t ⎛ ⎞+ ⎜ ⎟
⎝ ⎠

∫  = 1
2

1 tan 2 C12
2

– t +
×

[by 7.4 (3)]

= 1
2

3tan 2 + C
2

– x⎛ ⎞+⎜ ⎟
⎝ ⎠

 = ( )1
2tan 2 3 + C– x + ... (3)

Using (2) and (3) in (1), we get

( )2 12 1 1log 2 6 5 tan 2 3 C
4 22 6 5

–x dx x x x
x x2

+
= + + + + +

+ +∫

where, C = 1 2C C
4 2
+

(ii) This integral is of the form given in 7.4 (10). Let us express

x + 3 = 2A (5 4 ) + Bd – x – x
dx = A (– 4 – 2x) + B

Equating the coefficients of x and the constant terms from both sides, we get

– 2A = 1 and – 4 A + B = 3, i.e., A = 
1
2

–  and B = 1
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Therefore, 2

3

5 4

x dx
x x

+

− −
∫  =

( )
2 2

4 21
2 5 4 5 4

– – x dx dx–
x x x x

+
− − − −

∫ ∫

=
1
2

–  I1 + I2 ... (1)

In I1, put 5 – 4x – x2 = t, so that (– 4 – 2x) dx = dt.

Therefore, I1=  ( )
2

4 2

5 4

– x dx dt
tx x

−
=

− −
∫ ∫  = 12 Ct +

= 2
12 5 4 C– x – x + ... (2)

Now consider I2 = 2 25 4 9 ( 2)

dx dx

x x – x
=

− − +
∫ ∫

Put x + 2 = t, so that dx = dt.

Therefore, I2 =
1

22 2
sin + C

33
–dt t

t
=

−
∫ [by 7.4 (5)]

= 1
2

2sin C
3

– x +
+ ... (3)

Substituting (2) and (3) in (1), we obtain

2 1
2

3 25 – 4 – + sin C
35 4

–x x– x x
– x – x

+ +
= +∫ , where 1

2
CC C
2

–=

EXERCISE 7.4
Integrate the functions in Exercises 1 to 23.

1.
2

6
3

1
x

x +
2. 2

1

1 4x+
3.

( )2

1

2 1– x +

4. 2

1

9 25– x
5. 4

3
1 2

x
x+

6.
2

61
x

x−

7. 2

1

1

x –

x –
8.

2

6 6

x

x a+
9.

2

2

sec

tan 4

x

x +
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10. 2

1

2 2x x+ +
11. 2

1
9 6 5x x+ +

12. 2
1

7 6– x – x

13.
( )( )

1
1 2x – x –

14. 2

1

8 3x – x+
15. ( )( )

1
x – a x – b

16. 2

4 1

2 3

x

x x –

+

+
17. 2

2

1

x

x –

+
18. 2

5 2
1 2 3

x
x x
−

+ +

19.
( )( )

6 7
5 4
x

x – x –
+

20. 2

2

4

x

x – x

+
21.

2

2

2 3

x

x x

+

+ +

22. 2
3

2 5
x

x – x
+

−
23. 2

5 3

4 10

x

x x

+

+ +
.

Choose the correct answer in Exercises 24 and 25.

24. 2 equals
2 2
dx

x x+ +∫
(A) x tan–1 (x + 1) + C (B) tan–1 (x + 1) + C
(C) (x + 1) tan–1x + C (D) tan–1x + C

25. 2
equals

9 4

dx

x x−
∫

(A) –11 9 8sin C
9 8

x −⎛ ⎞ +⎜ ⎟
⎝ ⎠

(B) –11 8 9sin C
2 9

x −⎛ ⎞ +⎜ ⎟
⎝ ⎠

(C) –11 9 8sin C
3 8

x −⎛ ⎞ +⎜ ⎟
⎝ ⎠

(D)
–11 9 8sin C

2 9
x −⎛ ⎞ +⎜ ⎟

⎝ ⎠

7.5  Integration by Partial Fractions
Recall that a rational function is defined as the ratio of two polynomials in the form

P( )
Q( )

x
x

, where P (x) and Q(x) are polynomials in x and Q(x) ≠ 0. If the degree of P(x)

is less than the degree of Q(x), then the rational function is called proper, otherwise, it
is called improper. The improper rational functions can be reduced to the proper rational
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functions by long division process. Thus, if 
P( )
Q( )

x
x

 is improper, then 1P ( )P( ) T( )
Q( ) Q( )

xx x
x x

= + ,

where T(x) is a polynomial in x and 1P ( )
Q( )

x
x

is a proper rational function. As we know

how to integrate polynomials, the integration of any rational function is reduced to the
integration of a proper rational function. The rational functions which we shall consider
here for integration purposes will be those whose denominators can be factorised into

linear and quadratic factors. Assume that we want to evaluate 
P( )
Q( )

x dx
x∫ , where 

P( )
Q( )

x
x

is proper rational function. It is always possible to write the integrand as a sum of
simpler rational functions by a method called partial fraction decomposition. After this,
the integration can be carried out easily using the already known methods. The following
Table 7.2 indicates the types of simpler partial fractions that are to be associated with
various kind of rational functions.

Table 7.2

 S.No. Form of the rational function Form of the partial fraction

1.
( – ) ( – )

px q
x a x b

+ , a ≠ b
A B

x – a x – b
+

2. 2( – )
px q
x a

+
( )2

A B
x – a x – a

+

3.
2

( – ) ( ) ( )
px qx r

x a x – b x – c
+ + A B C

x – a x – b x – c
+ +

4.
2

2( – ) ( )
px qx r

x a x – b
+ +

2
A B C

( )x – a x – bx – a
+ +

5.
2

2( – ) ( )
px qx r

x a x bx c
+ +

+ + 2
A B + Cx

x – a x bx c
+

+ +
,

where x2 + bx + c cannot be factorised further

In the above table, A, B and C are real numbers to be determined suitably.

https://www.learncbse.in/ncert-books/
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Example 11 Find ( 1) ( 2)
dx

x x+ +∫

Solution The integrand is a proper rational function. Therefore, by using the form of
partial fraction [Table 7.2 (i)], we write

1
( 1) ( 2)x x+ +

 =
A B

1 2x x
+

+ +
... (1)

where, real numbers A and B are to be determined suitably. This gives
1 = A (x + 2) + B (x + 1).

Equating the coefficients of x and the constant term, we get
A + B = 0

and 2A + B = 1
Solving these equations, we get A =1 and B = – 1.
Thus, the integrand is given by

1
( 1) ( 2)x x+ +

 =
1 – 1

1 2x x
+

+ +

Therefore, ( 1) ( 2)
dx

x x+ +∫  =
1 2

dx dx–
x x+ +∫ ∫

= log 1 log 2 Cx x+ − + +

=
1log C
2

x
x
+

+
+

Remark The equation (1) above is an identity, i.e. a statement true for all (permissible)
values of x. Some authors use the symbol ‘≡’ to indicate that the statement is an
identity and use the symbol ‘=’ to indicate that the statement is an equation, i.e., to
indicate that the statement is true only for certain values of x.

Example 12 Find 
2

2
1

5 6
x dx

x x
+

− +∫

Solution Here the integrand 
2

2
1

5 6
x

x – x
+
+

 is not proper rational function, so we divide

x2 + 1 by x2 – 5x + 6 and find that



INTEGRALS         319

2

2
1

5 6
x

x – x
+
+

 = 2
5 5 5 51 1

( 2) ( 3)5 6
x – x –

x – x –x – x
+ = +

+

Let
5 5

( 2) ( 3)
x –

x – x –
 =

A B
2 3x – x –
+

So that 5x – 5 = A (x – 3) + B (x – 2)
Equating the coefficients of x and constant terms on both sides, we get A + B = 5

and 3A + 2B = 5. Solving these equations, we get A = – 5  and B = 10

Thus,
2

2
1

5 6
x

x – x
+
+

 =
5 101

2 3x – x –
− +

Therefore,
2

2
1

5 6
x dx

x – x
+
+∫  =

15 10
2 3

dxdx dx
x – x –

− +∫ ∫ ∫
= x – 5 log |x – 2 | + 10 log |x – 3 | + C.

Example 13 Find 2
3 2

( 1) ( 3)
x dx

x x
−

+ +∫

Solution The integrand is of the type as given in Table 7.2 (4). We write

2
3 2

( 1) ( 3)
x –

x x+ +
 = 2

A B C
1 3( 1)x xx
+ +

+ ++

So that 3x – 2 = A (x + 1) (x + 3) + B (x + 3) + C (x + 1)2

= A (x2 + 4x + 3) + B (x + 3) + C (x2 + 2x + 1 )
Comparing coefficient of x2, x and constant term on both sides, we get

A + C = 0, 4A + B + 2C = 3 and 3A + 3B + C = – 2. Solving these equations, we get
11 5 11A B and C
4 2 4

– –,= = = . Thus the integrand is given by

2
3 2

( 1) ( 3)
x

x x
−

+ +  = 2
11 5 11

4 ( 1) 4 ( 3)2 ( 1)
– –

x xx+ ++

Therefore, 2
3 2

( 1) ( 3)
x

x x
−

+ +∫  = 2
11 5 11
4 1 2 4 3( 1)

dx dx dx–
x xx

−
+ ++∫ ∫ ∫

=
11 5 11log +1 log 3 C
4 2 ( +1) 4

x x
x

+ − + +

=
11 +1 5log + C
4 + 3 2 ( +1)

x
x x

+
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Example 14 Find 
2

2 2( 1) ( 4)
x dx

x x+ +∫

Solution  Consider 
2

2 2( 1) ( 4)
x

x x+ +
 and put x2 = y.

Then
2

2 2( 1) ( 4)
x

x x+ +
 =

( 1) ( 4)
y

y y+ +

Write
( 1) ( 4)

y
y y+ +

 =
A B

1 4y y
+

+ +

So that y =  A (y + 4) + B (y + 1)
Comparing coefficients of y and constant terms on both sides, we get A + B = 1

and 4A + B = 0, which give

A =
1 4and B
3 3

− =

Thus,
2

2 2( 1) ( 4)
x

x x+ +
 = 2 2

1 4
3 ( 1) 3 ( 4)

–
x x

+
+ +

Therefore,
2

2 2( 1) ( 4)
x dx

x x+ +∫  = 2 2
1 4
3 31 4

dx dx–
x x

+
+ +∫ ∫

= 1 11 4 1tan tan C
3 3 2 2

– – x– x + × +

= 1 11 2tan tan C
3 3 2

– – x– x + +

In the above example, the substitution was made only for the partial fraction part
and not for the integration part. Now, we consider an example, where the integration
involves a combination of the substitution method and the partial fraction method.

Example 15 Find 
( )

2

3 sin 2 cos
5 cos 4 sin

–
d

– –
φ φ

φ
φ φ∫

Solution Let y = sinφ

Then dy = cosφ dφ
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Therefore,
( )

2

3 sin 2 cos
5 cos 4 sin

–
d

– –
φ φ

φ
φ φ∫  = 2

(3 – 2)
5 (1 ) 4

y dy
– – y – y∫

= 2
3 2

4 4
y – dy

y – y +∫

= ( )2
3 2 I (say)

2
y –

y –
=∫

Now, we write
( )2
3 2

2
y –

y –
 = 2

A B
2 ( 2)y y
+

− −
[by Table 7.2 (2)]

Therefore, 3y – 2 = A (y – 2) + B
Comparing the coefficients of y and constant term, we get A = 3 and B – 2A = – 2,

which gives A = 3 and B = 4.
Therefore, the required integral is given by

I = 2
3 4[ + ]

2 ( 2)
dy

y – y –∫  = 23 + 4
2 ( 2)

dy dy
y – y –∫ ∫

=
13 log 2 4 C

2
y –

y
⎛ ⎞

− + +⎜ ⎟−⎝ ⎠

= 43 log sin 2 C
2 sin–

φ − + +
φ

= 43 log (2 sin ) + C
2 sin

− φ +
− φ

 (since, 2 – sinφ is always positive)

Example 16 Find 
2

2
1

( 2) ( 1)
x x dx
x x

+ +
+ +∫

Solution The integrand is a proper rational function. Decompose the rational function
into partial fraction [Table 2.2(5)]. Write

2

2
1

( 1) ( 2)
x x

x x
+ +

+ +
 = 2

A B + C
2 ( 1)

x
x x

+
+ +

Therefore, x2 + x + 1 = A (x2 + 1) + (Bx + C) (x + 2)
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Equating the coefficients of x2, x and of constant term of both sides, we get
A + B =1, 2B + C = 1 and A + 2C = 1. Solving these equations, we get

3 2 1A , B and C
5 5 5

= = =

Thus, the integrand is given by

2

2
1

( 1) ( 2)
x x

x x
+ +

+ +
 = 2

2 1
3 5 5

5 ( 2) 1

x

x x

+
+

+ +
 = 2

3 1 2 1
5 ( 2) 5 1

x
x x

+⎛ ⎞+ ⎜ ⎟+ +⎝ ⎠

Therefore,
2

2
1

( +1) ( 2)
x x dx

x x
+ +

+∫  = 2 2
3 1 2 1 1
5 2 5 51 1

dx x dx dx
x x x

+ +
+ + +∫ ∫ ∫

= 2 13 1 1log 2 log 1 tan C
5 5 5

–x x x+ + + + +

EXERCISE 7.5
Integrate the rational functions in Exercises 1 to 21.

1. ( 1) ( 2)
x

x x+ + 2. 2
1

9x –
3.

3 1
( 1) ( 2) ( 3)

x –
x – x – x –

4. ( 1) ( 2) ( 3)
x

x – x – x – 5. 2
2
3 2
x

x x+ +
6.

21
(1 2 )

– x
x – x

7. 2( 1) ( – 1)
x

x x+
8. 2( 1) ( 2)

x
x – x + 9. 3 2

3 5
1

x
x – x x

+
− +

10. 2
2 3

( 1) (2 3)
x

x – x
−

+
11. 2

5
( 1) ( 4)

x
x x+ −

12.
3

2
1

1
x x

x
+ +
−

13. 2
2

(1 ) (1 )x x− + 14. 2
3 1

( 2)
x –

x + 15. 4
1

1x −

16.
1

( 1)nx x +  [Hint:  multiply numerator and denominator by x n – 1 and put xn = t ]

17.
cos

(1 – sin ) (2 – sin )
x

x x [Hint : Put sin x = t]
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18.
2 2

2 2
( 1) ( 2)
( 3) ( 4)
x x
x x

+ +
+ +

19. 2 2
2

( 1) ( 3)
x

x x+ +
20. 4

1
( 1)x x –

21.
1

( 1)xe – [Hint : Put ex = t]

Choose the correct answer in each of the Exercises 22 and 23.

22.
( 1) ( 2)

x dx
x x− −∫  equals

(A)
2( 1)log C

2
x
x
−

+
−

(B)
2( 2)log C

1
x
x
−

+
−

(C)
21log C

2
x
x
−⎛ ⎞ +⎜ ⎟−⎝ ⎠

(D) log ( 1) ( 2) Cx x− − +

23. 2( 1)
dx

x x +∫ equals

(A) 21log log ( +1) + C
2

x x− (B) 21log log ( +1) + C
2

x x+

(C) 21log log ( +1) + C
2

x x− + (D) 21 log log ( +1) + C
2

x x+

7.6  Integration by Parts
In this section, we describe one more method of integration, that is found quite useful in
integrating products of functions.

If u and v are any two differentiable functions of a single variable x (say). Then, by
the product rule of differentiation, we have

( )d uv
dx

 =
dv duu v
dx dx

+

Integrating both sides, we get

uv =
dv duu dx v dx
dx dx

+∫ ∫

or dvu dx
dx∫  =

duuv – v dx
dx∫ ... (1)

Let u = f (x) and 
dv
dx = g (x). Then

du
dx = f ′(x) and v = ( )g x dx∫
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Therefore, expression (1) can be rewritten as

( ) ( )f x g x dx∫  = ( ) ( ) [ ( ) ] ( )f x g x dx – g x dx f x dx′∫ ∫ ∫
i.e., ( ) ( )f x g x dx∫  = ( ) ( ) [ ( ) ( ) ]f x g x dx – f x g x dx dx′∫ ∫ ∫

If we take f as the first function and g as the second function, then this formula
may be stated as follows:

“The integral of the product of two functions = (first function) × (integral
of the second function) – Integral of [(differential coefficient of the first function)
× (integral of the second function)]”

Example 17 Find cosx x dx∫
Solution Put f (x) = x (first function) and g (x) = cos x (second function).
Then, integration by parts gives

cosx x dx∫  = cos [ ( ) cos ]dx x dx – x x dx dx
dx∫ ∫ ∫

= sin sinx x – x dx∫  = x sin x + cos x + C

Suppose, we take f (x) = cos x and g (x) = x. Then

cosx x dx∫  = cos [ (cos ) ]dx x dx – x x dx dx
dx∫ ∫ ∫

= ( )
2 2

cos sin
2 2
x xx x dx+ ∫

Thus, it shows that the integral cosx x dx∫  is reduced to the comparatively more

complicated integral having more power of x. Therefore, the proper choice of the first
function and the second function is significant.

Remarks
(i) It is worth mentioning that integration by parts is not applicable to product of

functions in all cases. For instance, the method does not work for sinx x dx∫ .
The reason is that there does not exist any function whose derivative is

x  sin x.

(ii) Observe that while finding the integral of the second function, we did not add
any constant of integration. If we write the integral of the second function cos x
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as sin x + k, where k is any constant, then

cosx x dx∫  = (sin ) (sin )x x k x k dx+ − +∫
= (sin ) (sinx x k x dx k dx+ − −∫ ∫
= (sin ) cos Cx x k x – kx+ − +  = sin cos Cx x x+ +

This shows that adding a constant to the integral of the second function is
superfluous so far as the final result is concerned while applying the method of
integration by parts.

(iii) Usually, if any function is a power of x or a polynomial in x, then we take it as the
first function. However, in cases where other function is inverse trigonometric
function or logarithmic function, then we take them as first function.

Example 18 Find log x dx∫
Solution To start with, we are unable to guess a function whose derivative is log x. We
take log x as the first function and the constant function 1 as the second function. Then,
the integral of the second function is x.

Hence, (log .1)x dx∫  = log 1 [ (log ) 1 ]dx dx x dx dx
dx

−∫ ∫ ∫

=
1(log ) – log Cx x x dx x x – x
x

⋅ = +∫ .

Example 19 Find xx e dx∫
Solution Take first function as x and second function as ex. The integral of the second
function is ex.

Therefore, xx e dx∫  = 1x xx e e dx− ⋅∫  = xex – ex + C.

Example 20 Find 
1

2

sin

1

–x x dx
x−

∫

Solution Let first function be sin – 1x and second function be 21

x

x−
.

First we find the integral of the second function, i.e., 
21

x dx

x−
∫ .

Put t =1 – x2. Then dt = – 2x dx
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Therefore,
21

x dx

x−
∫  =

1
2

dt–
t∫  = 2– 1t x= − −

Hence,
1

2

sin

1

–x x dx
x−

∫  = ( )1 2 2
2

1(sin ) 1 ( 1 )
1

– x – x – x dx
x

− − −
−

∫
= 2 11 sin C– x x x−− + +  = 2 11 sin Cx – x x−− +

Alternatively, this integral can also be worked out by making substitution sin–1 x  = θ and
then integrating by parts.

Example 21  Find sinxe x dx∫
Solution  Take ex as the first function and sin x as second function. Then, integrating
by parts, we have

I sin ( cos ) cosx x xe x dx e – x e x dx= = +∫ ∫
= – ex cos x + I1 (say) ... (1)

Taking ex
 and cos x as the first and second functions, respectively, in I1, we get

I1 = sin sinx xe x – e x dx∫
Substituting the value of I1 in (1), we get

I = – ex cos x + ex sin x – I  or  2I = ex (sin x – cos x)

Hence, I = sin (sin cos ) + C
2

x
x ee x dx x – x=∫

Alternatively, above integral can also be determined by taking sin x as the first function
and ex the second function.

7.6.1 Integral of the type [ ( ) + ( )]xe f x f x dx′∫
We have I = [ ( ) + ( )]xe f x f x dx′∫  = ( ) + ( )x xe f x dx e f x dx′∫ ∫

= 1 1I ( ) , where I = ( )x xe f x dx e f x dx′+ ∫ ∫ ... (1)
Taking f (x) and ex as the first function and second function, respectively, in I1 and

integrating it by parts, we have I1 = f (x) ex – ( ) Cxf x e dx′ +∫
Substituting I1 in (1), we get

I = ( ) ( ) ( ) Cx x xe f x f x e dx e f x dx′ ′− + +∫ ∫  = ex f (x) + C
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Thus, ′∫ [ ( ) ( )]xe  f x + f x dx  = ( ) Cxe f x +

Example 22 Find (i) 1
2

1(tan )
1

x –e x
x

+
+∫ dx   (ii) 

2

2
( +1)

( +1)

xx e
x∫  dx

Solution

(i) We have I = 1
2

1(tan )
1

x –e x dx
x

+
+∫

Consider f (x) = tan– 1x, then  f ′(x) = 2
1

1 x+
Thus, the given integrand is of the form ex [ f (x) + f ′(x)].

Therefore, 1
2

1I (tan )
1

x –e x dx
x

= +
+∫  = ex tan– 1x + C

(ii) We have 
2

2
( + 1)I

( +1)

xx e
x

= ∫ dx
2

2
1 + 1+1)[ ]

( +1)
x x –e dx

x
= ∫

2

2 2
1 2[ ]

( +1) ( +1)
x x –e dx

x x
= +∫  2

1 2[ + ]
+1 ( +1)

x x –e dx
x x

= ∫

Consider 
1( )
1

xf x
x
−

=
+

, then  2
2( )

( 1)
f x

x
′ =

+

Thus, the given integrand is of the form ex [f (x) + f ′(x)].

Therefore,
2

2
1 1 C

1( 1)
x xx xe dx e

xx
+ −

= +
++∫

EXERCISE 7.6
Integrate the functions in Exercises 1 to 22.

1. x sin x 2. x sin 3x 3. x2 ex 4. x log x
5. x log 2x 6. x2 log x 7. x sin– 1x 8. x tan–1 x

9. x cos–1 x 10. (sin–1x)2 11.
1

2

cos

1

x x

x

−

−
12. x sec2 x

13. tan–1x 14. x (log x)2 15. (x2 + 1) log x
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16. ex (sinx + cosx) 17. 2(1 )

xx e
x+ 18.

1 sin
1 cos

x xe
x

⎛ ⎞+
⎜ ⎟+⎝ ⎠

19. 2
1 1–xe
x x

⎛ ⎞
⎜ ⎟
⎝ ⎠

20. 3
( 3)
( 1)

xx e
x
−
− 21. e2x sin x

22. 1
2

2sin
1

– x
x

⎛ ⎞
⎜ ⎟+⎝ ⎠

Choose the correct answer in Exercises 23 and 24.

23.
32 xx e dx∫  equals

(A)
31 C

3
xe + (B)

21 C
3

xe +

(C)
31 C

2
xe + (D)

21 C
2

xe +

24. sec (1 tan )xe x x dx+∫  equals

(A) ex cos x + C (B) ex sec x + C
(C) ex sin x + C (D) ex tan x + C

7.6.2 Integrals of some more types
Here, we discuss some special types of standard integrals based on the technique of
integration  by parts :

(i) 2 2x a dx−∫ (ii) 2 2x a dx+∫ (iii) 2 2a x dx−∫
(i)  Let 2 2I x a dx= −∫

Taking constant function 1 as the second function and integrating by parts, we
have

I = 2 2
2 2

1 2
2

xx x a x dx
x a

− −
−

∫

=
2

2 2
2 2

xx x a dx
x a

− −
−

∫  = 
2 2 2

2 2
2 2

x a ax x a dx
x a

− +
− −

−
∫



INTEGRALS         329

= 2 2 2 2 2
2 2

dxx x a x a dx a
x a

− − − −
−

∫ ∫

= 2 2 2
2 2

I dxx x a a
x a

− − −
−

∫

or 2I = 2 2 2
2 2

dxx x a a
x a

− −
−

∫

or I = ∫ 2 2x – a dx = 
2

2 2 2 2– – log + – + C
2 2
x ax a x x a

Similarly, integrating other two integrals by parts, taking constant function 1 as the
second function, we get

(ii) ∫
2

2 2 2 2 2 21+ = + + log + + + C
2 2

ax a dx x x a x x a

(iii) ∫
2

2 2 2 2 –11– = – + sin + C
2 2

a xa x dx x a x
a

Alternatively, integrals (i), (ii) and (iii) can also be found by making trigonometric
substitution x = a secθ in (i), x = a tanθ in (ii) and x = a sinθ in (iii) respectively.

Example 23 Find 2 2 5x x dx+ +∫
Solution Note that

2 2 5x x dx+ +∫  = 2( 1) 4x dx+ +∫
Put  x + 1 = y, so that dx = dy. Then

2 2 5x x dx+ +∫  = 2 22y dy+∫

= 2 21 44 log 4 C
2 2

y y y y+ + + + +         [using 7.6.2 (ii)]

= 2 21 ( 1) 2 5 2 log 1 2 5 C
2

x x x x x x+ + + + + + + + +

Example 24 Find 23 2x x dx− −∫
Solution Note that 2 23 2 4 ( 1)x x dx x dx− − = − +∫ ∫
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Put x + 1 = y so that dx = dy.

Thus 23 2x x dx− −∫  = 24 y dy−∫

= 2 11 44 sin C
2 2 2

– yy y− + + [using 7.6.2 (iii)]

=
2 11 1( 1) 3 2 2 sin C

2 2
– xx x x +⎛ ⎞+ − − + +⎜ ⎟
⎝ ⎠

EXERCISE 7.7
Integrate the functions in Exercises 1 to 9.

1. 24 x− 2. 21 4x− 3. 2 4 6x x+ +

4. 2 4 1x x+ + 5. 21 4x x− − 6. 2 4 5x x+ −

7. 21 3x x+ − 8. 2 3x x+ 9.
2

1
9
x

+

Choose the correct answer in Exercises 10 to 11.

10. 21 x dx+∫ is equal to

(A) ( )2 211 log 1 C
2 2
x x x x+ + + + +

(B)
3

2 22 (1 ) C
3

x+ + (C)
3

2 22 (1 ) C
3

x x+ +

(D)
2

2 2 211 log 1 C
2 2
x x x x x+ + + + +

11. 2 8 7x x dx− +∫  is equal to

(A) 2 21 ( 4) 8 7 9log 4 8 7 C
2

x x x x x x− − + + − + − + +

(B) 2 21 ( 4) 8 7 9log 4 8 7 C
2

x x x x x x+ − + + + + − + +

(C) 2 21 ( 4) 8 7 3 2 log 4 8 7 C
2

x x x x x x− − + − − + − + +

(D) 2 21 9( 4) 8 7 log 4 8 7 C
2 2

x x x x x x− − + − − + − + +
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7.7   Definite Integral
In the previous sections, we have studied about the indefinite integrals and discussed
few methods of finding them including integrals of some special functions. In this
section, we shall study what is called definite integral of a function. The definite integral

has a unique value. A definite integral is denoted by ( )
b

a
f x dx∫ , where a is called the

lower limit of the integral and b is called the upper limit of the integral. The definite
integral is introduced either as the limit of a sum or if it has an anti derivative F in the
interval [a, b], then its value is the difference  between the values of F at the end
points, i.e., F(b) – F(a). Here, we shall consider these two cases separately as discussed
below:

7.7.1  Definite integral as the limit of a sum
Let f be a continuous function defined on close interval [a, b]. Assume that all the
values taken by the function are non negative, so the graph of the function is a curve
above the x-axis.

The definite integral ( )
b

a
f x dx∫  is the area bounded by the curve y = f (x), the

ordinates x = a, x = b and the x-axis. To evaluate this area, consider the region PRSQP
between this curve, x-axis and the ordinates x = a and x = b (Fig 7.2).

Divide the interval [a, b] into n equal subintervals denoted by [x0, x1], [x1, x2] ,...,
[xr – 1, xr], ..., [xn – 1, xn], where x0 = a, x1 = a + h, x2 = a + 2h, ... , xr = a + rh and

xn = b = a + nh or .b an
h
−

=  We note that as n → ∞, h → 0.

Fig 7.2

O

Y

XX'

Y'

Q

P

C
M

D
L

S

A B R
a = x0 x1 x2 xr-1 xr x =bn

y f x
 = ( )
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The region PRSQP under consideration is the sum of n subregions, where each
subregion is defined on subintervals [xr – 1, xr], r = 1, 2, 3, …, n.

From Fig 7.2, we have
area of the rectangle (ABLC) < area of the region (ABDCA) < area of the rectangle

(ABDM)         ... (1)
Evidently as xr – xr–1 → 0, i.e., h → 0 all the three areas shown in (1) become

nearly equal to each other. Now we form the following sums.

sn = h [f(x0) + … + f (xn - 1)] = 
1

0
( )

n

r
r

h f x
−

=
∑ ... (2)

and  Sn = 1 2
1

[ ( ) ( ) ( )] ( )
n

n r
r

h f x f x f x h f x
=

+ +…+ = ∑ ... (3)

Here, sn and Sn denote the sum of areas of all lower rectangles and upper rectangles
raised over subintervals [xr–1, xr] for r = 1, 2, 3, …, n, respectively.

In view of the inequality (1) for an arbitrary subinterval [xr–1, xr], we have
sn < area of the region PRSQP < Sn ... (4)

As n →∞ strips become narrower and narrower, it is assumed that the limiting
values of (2) and (3) are the same in both cases and the common limiting value is the
required area under the curve.

Symbolically, we write

lim Snn→∞
 = lim nn

s
→∞  = area of the region PRSQP = ( )

b

a
f x dx∫ ... (5)

It follows that this area is also the limiting value of any area which is between that
of the rectangles below the curve and that of the rectangles above the curve. For
the sake of convenience, we shall take rectangles with height equal to that of the
curve at the left hand edge of each subinterval. Thus, we rewrite (5) as

( )
b

a
f x dx∫  =

0
lim [ ( ) ( ) ... ( ( – 1) ]
h

h f a f a h f a n h
→

+ + + + +

or ( )
b

a
f x dx∫  =

1( – ) lim [ ( ) ( ) ... ( ( – 1) ]
n

b a f a f a h f a n h
n→∞

+ + + + +      ... (6)

where h =
– 0b a as n
n

→ →∞

The above expression (6) is known as the definition of definite integral as the limit
of sum.

Remark The value of the definite integral of a function over any particular interval
depends on the function and the interval, but not on the variable of integration that we
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choose to represent the independent variable. If the independent variable is denoted by

t or u instead of x, we simply write the integral as ( )
b

a
f t dt∫  or ( )

b

a
f u du∫ instead of

( )
b

a
f x dx∫ . Hence, the variable of integration is called a dummy variable.

Example 25 Find 
2 2
0

( 1)x dx+∫  as the limit of a sum.

Solution By definition

( )
b

a
f x dx∫  =

1( – ) lim [ ( ) ( ) ... ( ( – 1) ],
n

b a f a f a h f a n h
n→∞

+ + + + +

where, h =
–b a
n

In this example, a = 0, b = 2, f (x) = x2 + 1, 
2 – 0 2h

n n
= =

Therefore,
2 2
0

( 1)x dx+∫  =  
1 2 4 2 ( – 1)2 lim [ (0) ( ) ( ) ... ( )]

n

nf f f f
n n n n→∞

+ + + +

=
2 2 2

2 2 2
1 2 4 (2 – 2)2 lim [1 ( 1) ( 1) ... 1 ]

n

n
n n n n→∞

⎛ ⎞
+ + + + + + +⎜ ⎟

⎝ ⎠

= 2 2 2

-

1 12 lim [(1 1 ... 1) (2 4 ... (2 – 2) ]2→∞
+ + + + + + +

n
n terms

n
n n

=
2

2 2 21 22 lim [ (1 2 ... ( –1) ]
n

n n
n n2→∞

+ + + +

= 1 4 ( 1) (2 –1)2 lim [ ]
6n

n n nn
n n2→∞

−
+

= 1 2 ( 1) (2 –1)2 lim [ ]
3n

n nn
n n→∞

−
+

=
2 1 12 lim [1 (1 ) (2 – )]
3n n n→∞

+ −  = 
42 [1 ]
3

+  = 
14
3



334 MATHEMATICS

Example 26 Evaluate 
2

0
xe dx∫ as the limit of a sum.

Solution By definition

2

0
xe dx∫  =

2 4 2 – 2
01(2 – 0) lim ...

n
n n n

n
e e e e

n→∞

⎡ ⎤
+ + + +⎢ ⎥

⎢ ⎥⎣ ⎦

Using the sum to n terms of a G.P., where a = 1, 
2
nr e= , we have

2

0
xe dx∫ =

2

2
1 –12 lim [ ]

1

n
n

n
n

e
n

e
→∞

−
 = 

2

2
1 –12 lim

–1
n

n

e
n

e
→∞

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

=
2

2

2 ( –1)

–1lim 22
n

n

e

e

n
→∞

⎡ ⎤
⎢ ⎥

⋅⎢ ⎥
⎢ ⎥
⎣ ⎦

 = e2 – 1 [using 
0

( 1)lim 1
h

h

e
h→

−
= ]

EXERCISE 7.8
Evaluate the following definite integrals as limit of sums.

1.
b

a
x dx∫ 2.

5

0
( 1)x dx+∫ 3.

3 2
2

x dx∫

4.
4 2

1
( )x x dx−∫ 5.

1

1
xe dx

−∫ 6.
4 2
0

( )xx e dx+∫
7.8  Fundamental Theorem of Calculus
7.8.1  Area function

We have defined ( )
b

a
f x dx∫  as the area of

the region bounded by the curve y = f (x),
the ordinates x = a and x = b and x-axis. Let x

be a given point in [a, b]. Then ( )
x

a
f x dx∫

represents the area of the shaded region Fig 7.3
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in Fig 7.3 [Here it is assumed that f (x) > 0 for x ∈ [a, b], the assertion made below is
equally true for other functions as well]. The area of this shaded region depends upon
the value of x.

In other words, the area of this shaded region is a function of x. We denote this
function of x by A(x). We call the function A(x) as Area function and is given by

A (x) = ∫ ( )
x

a
f x dx ... (1)

Based on this definition, the two basic fundamental theorems have been given.
However, we only state them as their proofs are beyond the scope of this text book.

7.8.2  First fundamental theorem of integral calculus
Theorem 1 Let f be a continuous function on the closed interval [a, b] and let A (x) be
the area function. Then A′′′′′(x) = f (x), for all x ∈∈∈∈∈ [a, b].

7.8.3  Second fundamental theorem of integral calculus
We state below an important theorem which enables us to evaluate definite integrals
by making use of anti derivative.
Theorem 2 Let f  be continuous function defined on the closed interval [a, b] and F be

an anti derivative of f. Then ∫ ( )
b

a
f x dx = [F( )] =b

ax  F (b) – F(a).

Remarks

(i) In words, the Theorem 2 tells us that ( )
b

a
f x dx∫ = (value of the anti derivative F

of f at the upper limit b – value of the same anti derivative at the lower limit a).
(ii) This theorem is very useful, because it gives us a method of calculating the

definite integral more easily, without calculating the limit of a sum.
(iii) The crucial operation in evaluating a definite integral is that of finding a function

whose derivative is equal to the integrand. This strengthens the relationship
between differentiation and integration.

(iv) In ( )
b

a
f x dx∫ , the function f needs to be well defined and continuous in [a, b].

For instance, the consideration of definite integral 
1

3 2 2
2

( – 1)x x dx
−∫  is erroneous

since the function f expressed by f (x) = 
1

2 2( –1)x x  is not defined in a portion
– 1 < x < 1 of the closed interval [– 2, 3].
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Steps for calculating ( )
b

a
f x dx∫ .

(i) Find the indefinite integral ( )f x dx∫ . Let this be F(x). There is no need to keep
integration constant C because if we consider F(x) + C instead of F(x), we get

( ) [F ( ) C] [F( ) C] – [F( ) C] F( ) – F( )
b b

aa
f x dx x b a b a= + = + + =∫ .

Thus, the arbitrary constant disappears in evaluating the value of the definite
integral.

(ii) Evaluate F(b) – F(a) = [F ( )]b
ax , which is the value of  ( )

b

a
f x dx∫ .

We now consider some examples

Example 27 Evaluate the following integrals:

(i)
3 2
2

x dx∫ (ii)
9

34
22(30 – )

x dx
x

∫

(iii)
2

1 ( 1) ( 2)
x dx

x x+ +∫ (iv)   34
0

sin 2 cos2t t dt
π

∫

Solution

(i) Let 
3 2
2

I x dx= ∫ . Since 
3

2 F ( )
3
xx dx x= =∫ ,

Therefore, by the second fundamental theorem, we get

I = 
27 8 19F (3) – F (2) –
3 3 3

= =

(ii) Let 
9

34
22

I
(30 – )

x dx
x

= ∫ . We first find the anti derivative of the integrand.

Put 
3
2 330 – . Then –

2
x t x dx dt= =  or 

2–
3

x dx dt=

Thus,  3 2
22

2–
3

(30 – )

x dtdx
t

x
=∫ ∫  = 

2 1
3 t
⎡ ⎤
⎢ ⎥⎣ ⎦

 = 3
2

2 1 F ( )
3

(30 – )
x

x

⎡ ⎤
⎢ ⎥ =⎢ ⎥
⎢ ⎥⎣ ⎦
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Therefore, by the second fundamental theorem of calculus, we have

I =

9

3
2

4

2 1F(9) – F(4)
3

(30 – )x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

=
2 1 1
3 (30 – 27) 30 – 8
⎡ ⎤

−⎢ ⎥
⎣ ⎦

 = 
2 1 1 19
3 3 22 99
⎡ ⎤− =⎢ ⎥⎣ ⎦

(iii) Let 
2

1
I

( 1) ( 2)
x dx

x x
=

+ +∫

Using partial fraction, we get  
–1 2

( 1) ( 2) 1 2
x

x x x x
= +

+ + + +

So
( 1) ( 2)

x dx
x x+ +∫  = – log 1 2log 2 F( )x x x+ + + =

Therefore, by the second fundamental theorem of calculus, we have
I = F(2) – F(1) = [– log 3 + 2 log 4] – [– log 2 + 2 log 3]

= – 3 log 3 + log 2 + 2 log 4 = 
32log
27

⎛ ⎞
⎜ ⎟
⎝ ⎠

(iv) Let 34
0

I sin 2 cos2t t dt
π

= ∫ . Consider 3sin 2 cos2t t dt∫

Put sin 2t = u so that 2 cos 2t dt = du or cos 2t dt = 
1
2

 du

So 3sin 2 cos2t t dt∫  = 31
2

u du∫

= 4 41 1[ ] sin 2 F ( ) say
8 8

u t t= =

Therefore, by the second fundamental theorem of integral calculus

I = 4 41 1F ( ) – F (0) [sin – sin 0]
4 8 2 8
π π

= =
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EXERCISE 7.9
Evaluate the definite integrals in Exercises 1 to 20.

1.
1

1
( 1)x dx

−
+∫ 2.

3

2

1 dx
x∫ 3.

2 3 2
1

(4 – 5 6 9)x x x dx+ +∫

4. 4

0
sin 2x dx

π

∫ 5. 2

0
cos 2x dx

π

∫ 6.
5

4
xe dx∫ 7. 4

0
tan x dx

π

∫

8. 4

6

cosec x dx
π

π∫ 9.
1

0 21 –

dx

x
∫ 10.

1

201
dx

x+∫ 11.
3

22 1
dx

x −∫

12. 22
0

cos x dx
π

∫ 13.
3

22 1
x dx

x +∫ 14.
1

20

2 3
5 1

x dx
x
+
+∫ 15.

21

0
xx e dx∫

16.
22

21

5
4 3
x

x x+ +∫ 17. 2 34
0

(2sec 2)x x dx
π

+ +∫ 18. 2 2
0

(sin – cos )
2 2
x x dx

π

∫

19.
2

20

6 3
4

x dx
x

+
+∫ 20.

1

0
( sin )

4
x xx e dxπ
+∫

Choose the correct answer in Exercises 21 and 22.

21.
3

21 1
dx

x+∫  equals

(A)
3
π

(B)
2
3
π

(C)
6
π

(D)
12
π

22.
2
3

20 4 9
dx

x+∫  equals

(A)
6
π

(B)
12
π

(C)
24
π

(D)
4
π

7.9  Evaluation of Definite Integrals by Substitution
In the previous sections, we have discussed several methods for finding the indefinite
integral. One of the important methods for finding the indefinite integral is the method
of substitution.
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To evaluate ( )
b

a
f x dx∫ , by substitution, the steps could be as follows:

1. Consider the integral without limits and substitute, y = f (x) or x = g(y) to reduce
the given integral to a known form.

2. Integrate the new integrand with respect to the new variable without mentioning
the constant of integration.

3. Resubstitute for the new variable and write the answer in terms of the original
variable.

4. Find the values of answers obtained in (3) at the given limits of integral and find
the difference of the values at the upper and lower limits.

Note In order to quicken this method, we can proceed as follows: After
performing steps 1, and 2, there is no need of step 3. Here, the integral will be kept
in the new variable itself, and the limits of the integral will accordingly be changed,
so that we can perform the last step.

Let us illustrate this by examples.

Example 28 Evaluate 
1 4 5
1
5 1x x dx

−
+∫ .

Solution Put  t = x5 + 1, then dt = 5x4 dx.

Therefore, 4 55 1x x dx+∫  = t dt∫  = 
3
22

3
t  = 

3
5 22 ( 1)

3
x +

Hence,
1 4 5
1
5 1x x dx

−
+∫  =

13
5 2

– 1

2 ( 1)
3

x
⎡ ⎤

+⎢ ⎥
⎢ ⎥⎣ ⎦

= ( )
3 3

5 52 22 (1 1) – (– 1) 1
3
⎡ ⎤

+ +⎢ ⎥
⎢ ⎥⎣ ⎦

=
3 3
2 22 2 0

3
⎡ ⎤

−⎢ ⎥
⎢ ⎥⎣ ⎦

 = 
2 4 2(2 2)
3 3

=

Alternatively, first we transform the integral and then evaluate the transformed integral
with new limits.
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Let t = x5 + 1. Then dt = 5 x4 dx.
Note that, when x = – 1, t = 0 and when x = 1, t = 2
Thus,  as x varies from – 1 to 1, t varies from 0 to 2

Therefore
1 4 5
1
5 1x x dx

−
+∫  =

2

0
t dt∫

=

23 3 3
2 2 2

0

2 2 2 – 0
3 3

t
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 = 
2 4 2(2 2)
3 3

=

Example 29 Evaluate 
– 11

20

tan
1

x dx
x+∫

Solution Let t = tan – 1x, then 2
1

1
dt dx

x
=

+
. The new limits are, when x = 0, t = 0 and

when x = 1, 
4

t π
= . Thus, as x varies from 0 to 1, t varies from 0 to 

4
π .

Therefore
–11

20

tan
1

x dx
x+∫ =

2 4
4

0
0

2
tt dt

π
π ⎡ ⎤

⎢ ⎥
⎣ ⎦

∫  = 
2 21 – 0

2 16 32
⎡ ⎤π π

=⎢ ⎥
⎣ ⎦

EXERCISE 7.10
Evaluate the integrals in Exercises 1 to 8 using substitution.

1.
1

20 1
x dx

x +∫ 2. 52
0

sin cos d
π

φ φ φ∫ 3.
1 – 1

20

2sin
1

x dx
x

⎛ ⎞
⎜ ⎟+⎝ ⎠∫

4.
2

0
2x x +∫  (Put x + 2 = t2) 5. 2

20

sin
1 cos

x dx
x

π

+∫

6.
2

20 4 –
dx

x x+∫ 7.
1

21 2 5
dx

x x− + +∫ 8.
2 2

21

1 1–
2

xe dx
x x

⎛ ⎞
⎜ ⎟
⎝ ⎠∫

Choose the correct answer in Exercises 9 and 10.

9. The value of the integral 

1
3 31

1 4
3

( )x x dx
x
−

∫  is

(A) 6 (B) 0 (C) 3 (D) 4

10. If f (x) = 
0

sin
x
t t dt∫ , then f ′(x) is

(A) cosx + x sin x (B) x sinx
(C) x cosx (D) sinx + x cosx

https://www.learncbse.in/ncert-books/
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7.10  Some Properties of Definite Integrals
We list below some important properties of definite integrals. These will be useful in
evaluating the definite integrals more easily.

P0 : ( ) ( )
b b

a a
f x dx f t dt=∫ ∫

P1 : ( ) – ( )
b a

a b
f x dx f x dx=∫ ∫ . In particular, ( ) 0

a

a
f x dx =∫

P2 : ( ) ( ) ( )
b c b

a a c
f x dx f x dx f x dx= +∫ ∫ ∫

P3 : ( ) ( )
b b

a a
f x dx f a b x dx= + −∫ ∫

P4 : 0 0
( ) ( )

a a
f x dx f a x dx= −∫ ∫

(Note that P4 is a particular case of P3)

P5 :
2

0 0 0
( ) ( ) (2 )

a a a
f x dx f x dx f a x dx= + −∫ ∫ ∫

P6 :
2

0 0
( ) 2 ( ) , if (2 ) ( )

a a
f x dx f x dx f a x f x= − =∫ ∫   and

                 0 if f (2a – x) = – f (x)

P7 : (i)  
0

( ) 2 ( )
a a

a
f x dx f x dx

−
=∫ ∫ , if f is an even function, i.e., if f (– x) = f (x).

(ii)  ( ) 0
a

a
f x dx

−
=∫ , if f is an odd function, i.e., if f (– x) = – f (x).

We give the proofs of these properties one by one.
Proof of P0 It follows directly by making the substitution x = t.
Proof of P1 Let F be anti derivative of f. Then, by the second fundamental theorem of

calculus, we have ( ) F ( ) – F ( ) – [F ( ) F ( )] ( )
b a

a b
f x dx b a a b f x dx= = − = −∫ ∫

Here, we observe that, if a = b, then ( ) 0
a

a
f x dx =∫ .

Proof of P2 Let F be anti derivative of f. Then

( )
b

a
f x dx∫  = F(b) – F(a) ... (1)

( )
c

a
f x dx∫  = F(c) – F(a) ... (2)

and ( )
b

c
f x dx∫  = F(b) – F(c) ... (3)
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Adding (2) and (3), we get ( ) ( ) F( ) – F( ) ( )
c b b

a c a
f x dx f x dx b a f x dx+ = =∫ ∫ ∫

This proves the property P2.
Proof of P3  Let t = a + b – x. Then dt = – dx. When x = a, t = b and when x = b, t = a.
Therefore

( )
b

a
f x dx∫  = ( – )

a

b
f a b t dt− +∫

= ( – )
b

a
f a b t dt+∫  (by P1)

= ( – )
b

a
f a b x+∫ dx by P0

Proof of P4 Put t = a – x. Then dt = – dx. When x = 0, t = a and when x = a, t = 0. Now
proceed as in P3.

Proof of P5 Using P2, we have 
2 2

0 0
( ) ( ) ( )

a a a

a
f x dx f x dx f x dx= +∫ ∫ ∫ .

Let t = 2a – x in the second integral on the right hand side. Then
dt = – dx. When x = a, t = a and when x = 2a, t = 0. Also x = 2a – t.

Therefore, the second integral becomes
2

( )
a

a
f x dx∫  =

0
– (2 – )

a
f a t dt∫  = 

0
(2 – )

a
f a t dt∫  = 

0
(2 – )

a
f a x dx∫

Hence
2

0
( )

a
f x dx∫  =

0 0
( ) (2 )

a a
f x dx f a x dx+ −∫ ∫

Proof of P6 Using P5, we have 
2

0 0 0
( ) ( ) (2 )

a a a
f x dx f x dx f a x dx= + −∫ ∫ ∫        ... (1)

Now, if f (2a – x) = f (x), then (1) becomes
2

0
( )

a
f x dx∫  = 0 0 0

( ) ( ) 2 ( ) ,
a a a

f x dx f x dx f x dx+ =∫ ∫ ∫
and if f (2a – x) = – f (x), then (1) becomes

2

0
( )

a
f x dx∫  =  

0 0
( ) ( ) 0

a a
f x dx f x dx− =∫ ∫

Proof of P7 Using P2, we have

( )
a

a
f x dx

−∫  =
0

0
( ) ( )

a

a
f x dx f x dx

−
+∫ ∫ . Then

Let t = – x in the first integral on the right hand side.
dt = – dx. When x = – a, t = a and when
x = 0, t = 0. Also x = – t.
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Therefore ( )
a

a
f x dx

−∫  =
0

0
– (– ) ( )

a

a
f t dt f x dx+∫ ∫

=
0 0

(– ) ( )
a a

f x dx f x dx+∫ ∫        (by P0)  ... (1)

(i) Now, if f is an even function, then f (–x) = f (x) and so (1) becomes

0 0 0
( ) ( ) ( ) 2 ( )

a a a a

a
f x dx f x dx f x dx f x dx

−
= + =∫ ∫ ∫ ∫

(ii) If f is an odd function, then f (–x) = – f (x) and so (1) becomes

0 0
( ) ( ) ( ) 0

a a a

a
f x dx f x dx f x dx

−
= − + =∫ ∫ ∫

Example 30 Evaluate 
2 3
1

–x x dx
−∫

Solution We note that x3 – x ≥ 0 on [– 1, 0] and x3 – x ≤ 0 on [0, 1] and that
x3 – x ≥ 0 on [1, 2]. So by P2 we write

2 3
1

–x x dx
−∫  =

0 1 23 3 3
1 0 1
( – ) – ( – ) ( – )x x dx x x dx x x dx

−
+ +∫ ∫ ∫

=
0 1 23 3 3
1 0 1
( – ) ( – ) ( – )x x dx x x dx x x dx

−
+ +∫ ∫ ∫

=
0 1 24 2 2 4 4 2

– 1 0 1

– – –
4 2 2 4 4 2
x x x x x x⎡ ⎤ ⎡ ⎤ ⎡ ⎤

+ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= ( )1 1 1 1 1 1– – – 4 – 2 – –
4 2 2 4 4 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=
1 1 1 1 1 1– 2
4 2 2 4 4 2
+ + − + − +  = 

3 3 112
2 4 4
− + =

Example 31 Evaluate 24
–
4

sin x dx
π

π∫
Solution We observe that sin2 x is an even function. Therefore, by P7 (i), we get

24
–
4

sin x dx
π

π∫  = 24
0

2 sin x dx
π

∫
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= 4
0

(1 cos 2 )2
2

x dx
π −
∫  = 4

0
(1 cos 2 )x dx

π

−∫

=
4

0

1– sin 2
2

x x
π

⎡ ⎤
⎢ ⎥⎣ ⎦

 = 
1 1– sin – 0 –

4 2 2 4 2
π π π⎛ ⎞ =⎜ ⎟

⎝ ⎠

Example 32 Evaluate 20

sin
1 cos

x x dx
x

π

+∫

Solution Let I = 20

sin
1 cos

x x dx
x

π

+∫ . Then, by P4, we have

I =  20

( ) sin ( )
1 cos ( )

x x dx
x

π π − π −
+ π −∫

= 20

( ) sin
1 cos

x x dx
x

π π −
+∫  = 20

sin I
1 cos

x dx
x

π
π −

+∫

or 2 I = 20

sin
1 cos

x dx
x

π
π

+∫

or I = 20

sin
2 1 cos

x dx
x

ππ
+∫

Put cos x = t so that – sin x dx = dt. When x = 0, t = 1 and when x = π, t = – 1.
Therefore, (by P1) we get

I =
1

21

–
2 1

dt
t

−π
+∫ = 

1

212 1
dt

t−

π
+∫

=
1

20 1
dt

t
π

+∫  (by P7, 2
1since

1 t+  is even function)

=
21– 1 – 1 1

0
tan tan 1 – tan 0 – 0

4 4
t − π π⎡ ⎤⎡ ⎤ ⎡ ⎤π = π = π =⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Example 33 Evaluate 
1 5 4
1

sin cosx x dx
−∫

Solution Let I = 
1 5 4
1
sin cosx x dx

−∫ . Let f(x) = sin5 x cos4 x. Then

f (– x) = sin5 (– x) cos4 (– x) = – sin5 x cos4 x = – f (x), i.e., f is an odd function.
Therefore, by P7 (ii), I = 0
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Example 34 Evaluate 
4

2
4 40

sin
sin cos

x dx
x x

π

+∫

Solution Let I = 
4

2
4 40

sin
sin cos

x dx
x x

π

+∫ ... (1)

Then, by P4

I =

4

2
0 4 4

sin ( )
2

sin ( ) cos ( )
2 2

x
dx

x x

π
π
−

π π
− + −

∫  = 
4

2
4 40

cos
cos sin

x dx
x x

π

+∫       ... (2)

Adding (1) and (2), we get

2I =
4 4

22 2
4 40 0 0

sin cos [ ]
2sin cos

x x dx dx x
x x

ππ π
+ π

= = =
+∫ ∫

Hence I =
4
π

Example 35 Evaluate 3

6
1 tan

dx
x

π

π +∫

Solution  Let I = 3 3

6 6

cos
1 tan cos sin

x dxdx
x x x

π π

π π
=

+ +∫ ∫ ... (1)

Then, by P3 I = 3

6

cos
3 6

cos sin
3 6 3 6

x dx

x x

π

π

π π⎛ ⎞+ −⎜ ⎟
⎝ ⎠

π π π π⎛ ⎞ ⎛ ⎞+ − + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫

= 3

6

sin
sin cos

x dx
x x

π

π +∫ ... (2)

Adding (1) and (2), we get

2I = [ ]3 3

6 6
3 6 6

dx x
π π

π π

π π π
= = − =∫ . Hence I

12
π

=
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Example 36 Evaluate 2
0

log sin x dx
π

∫

Solution Let I = 2
0

log sin x dx
π

∫
Then, by P4

I = 2 2
0 0

log sin log cos
2

x dx x dx
π π

π⎛ ⎞− =⎜ ⎟
⎝ ⎠∫ ∫

Adding the two values of I, we get

2I = ( )2
0

log sin logcosx x dx
π

+∫

= ( )2
0

log sin cos log 2 log 2x x dx
π

+ −∫ (by adding and subtracting log2)

= 2 2
0 0

log sin 2 log 2x dx dx
π π

−∫ ∫ (Why?)

Put 2x = t in the first integral. Then 2 dx = dt, when x = 0, t = 0 and when 
2

x π
= ,

t = π.

Therefore 2I =
0

1 log sin log 2
2 2

t dt
π π

−∫

= 2
0

2 log sin log 2
2 2

t dt
π

π
−∫  [by P6 as sin (π – t) = sin t)

= 2
0

log sin log 2
2

x dx
π

π
−∫  (by changing variable t to x)

= I log 2
2
π

−

Hence 2
0

log sin x dx
π

∫  =
– log 2
2
π

.
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EXERCISE 7.11

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.

1. 22
0

cos x dx
π

∫ 2. 2
0

sin
sin cos

x dx
x x

π

+∫ 3.

3
2

2
3 30
2 2

sin

sin cos

x dx

x x

π

+
∫

4.
5

2
5 50

cos
sin cos

x dx
x x

π

+∫ 5.
5

5
| 2 |x dx

−
+∫ 6.

8

2
5x dx−∫

7.
1

0
(1 )nx x dx−∫ 8. 4

0
log (1 tan )x dx

π

+∫ 9.
2

0
2x x dx−∫

10. 2
0

(2log sin log sin 2 )x x dx
π

−∫ 11. 22
–
2

sin x dx
π

π∫

12.
0 1 sin

x dx
x

π

+∫ 13. 72
–
2

sin x dx
π

π∫ 14.
2 5
0

cos x dx
π

∫

15. 2
0

sin cos
1 sin cos

x x dx
x x

π
−

+∫ 16.
0

log (1 cos )x dx
π

+∫ 17. 0

a x dx
x a x+ −∫

18.
4

0
1x dx−∫

19. Show that 
0 0

( ) ( ) 2 ( )
a a

f x g x dx f x dx=∫ ∫ , if f and g are defined as f (x) = f(a – x)

and g(x) + g(a – x) = 4
Choose the correct answer in Exercises 20 and 21.

20. The value of 3 52

2

( cos tan 1)x x x x dx
π

−π
+ + +∫  is

(A) 0 (B) 2 (C) π (D) 1

21. The value of 2
0

4 3 sinlog
4 3 cos

x dx
x

π
⎛ ⎞+
⎜ ⎟+⎝ ⎠

∫  is

(A) 2 (B)
3
4

(C) 0 (D) –2
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Miscellaneous Examples

Example 37 Find cos 6 1 sin 6x x dx+∫
Solution Put t = 1 + sin 6x, so that dt = 6 cos 6x dx

Therefore
1
21cos 6 1 sin 6

6
x x dx t dt+ =∫ ∫

=
3 3
2 21 2 1( ) C = (1 sin 6 ) C

6 3 9
t x× + + +

Example 38 Find 

1
4 4

5
( )x x dx

x
−

∫

Solution We have 

1
1 4

4 4 3

5 4

1(1 )( )x x xdx dx
x x

−−
=∫ ∫

Put – 3
3 4

1 31 1– , so thatx t dx dt
x x

− = = =

Therefore 

1
14 4
4

5
( ) 1

3
x x dx t dt

x
−

=∫ ∫  = 
55
44

3
1 4 4 1C = 1 C
3 5 15

t
x

⎛ ⎞× + − +⎜ ⎟
⎝ ⎠

Example 39 Find 
4

2( 1) ( 1)
x dx

x x− +∫

Solution We have

4

2( 1)( 1)
x

x x− +
 = 3 2

1( 1)
1

x
x x x

+ +
− + −

= 2
1( 1)

( 1) ( 1)
x

x x
+ +

− +
... (1)

Now express 2
1

( 1)( 1)x x− +
 = 2

A B C
( 1) ( 1)

x
x x

+
+

− +
... (2)
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So 1 = A (x2 + 1) + (Bx + C) (x – 1)
= (A + B) x2 + (C – B) x + A – C

Equating coefficients on both sides, we get A + B = 0, C – B = 0 and A – C = 1,

which give 1 1A , B C –
2 2

= = = . Substituting values of A, B and C in (2), we get

2
1

( 1) ( 1)x x− +
 = 2 2

1 1 1
2( 1) 2 ( 1) 2( 1)

x
x x x

− −
− + +

... (3)

Again, substituting (3) in (1), we have
4

2( 1) ( 1)
x

x x x− + +
 = 2 2

1 1 1( 1)
2( 1) 2 ( 1) 2( 1)

xx
x x x

+ + − −
− + +

Therefore
4 2

2 – 1
2

1 1 1log 1 – log ( 1) – tan C
2 2 4 2( 1) ( 1)

x xdx x x x x
x x x

= + + − + +
− + +∫

Example 40 Find 2
1log (log )

(log )
x dx

x
⎡ ⎤

+⎢ ⎥
⎣ ⎦
∫

Solution Let 2
1I log (log )

(log )
x dx

x
⎡ ⎤

= +⎢ ⎥
⎣ ⎦
∫

= 2
1log (log )

(log )
x dx dx

x
+∫ ∫

In the first integral, let us take 1 as the second function. Then integrating it by
parts, we get

I = 2
1log (log )

log (log )
dxx x x dx

x x x
− +∫ ∫

= 2log (log )
log (log )
dx dxx x

x x
− +∫ ∫ ... (1)

Again, consider 
log
dx

x∫ , take 1 as the second function and integrate it by parts,

we have 2
1 1– –

log log (log )
dx x x dx

x x xx
⎡ ⎤⎧ ⎫⎛ ⎞= ⎢ ⎥⎨ ⎬⎜ ⎟

⎝ ⎠⎢ ⎥⎩ ⎭⎣ ⎦
∫ ∫         ... (2)
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Putting (2) in (1), we get

2 2I log (log )
log (log ) (log )

x dx dxx x
x x x

= − − +∫ ∫  = log (log ) C
log

xx x
x

− +

Example 41 Find cot tanx x dx⎡ ⎤+⎣ ⎦∫
Solution We have

I = cot tanx x dx⎡ ⎤+⎣ ⎦∫ tan (1 cot )x x dx= +∫
Put tan x = t2, so that sec2 x dx = 2t dt

or dx =  4
2
1

t dt
t+

Then I = 2 4
1 21

(1 )
tt dt

t t
⎛ ⎞+⎜ ⎟ +⎝ ⎠∫

=
2 2 2

4 2
2

2

1 11 1
( 1)2 = 2 = 2

11 1 2

dt dt
t t tdt
t t tt t

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠
⎛ ⎞+ ⎛ ⎞+ − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

Put 
1t
t

−  = y, so that 2
11
t

⎛ ⎞+⎜ ⎟
⎝ ⎠

 dt = dy. Then

I =
( )

– 1 – 1
22

1

2 2 tan C = 2 tan C
2 22

t
dy y t

y

⎛ ⎞−⎜ ⎟
⎝ ⎠= + +

+
∫

=
2

– 1 – 11 tan 12 tan C = 2 tan C
2 2 tan

t x
t x

⎛ ⎞− −⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

Example 42 Find 
4

sin 2 cos 2

9 – cos (2 )

x x dx

x
∫

Solution Let 
4

sin 2 cos 2I
9 – cos 2

x x dx
x

= ∫
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Put cos2 (2x) = t so that 4 sin 2x cos 2x dx = – dt

Therefore –1 1 2
2

1 1 1 1I – – sin C sin cos 2 C
4 4 3 4 39 –

dt t x
t

−⎛ ⎞ ⎡ ⎤= = + = − +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦∫

Example 43 Evaluate 
3
2
1

sin ( )x x dx
−

π∫

Solution Here f (x) = | x sin πx | = 
sin for 1 1

3sin for 1
2

x x x

x x x

π − ≤ ≤⎧
⎪
⎨
− π ≤ ≤⎪⎩

Therefore
3
2
1
| sin |x x dx

−
π∫  =

3
1 2
1 1

sin sinx x dx x x dx
−

π + − π∫ ∫

=
31
2

1 1
sin sinx x dx x x dx

−
π − π∫ ∫

Integrating both integrals on righthand side, we get

3
2
1
| sin |x x dx

−
π∫  =

31
2

2 2
1 1

– cos sin cos sinx x x x x x

−

π π − π π⎡ ⎤ ⎡ ⎤+ − +⎢ ⎥ ⎢ ⎥π ππ π⎣ ⎦ ⎣ ⎦

= 2 2
2 1 1 3 1⎡ ⎤− − − = +⎢ ⎥π π ππ π⎣ ⎦

Example 44 Evaluate 2 2 2 20 cos sin
x dx

a x b x
π

+∫

Solution Let I = 2 2 2 2 2 2 2 20 0

( )
cos sin cos ( ) sin ( )

x dx x dx
a x b x a x b x

π π π −
=

+ π − + π −∫ ∫ (using P4)

= 2 2 2 2 2 2 2 20 0cos sin cos sin
dx x dx

a x b x a x b x
π π

π −
+ +∫ ∫

= 2 2 2 20
I

cos sin
dx

a x b x
π

π −
+∫

Thus 2I = 2 2 2 20 cos sin
dx

a x b x
π

π
+∫
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or I = 2
2 2 2 2 2 2 2 20 0

2
2 2cos sin cos sin

dx dx
a x b x a x b x

π
ππ π

= ⋅
+ +∫ ∫

  (using P6)

=
2

2
2 2 20

sec
tan
x dx

a b x

π

π
+∫      (dividing numerator and denominator by cos2 x).

Put b tan x = t, so that b sec2 x dx = dt. Also, when x = 0, t = 0, and when 
2

x π
= ,

t → ∞.

Therefore,  
2

–1
2 20

0

1I tan 0
2 2

dt t
b b a a ab aba t

∞
∞π π π π π⎡ ⎤ ⎡ ⎤= = ⋅ = − =⎢ ⎥ ⎢ ⎥⎣ ⎦+ ⎣ ⎦∫ .

Miscellaneous Exercise on Chapter 7
Integrate the functions in Exercises 1 to 24.

1. 3
1

x x−
2.

1
x a x b+ + +

3.
2

1

x ax x−
 [Hint: Put x = 

a
t

]

4. 3
2 4 4

1

( 1)x x +
5. 11

32

1

x x+
      [Hint: 11 1 1

32 3 6

1 1

1x x x x
=

⎛ ⎞
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

, put x = t6]

6. 2
5

( 1) ( 9)
x

x x+ +
7.

sin
sin ( )

x
x a− 8.

5 log 4 log

3 log 2 log

x x

x x
e e
e e

−
−

9. 2

cos

4 sin

x

x−
10.

8 8

2 2
sin cos

1 2sin cos
x

x x
−

−
11.

1
cos ( ) cos ( )x a x b+ +

12.
3

81

x

x−
13.

(1 ) (2 )

x

x x
e

e e+ +
14. 2 2

1
( 1) ( 4)x x+ +

15. cos3 x elog sinx 16. e3 logx (x4 + 1)– 1 17.  f ′ (ax + b) [f (ax + b)]n

18. 3

1

sin sin ( )x x + α 19.
1 1

1 1
sin cos
sin cos

x x
x x

− −

− −

−
+

, x ∈ [0, 1]

20.
1
1

x
x

−
+

21.
2 sin 2
1 cos2

xx e
x

+
+

22.
2

2
1

( 1) ( 2)
x x

x x
+ +

+ +
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23. – 1 1tan
1

x
x

−
+

24.
2 2

4

1 log ( 1) 2 logx x x

x

⎡ ⎤+ + −⎣ ⎦

Evaluate the definite integrals in Exercises 25 to 33.

25.
2

1 sin
1 cos

x xe dx
x

π

π
−⎛ ⎞

⎜ ⎟+⎝ ⎠∫ 26. 4
4 40

sin cos
cos sin

x x dx
x x

π

+∫ 27.
2

2
2 20

cos
cos 4 sin

x dx
x x

π

+∫

28. 3

6

sin cos
sin 2
x x dx

x

π

π

+
∫ 29.

1

0 1
dx
x x+ −∫ 30. 4

0

sin cos
9 16 sin 2

x x dx
x

π
+

+∫

31. 12
0

sin 2 tan (sin )x x dx
π

−∫ 32.
0

tan
sec tan

x x dx
x x

π

+∫

33.
4

1
[ 1| | 2 | | 3 |]x x x dx− + − + −∫

Prove the following (Exercises 34 to 39)

34.
3

21

2 2log
3 3( 1)

dx
x x

= +
+∫ 35.

1

0
1xx e dx =∫

36.
1 17 4
1

cos 0x x dx
−

=∫ 37. 32
0

2sin
3

x dx
π

=∫

38. 34
0

2 tan 1 log 2x dx
π

= −∫ 39.
1 1
0
sin 1

2
x dx− π

= −∫
40. Evaluate 

1 2 3
0

xe dx−∫  as a limit of a sum.

Choose the correct answers in Exercises 41 to 44.

41.
x x

dx
e e−+∫  is equal to

(A) tan–1 (ex) + C (B) tan–1 (e–x) + C
(C) log (ex – e–x) + C (D) log (ex + e–x) + C

42. 2
cos2

(sin cos )
x dx

x x+∫  is equal to

(A)
–1 C

sin cosx x
+

+
(B) log |sin cos | Cx x+ +

(C) log |sin cos | Cx x− + (D) 2
1

(sin cos )x x+
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43. If f (a + b – x) = f (x), then ( )
b

a
x f x dx∫  is equal to

(A) ( )
2

b

a

a b f b x dx+
−∫ (B) ( )

2
b

a

a b f b x dx+
+∫

(C) ( )
2

b

a

b a f x dx−
∫ (D) ( )

2
b

a

a b f x dx+
∫

44. The value of 
1 1

20

2 1tan
1

x dx
x x

− −⎛ ⎞
⎜ ⎟
+ −⎝ ⎠∫  is

(A) 1 (B) 0 (C) –1 (D)
4
π

Summary
Integration is the inverse process of differentiation. In the differential calculus,
we are given a function and we have to find the derivative or differential of
this function, but in the integral calculus, we are to find a function whose
differential is given. Thus, integration is a process which is the inverse of
differentiation.

Let F( ) ( )d x f x
dx

= . Then we write ( ) F ( ) Cf x dx x= +∫ . These integrals

are called indefinite integrals or general integrals, C is called constant of
integration. All these integrals differ by a constant.
From the geometric point of view, an indefinite integral is collection of family
of curves, each of which is obtained by translating one of the curves parallel
to itself upwards or downwards along the y-axis.
Some properties of indefinite integrals are as follows:

1. [ ( ) ( )] ( ) ( )f x g x dx f x dx g x dx+ = +∫ ∫ ∫
2. For any real number k, ( ) ( )k f x dx k f x dx=∫ ∫
More generally, if f1, f2, f3, ... , fn are functions and k1, k2, ... ,kn are real
numbers. Then

1 1 2 2[ ( ) ( ) ... ( )]n nk f x k f x k f x dx+ + +∫
= 1 1 2 2( ) ( ) ... ( )n nk f x dx k f x dx k f x dx+ + +∫ ∫ ∫
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Some standard integrals

(i)
1

C
1

n
n xx dx

n

+

= +
+∫ , n ≠ – 1. Particularly, Cdx x= +∫

(ii) cos sin Cx dx x= +∫ (iii) sin – cos Cx dx x= +∫
(iv) 2sec tan Cx dx x= +∫ (v) 2cosec – cot Cx dx x= +∫
(vi) sec tan sec Cx x dx x= +∫

(vii) cosec cot – cosec Cx x dx x= +∫ (viii)
1

2
sin C

1

dx x
x

−= +
−

∫

(ix)
1

2
cos C

1

dx x
x

−= − +
−

∫ (x) 1
2 tan C

1
dx x

x
−= +

+∫

(xi) 1
2 cot C

1
dx x

x
−= − +

+∫ (xii) Cx xe dx e= +∫

(xiii) C
log

x
x aa dx

a
= +∫ (xiv) 1

2
sec C

1

dx x
x x

−= +
−

∫

(xv) 1
2

cosec C
1

dx x
x x

−= − +
−

∫ (xvi)
1 log | | Cdx x
x

= +∫

Integration by partial fractions

Recall that a rational function is ratio of two polynomials of the form P( )
Q( )

x
x

,

where P(x) and Q (x) are polynomials in x and Q (x) ≠ 0. If degree of the
polynomial P (x) is greater than the degree of the polynomial Q (x), then we

may divide P (x) by Q (x) so that 1P ( )P( ) T ( )
Q( ) Q( )

xx x
x x
= + , where T(x) is a

polynomial in x and degree of P1 (x) is less than the degree of Q(x). T(x)

being polynomial can be easily integrated. 1P ( )
Q( )

x
x

 can be integrated by

https://www.learncbse.in/ncert-books/
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expressing 1P ( )
Q( )

x
x

 as the sum of partial fractions of the following type:

1.
( ) ( )

px q
x a x b

+
− −

=
A B

x a x b
+

− −
, a ≠ b

2. 2( )
px q
x a

+
− = 2

A B
( )x a x a

+
− −

3.
2

( ) ( ) ( )
px qx r

x a x b x c
+ +

− − − =
A B C

x a x b x c
+ +

− − −

4.
2

2( ) ( )
px qx r

x a x b
+ +

− − = 2
A B C

( )x a x bx a
+ +

− −−

5.
2

2( ) ( )
px qx r

x a x bx c
+ +

− + + = 2
A B + Cx

x a x bx c
+

− + +

where x2 + bx + c can not be factorised further.
Integration by substitution
A change in the variable of integration often reduces an integral to one of the
fundamental integrals. The method in which we change the variable to some
other variable is called the method of substitution. When the integrand involves
some trigonometric functions, we use some well known identities to find the
integrals. Using substitution technique, we obtain the following standard
integrals.

(i) tan log sec Cx dx x= +∫ (ii) cot log sin Cx dx x= +∫
(iii) sec log sec tan Cx dx x x= + +∫
(iv) cosec log cosec cot Cx dx x x= − +∫

Integrals of some special functions

(i) 2 2
1 log C

2
dx x a

a x ax a
−

= +
+−∫

(ii) 2 2
1 log C

2
dx a x

a a xa x
+

= +
−−∫ (iii) 1

2 2
1 tan Cdx x
a ax a

−= +
+∫
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(iv) 2 2
2 2

log Cdx x x a
x a

= + − +
−

∫ (v)
1

2 2
sin Cdx x

aa x
−= +

−
∫

(vi)
2 2

2 2
log | | Cdx x x a

x a
= + + +

+
∫

Integration by parts
For given functions f1 and  f2, we have

1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )df x f x dx f x f x dx f x f x dx dx
dx
⎡ ⎤⋅ = − ⋅⎢ ⎥⎣ ⎦∫ ∫ ∫ ∫ , i.e., the

integral of the product of two functions = first function × integral of the
second function – integral of {differential coefficient of the first function ×
integral of the second function}. Care must be taken in choosing the first
function and the second function. Obviously, we must take that function as
the second function whose integral is well known to us.

[ ( ) ( )] ( ) Cx xe f x f x dx e f x dx′+ = +∫ ∫
Some special types of integrals

(i)
2

2 2 2 2 2 2log C
2 2
x ax a dx x a x x a− = − − + − +∫

(ii)
2

2 2 2 2 2 2log C
2 2
x ax a dx x a x x a+ = + + + + +∫

(iii)
2

2 2 2 2 1sin C
2 2
x a xa x dx a x

a
−− = − + +∫

(iv) Integrals of the types 2 2
ordx dx

ax bx c ax bx c+ + + +
∫ ∫ can be

transformed into standard form by expressing

ax2 + bx + c = 
2 2

2
22 4

b c b c ba x x a x
a a a a a

⎡ ⎤⎛ ⎞⎡ ⎤ ⎛ ⎞+ + = + + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

(v) Integrals of the types 2 2
orpx q dx px q dx

ax bx c ax bx c

+ +
+ + + +

∫ ∫ can be
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transformed into standard form by expressing

2A ( ) B A (2 ) Bdpx q ax bx c ax b
dx

+ = + + + = + + , where A and B are

determined by comparing coefficients on both sides.

We have defined ( )
b

a
f x dx∫  as the area of the region bounded by the curve

y = f (x), a ≤ x ≤ b, the x-axis and the ordinates x = a and x = b. Let x be a

given point in [a, b]. Then ( )
x

a
f x dx∫  represents the Area function A (x).

This concept of area function leads to the Fundamental Theorems of Integral
Calculus.
First fundamental theorem of integral calculus

Let the area function be defined by A(x) = ( )
x

a
f x dx∫  for all x ≥ a, where

the function f is assumed to be continuous on [a, b]. Then A′ (x) = f (x) for all
x ∈ [a, b].
Second fundamental theorem of integral calculus
Let f be a continuous function of x defined on the closed interval [a, b] and

let F be another function such that F( ) ( )d x f x
dx

=  for all x in the domain of

f, then [ ]( ) F( ) C F ( ) F ( )
b b

aa
f x dx x b a= + = −∫ .

This is called the definite integral of f over the range [a, b], where a and b
are called the limits of integration, a being the lower limit and b the
upper limit.

— —




